diff options
-rw-r--r-- | GNUmakefile | 30 | ||||
-rw-r--r-- | docs/Changelog.md | 2 | ||||
-rw-r--r-- | include/afl-fuzz.h | 34 | ||||
-rw-r--r-- | include/config.h | 2 | ||||
-rw-r--r-- | include/hash.h | 18 | ||||
-rw-r--r-- | include/xxh3.h | 3185 | ||||
-rw-r--r-- | include/xxhash.h | 2438 | ||||
-rw-r--r-- | llvm_mode/afl-llvm-rt.o.c | 3 | ||||
-rw-r--r-- | src/afl-analyze.c | 4 | ||||
-rw-r--r-- | src/afl-forkserver.c | 5 | ||||
-rw-r--r-- | src/afl-fuzz-bitmap.c | 2 | ||||
-rw-r--r-- | src/afl-fuzz-mutators.c | 4 | ||||
-rw-r--r-- | src/afl-fuzz-one.c | 20 | ||||
-rw-r--r-- | src/afl-fuzz-redqueen.c | 10 | ||||
-rw-r--r-- | src/afl-fuzz-run.c | 8 | ||||
-rw-r--r-- | src/afl-fuzz.c | 10 | ||||
-rw-r--r-- | src/afl-performance.c | 135 | ||||
-rw-r--r-- | src/afl-tmin.c | 2 |
18 files changed, 5850 insertions, 62 deletions
diff --git a/GNUmakefile b/GNUmakefile index 0714a9d2..7818a362 100644 --- a/GNUmakefile +++ b/GNUmakefile @@ -50,10 +50,15 @@ else endif endif +ifeq "$(shell echo 'int main() {return 0; }' | $(CC) -fno-move-loop-invariants -fdisable-tree-cunrolli -x c - -o .test 2>/dev/null && echo 1 || echo 0 ; rm -f .test )" "1" + SPECIAL_PERFORMANCE += -fno-move-loop-invariants -fdisable-tree-cunrolli +endif + ifneq "$(shell uname)" "Darwin" - #ifeq "$(shell echo 'int main() {return 0; }' | $(CC) $(CFLAGS) -Werror -x c - -march=native -o .test 2>/dev/null && echo 1 || echo 0 ; rm -f .test )" "1" - # CFLAGS_OPT += -march=native - #endif + ifeq "$(shell echo 'int main() {return 0; }' | $(CC) $(CFLAGS) -Werror -x c - -march=native -o .test 2>/dev/null && echo 1 || echo 0 ; rm -f .test )" "1" + #CFLAGS_OPT += -march=native + SPECIAL_PERFORMANCE += -march=native + endif # OS X does not like _FORTIFY_SOURCE=2 CFLAGS_OPT += -D_FORTIFY_SOURCE=2 endif @@ -350,6 +355,9 @@ afl-as: src/afl-as.c include/afl-as.h $(COMM_HDR) | test_x86 $(CC) $(CFLAGS) src/$@.c -o $@ $(LDFLAGS) ln -sf afl-as as +src/afl-performance.o : $(COMM_HDR) src/afl-performance.c include/hash.h + $(CC) -Iinclude $(SPECIAL_PERFORMANCE) -O3 -fno-unroll-loops -c src/afl-performance.c -o src/afl-performance.o + src/afl-common.o : $(COMM_HDR) src/afl-common.c include/common.h $(CC) $(CFLAGS) $(CFLAGS_FLTO) -c src/afl-common.c -o src/afl-common.o @@ -365,25 +373,25 @@ radamsa: src/third_party/libradamsa/libradamsa.so src/third_party/libradamsa/libradamsa.so: src/third_party/libradamsa/libradamsa.c src/third_party/libradamsa/radamsa.h $(MAKE) -C src/third_party/libradamsa/ CFLAGS="$(CFLAGS)" -afl-fuzz: $(COMM_HDR) include/afl-fuzz.h $(AFL_FUZZ_FILES) src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o | test_x86 - $(CC) $(CFLAGS) $(COMPILE_STATIC) $(CFLAGS_FLTO) $(AFL_FUZZ_FILES) src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o -o $@ $(PYFLAGS) $(LDFLAGS) +afl-fuzz: $(COMM_HDR) include/afl-fuzz.h $(AFL_FUZZ_FILES) src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o src/afl-performance.o | test_x86 + $(CC) $(CFLAGS) $(COMPILE_STATIC) $(CFLAGS_FLTO) $(AFL_FUZZ_FILES) src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o src/afl-performance.o -o $@ $(PYFLAGS) $(LDFLAGS) afl-showmap: src/afl-showmap.c src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o $(COMM_HDR) | test_x86 $(CC) $(CFLAGS) $(COMPILE_STATIC) $(CFLAGS_FLTO) src/$@.c src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o -o $@ $(LDFLAGS) -afl-tmin: src/afl-tmin.c src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o $(COMM_HDR) | test_x86 - $(CC) $(CFLAGS) $(COMPILE_STATIC) $(CFLAGS_FLTO) src/$@.c src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o -o $@ $(LDFLAGS) +afl-tmin: src/afl-tmin.c src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o src/afl-performance.o $(COMM_HDR) | test_x86 + $(CC) $(CFLAGS) $(COMPILE_STATIC) $(CFLAGS_FLTO) src/$@.c src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o src/afl-performance.o -o $@ $(LDFLAGS) -afl-analyze: src/afl-analyze.c src/afl-common.o src/afl-sharedmem.o $(COMM_HDR) | test_x86 - $(CC) $(CFLAGS) $(COMPILE_STATIC) $(CFLAGS_FLTO) src/$@.c src/afl-common.o src/afl-sharedmem.o -o $@ $(LDFLAGS) +afl-analyze: src/afl-analyze.c src/afl-common.o src/afl-sharedmem.o src/afl-performance.o $(COMM_HDR) | test_x86 + $(CC) $(CFLAGS) $(COMPILE_STATIC) $(CFLAGS_FLTO) src/$@.c src/afl-common.o src/afl-sharedmem.o src/afl-performance.o -o $@ $(LDFLAGS) afl-gotcpu: src/afl-gotcpu.c src/afl-common.o $(COMM_HDR) | test_x86 $(CC) $(CFLAGS) $(COMPILE_STATIC) $(CFLAGS_FLTO) src/$@.c src/afl-common.o -o $@ $(LDFLAGS) # document all mutations and only do one run (use with only one input file!) -document: $(COMM_HDR) include/afl-fuzz.h $(AFL_FUZZ_FILES) src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o | test_x86 - $(CC) -D_AFL_DOCUMENT_MUTATIONS $(CFLAGS) $(CFLAGS_FLTO) $(AFL_FUZZ_FILES) src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o -o afl-fuzz-document $(PYFLAGS) $(LDFLAGS) +document: $(COMM_HDR) include/afl-fuzz.h $(AFL_FUZZ_FILES) src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o src/afl-performance.o | test_x86 + $(CC) -D_AFL_DOCUMENT_MUTATIONS $(CFLAGS) $(CFLAGS_FLTO) $(AFL_FUZZ_FILES) src/afl-common.o src/afl-sharedmem.o src/afl-forkserver.o src/afl-performance.o -o afl-fuzz-document $(PYFLAGS) $(LDFLAGS) test/unittests/unit_maybe_alloc.o : $(COMM_HDR) include/alloc-inl.h test/unittests/unit_maybe_alloc.c $(AFL_FUZZ_FILES) @$(CC) $(CFLAGS) $(ASAN_CFLAGS) -c test/unittests/unit_maybe_alloc.c -o test/unittests/unit_maybe_alloc.o diff --git a/docs/Changelog.md b/docs/Changelog.md index 1fdc4677..a214e70a 100644 --- a/docs/Changelog.md +++ b/docs/Changelog.md @@ -16,6 +16,8 @@ sending a mail to <afl-users+subscribe@googlegroups.com>. exactly one main node is present and warn otherwise - If no main node is present at a sync one secondary node automatically becomes a temporary main node until a real main nodes shows up + - switched murmur2 hashing and random() for xxh3 and xoshiro256**, giving up to 5.5% speed + increase - fix/update to MOpt (thanks to arnow117) - added MOpt dictionary support from repo - llvm_mode: diff --git a/include/afl-fuzz.h b/include/afl-fuzz.h index f17bebd7..9d71e20f 100644 --- a/include/afl-fuzz.h +++ b/include/afl-fuzz.h @@ -139,13 +139,13 @@ struct queue_entry { fully_colorized; /* Do not run redqueen stage again */ u32 bitmap_size, /* Number of bits set in bitmap */ - fuzz_level, /* Number of fuzzing iterations */ - exec_cksum; /* Checksum of the execution trace */ + fuzz_level; /* Number of fuzzing iterations */ u64 exec_us, /* Execution time (us) */ handicap, /* Number of queue cycles behind */ - n_fuzz, /* Number of fuzz, does not overflow */ - depth; /* Path depth */ + n_fuzz, /* Number of fuzz, does not overflow*/ + depth, /* Path depth */ + exec_cksum; /* Checksum of the execution trace */ u8 *trace_mini; /* Trace bytes, if kept */ u32 tc_ref; /* Trace bytes ref count */ @@ -520,11 +520,11 @@ typedef struct afl_state { u64 stage_finds[32], /* Patterns found per fuzz stage */ stage_cycles[32]; /* Execs per fuzz stage */ -#ifndef HAVE_ARC4RANDOM + //#ifndef HAVE_ARC4RANDOM u32 rand_cnt; /* Random number counter */ -#endif + //#endif - u32 rand_seed[2]; + u64 rand_seed[4]; s64 init_seed; u64 total_cal_us, /* Total calibration time (us) */ @@ -942,7 +942,10 @@ u8 common_fuzz_cmplog_stuff(afl_state_t *afl, u8 *out_buf, u32 len); /* RedQueen */ u8 input_to_state_stage(afl_state_t *afl, u8 *orig_buf, u8 *buf, u32 len, - u32 exec_cksum); + u64 exec_cksum); + +/* xoshiro256** */ +uint64_t rand_next(afl_state_t *afl); /**** Inline routines ****/ @@ -951,24 +954,25 @@ u8 input_to_state_stage(afl_state_t *afl, u8 *orig_buf, u8 *buf, u32 len, static inline u32 rand_below(afl_state_t *afl, u32 limit) { -#ifdef HAVE_ARC4RANDOM - if (unlikely(afl->fixed_seed)) { return random() % limit; } + //#ifdef HAVE_ARC4RANDOM + // if (unlikely(afl->fixed_seed)) { return random() % limit; } /* The boundary not being necessarily a power of 2, we need to ensure the result uniformity. */ - return arc4random_uniform(limit); -#else + // return arc4random_uniform(limit); + //#else if (unlikely(!afl->rand_cnt--) && likely(!afl->fixed_seed)) { ck_read(afl->fsrv.dev_urandom_fd, &afl->rand_seed, sizeof(afl->rand_seed), "/dev/urandom"); - srandom(afl->rand_seed[0]); + // srandom(afl->rand_seed[0]); afl->rand_cnt = (RESEED_RNG / 2) + (afl->rand_seed[1] % RESEED_RNG); } - return random() % limit; -#endif + // return random() % limit; + return rand_next(afl) % limit; + //#endif } diff --git a/include/config.h b/include/config.h index 57efd0f6..b93a9f9e 100644 --- a/include/config.h +++ b/include/config.h @@ -293,7 +293,7 @@ /* Call count interval between reseeding the libc PRNG from /dev/urandom: */ -#define RESEED_RNG 10000 +#define RESEED_RNG 100000 /* Maximum line length passed from GCC to 'as' and used for parsing configuration files: */ diff --git a/include/hash.h b/include/hash.h index cec51eac..09dabb59 100644 --- a/include/hash.h +++ b/include/hash.h @@ -30,9 +30,16 @@ #include "types.h" -#ifdef __x86_64__ +u32 hash32(const void *key, u32 len, u32 seed); +u64 hash64(const void *key, u32 len, u64 seed); - #define ROL64(_x, _r) ((((u64)(_x)) << (_r)) | (((u64)(_x)) >> (64 - (_r)))) +#if 0 + +The following code is disabled because xxh3 with a 32 bit resukt is 30% faster + + #ifdef __x86_64__ + + #define ROL64(_x, _r) ((((u64)(_x)) << (_r)) | (((u64)(_x)) >> (64 - (_r)))) static inline u32 hash32(const void *key, u32 len, u32 seed) { @@ -65,9 +72,9 @@ static inline u32 hash32(const void *key, u32 len, u32 seed) { } -#else + #else - #define ROL32(_x, _r) ((((u32)(_x)) << (_r)) | (((u32)(_x)) >> (32 - (_r)))) + #define ROL32(_x, _r) ((((u32)(_x)) << (_r)) | (((u32)(_x)) >> (32 - (_r)))) static inline u32 hash32(const void *key, u32 len, u32 seed) { @@ -100,7 +107,8 @@ static inline u32 hash32(const void *key, u32 len, u32 seed) { } -#endif /* ^__x86_64__ */ + #endif /* ^__x86_64__ */ +#endif #endif /* !_HAVE_HASH_H */ diff --git a/include/xxh3.h b/include/xxh3.h new file mode 100644 index 00000000..54d5bf60 --- /dev/null +++ b/include/xxh3.h @@ -0,0 +1,3185 @@ +/* + * xxHash - Extremely Fast Hash algorithm + * Development source file for `xxh3` + * Copyright (C) 2019-2020 Yann Collet + * + * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following disclaimer + * in the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * You can contact the author at: + * - xxHash homepage: https://www.xxhash.com + * - xxHash source repository: https://github.com/Cyan4973/xxHash + */ + +/* + * Note: This file is separated for development purposes. + * It will be integrated into `xxhash.h` when development stage is completed. + * + * Credit: most of the work on