aboutsummaryrefslogtreecommitdiff
path: root/docs
diff options
context:
space:
mode:
authorvanhauser-thc <vh@thc.org>2021-12-09 13:22:10 +0100
committervanhauser-thc <vh@thc.org>2021-12-09 13:22:10 +0100
commit9063002af22e916701588248eca2fd2669e4d0df (patch)
tree89dce15383ef3db54faddc39acf68551b3fefa98 /docs
parent4c6d94ea5f854071277ed9729de2d4ef7d07cc84 (diff)
downloadafl++-9063002af22e916701588248eca2fd2669e4d0df.tar.gz
rename path
Diffstat (limited to 'docs')
-rw-r--r--docs/Changelog.md2
-rw-r--r--docs/afl-fuzz_approach.md26
-rw-r--r--docs/fuzzing_in_depth.md8
-rw-r--r--docs/resources/grafana-afl++.json12
-rw-r--r--docs/rpc_statsd.md16
5 files changed, 32 insertions, 32 deletions
diff --git a/docs/Changelog.md b/docs/Changelog.md
index 34b9affb..99768d1d 100644
--- a/docs/Changelog.md
+++ b/docs/Changelog.md
@@ -1566,7 +1566,7 @@ sending a mail to <afl-users+subscribe@googlegroups.com>.
- Fixed a bug with installed copies of AFL trying to use QEMU mode. Spotted
by G.M. Lime.
- - Added last path / crash / hang times to fuzzer_stats, suggested by
+ - Added last find / crash / hang times to fuzzer_stats, suggested by
Richard Hipp.
- Fixed a typo, thanks to Jakub Wilk.
diff --git a/docs/afl-fuzz_approach.md b/docs/afl-fuzz_approach.md
index 2da61cc4..058fe352 100644
--- a/docs/afl-fuzz_approach.md
+++ b/docs/afl-fuzz_approach.md
@@ -85,7 +85,7 @@ for parallel fuzzing. Second to last is the power schedule mode being run
```
+----------------------------------------------------+
| run time : 0 days, 8 hrs, 32 min, 43 sec |
- | last new path : 0 days, 0 hrs, 6 min, 40 sec |
+ | last new find : 0 days, 0 hrs, 6 min, 40 sec |
| last uniq crash : none seen yet |
| last uniq hang : 0 days, 1 hrs, 24 min, 32 sec |
+----------------------------------------------------+
@@ -485,20 +485,20 @@ directory. This includes:
- `cycles_wo_finds` - number of cycles without any new paths found
- `execs_done` - number of execve() calls attempted
- `execs_per_sec` - overall number of execs per second
-- `paths_total` - total number of entries in the queue
-- `paths_favored` - number of queue entries that are favored
-- `paths_found` - number of entries discovered through local fuzzing
-- `paths_imported` - number of entries imported from other instances
+- `corpus_count` - total number of entries in the queue
+- `corpus_favored` - number of queue entries that are favored
+- `corpus_found` - number of entries discovered through local fuzzing
+- `corpus_imported` - number of entries imported from other instances
- `max_depth` - number of levels in the generated data set
-- `cur_path` - currently processed entry number
+- `cur_item` - currently processed entry number
- `pending_favs` - number of favored entries still waiting to be fuzzed
- `pending_total` - number of all entries waiting to be fuzzed
-- `variable_paths` - number of test cases showing variable behavior
+- `corpus_variable` - number of test cases showing variable behavior
- `stability` - percentage of bitmap bytes that behave consistently
- `bitmap_cvg` - percentage of edge coverage found in the map so far
-- `unique_crashes` - number of unique crashes recorded
-- `unique_hangs` - number of unique hangs encountered
-- `last_path` - seconds since the last path was found
+- `saved_crashes` - number of unique crashes recorded
+- `saved_hangs` - number of unique hangs encountered
+- `last_find` - seconds since the last find was found
- `last_crash` - seconds since the last crash was found
- `last_hang` - seconds since the last hang was found
- `execs_since_crash` - execs since the last crash was found
@@ -531,9 +531,9 @@ last crash > X, etc.).
The selected metrics are a subset of all the metrics found in the status and in
the plot file. The list is the following: `cycle_done`, `cycles_wo_finds`,
-`execs_done`,`execs_per_sec`, `paths_total`, `paths_favored`, `paths_found`,
-`paths_imported`, `max_depth`, `cur_path`, `pending_favs`, `pending_total`,
-`variable_paths`, `unique_crashes`, `unique_hangs`, `total_crashes`,
+`execs_done`,`execs_per_sec`, `corpus_count`, `corpus_favored`, `corpus_found`,
+`corpus_imported`, `max_depth`, `cur_item`, `pending_favs`, `pending_total`,
+`corpus_variable`, `saved_crashes`, `saved_hangs`, `total_crashes`,
`slowest_exec_ms`, `edges_found`, `var_byte_count`, `havoc_expansion`. Their
definitions can be found in the addendum above.
diff --git a/docs/fuzzing_in_depth.md b/docs/fuzzing_in_depth.md
index aaceb600..160258e0 100644
--- a/docs/fuzzing_in_depth.md
+++ b/docs/fuzzing_in_depth.md
@@ -11,7 +11,7 @@ Fuzzing source code is a three-step process:
2. Prepare the fuzzing by selecting and optimizing the input corpus for the
target.
3. Perform the fuzzing of the target by randomly mutating input and assessing if
- a generated input was processed in a new path in the target binary.
+ that input was processed on a new path in the target binary.
## 0. Common sense risks
@@ -354,7 +354,7 @@ You can find many good examples of starting files in the
### b) Making the input corpus unique
Use the AFL++ tool `afl-cmin` to remove inputs from the corpus that do not
-produce a new path in the target.
+produce a new path/coverage in the target.
Put all files from step a) into one directory, e.g., INPUTS.
@@ -633,7 +633,7 @@ AFL_BENCH_JUST_ONE=1 AFL_FAST_CAL=1 afl-fuzz -i newseeds -o out -S newseeds -- .
### g) Checking the coverage of the fuzzing
-The `paths found` value is a bad indicator for checking how good the coverage
+The `corpus count` value is a bad indicator for checking how good the coverage
is.
A better indicator - if you use default llvm instrumentation with at least
@@ -822,7 +822,7 @@ as these are much shorter runnings.
will impact the speed by ~15% though.
* `AFL_FAST_CAL` - Enable fast calibration, this halves the time the
saturated corpus needs to be loaded.
- * `AFL_CMPLOG_ONLY_NEW` - only perform cmplog on new found paths, not the
+ * `AFL_CMPLOG_ONLY_NEW` - only perform cmplog on new finds, not the
initial corpus as this very likely has been done for them already.
* Keep the generated corpus, use afl-cmin and reuse it every time!
diff --git a/docs/resources/grafana-afl++.json b/docs/resources/grafana-afl++.json
index 96e824de..7afe89b1 100644
--- a/docs/resources/grafana-afl++.json
+++ b/docs/resources/grafana-afl++.json
@@ -926,7 +926,7 @@
"steppedLine": false,
"targets": [
{
- "expr": "fuzzing{type=\"cur_path\"}",
+ "expr": "fuzzing{type=\"cur_item\"}",
"interval": "",
"legendFormat": "",
"refId": "A"
@@ -936,7 +936,7 @@
"timeFrom": null,
"timeRegions": [],
"timeShift": null,
- "title": "Curent path",
+ "title": "Current fuzz item",
"tooltip": {
"shared": true,
"sort": 0,
@@ -1116,7 +1116,7 @@
"steppedLine": false,
"targets": [
{
- "expr": "fuzzing{type=\"paths_favored\"}",
+ "expr": "fuzzing{type=\"corpus_favored\"}",
"interval": "",
"legendFormat": "",
"refId": "A"
@@ -1135,7 +1135,7 @@
}
],
"timeShift": null,
- "title": "Path Favored",
+ "title": "Corpus Favored",
"tooltip": {
"shared": true,
"sort": 0,
@@ -1428,7 +1428,7 @@
"steppedLine": false,
"targets": [
{
- "expr": "fuzzing{type=\"paths_imported\"}",
+ "expr": "fuzzing{type=\"corpus_imported\"}",
"interval": "",
"legendFormat": "",
"refId": "A"
@@ -1447,7 +1447,7 @@
}
],
"timeShift": null,
- "title": "Path Imported",
+ "title": "Corpus Imported",
"tooltip": {
"shared": true,
"sort": 0,
diff --git a/docs/rpc_statsd.md b/docs/rpc_statsd.md
index 003b9c79..d8f0fb67 100644
--- a/docs/rpc_statsd.md
+++ b/docs/rpc_statsd.md
@@ -26,7 +26,7 @@ StatsD allows you to receive and aggregate metrics from a wide range of
applications and retransmit them to a backend of your choice.
From AFL++, StatsD can receive the following metrics:
-- cur_path
+- cur_item
- cycle_done
- cycles_wo_finds
- edges_found
@@ -34,18 +34,18 @@ From AFL++, StatsD can receive the following metrics:
- execs_per_sec
- havoc_expansion
- max_depth
-- paths_favored
-- paths_found
-- paths_imported
-- paths_total
+- corpus_favored
+- corpus_found
+- corpus_imported
+- corpus_count
- pending_favs
- pending_total
- slowest_exec_ms
- total_crashes
-- unique_crashes
-- unique_hangs
+- saved_crashes
+- saved_hangs
- var_byte_count
-- variable_paths
+- corpus_variable
Depending on your StatsD server, you will be able to monitor, trigger alerts, or
perform actions based on these metrics (for example: alert on slow exec/s for a