vectorial and asm variants comes from + * @easyaspi314 + */ + +#ifndef XXH3_H_1397135465 +#define XXH3_H_1397135465 + +/* === Dependencies === */ +#ifndef XXHASH_H_5627135585666179 + /* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */ + #undef XXH_INLINE_ALL /* avoid redefinition */ + #define XXH_INLINE_ALL +#endif +#include "xxhash.h" + +/* === Compiler specifics === */ + +#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ + #define XXH_RESTRICT restrict +#else + /* Note: it might be useful to define __restrict or __restrict__ for some C++ + * compilers */ + #define XXH_RESTRICT /* disable */ +#endif + +#if (defined(__GNUC__) && (__GNUC__ >= 3)) || \ + (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) || \ + defined(__clang__) + #define XXH_likely(x) __builtin_expect(x, 1) + #define XXH_unlikely(x) __builtin_expect(x, 0) +#else + #define XXH_likely(x) (x) + #define XXH_unlikely(x) (x) +#endif + +#if defined(__GNUC__) + #if defined(__AVX2__) + #include <immintrin.h> + #elif defined(__SSE2__) + #include <emmintrin.h> + #elif defined(__ARM_NEON__) || defined(__ARM_NEON) + #define inline __inline__ /* clang bug */ + #include <arm_neon.h> + #undef inline + #endif +#elif defined(_MSC_VER) + #include <intrin.h> +#endif + +/* + * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while + * remaining a true 64-bit/128-bit hash function. + * + * This is done by prioritizing a subset of 64-bit operations that can be + * emulated without too many steps on the average 32-bit machine. + * + * For example, these two lines seem similar, and run equally fast on 64-bit: + * + * xxh_u64 x; + * x ^= (x >> 47); // good + * x ^= (x >> 13); // bad + * + * However, to a 32-bit machine, there is a major difference. + * + * x ^= (x >> 47) looks like this: + * + * x.lo ^= (x.hi >> (47 - 32)); + * + * while x ^= (x >> 13) looks like this: + * + * // note: funnel shifts are not usually cheap. + * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); + * x.hi ^= (x.hi >> 13); + * + * The first one is significantly faster than the second, simply because the + * shift is larger than 32. This means: + * - All the bits we need are in the upper 32 bits, so we can ignore the lower + * 32 bits in the shift. + * - The shift result will always fit in the lower 32 bits, and therefore, + * we can ignore the upper 32 bits in the xor. + * + * Thanks to this optimization, XXH3 only requires these features to be + * efficient: + * + * - Usable unaligned access + * - A 32-bit or 64-bit ALU + * - If 32-bit, a decent ADC instruction + * - A 32 or 64-bit multiply with a 64-bit result + * - For the 128-bit variant, a decent byteswap helps short inputs. + * + * The first two are already required by XXH32, and almost all 32-bit and 64-bit + * platforms which can run XXH32 can run XXH3 efficiently. + * + * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one + * notable exception. + * + * First of all, Thumb-1 lacks support for the UMULL instruction which + * performs the important long multiply. This means numerous __aeabi_lmul + * calls. + * + * Second of all, the 8 functional registers are just not enough. + * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need + * Lo registers, and this shuffling results in thousands more MOVs than A32. + * + * A32 and T32 don't have this limitation. They can access all 14 registers, + * do a 32->64 multiply with UMULL, and the flexible operand allowing free + * shifts is helpful, too. + * + * Therefore, we do a quick sanity check. + * + * If compiling Thumb-1 for a target which supports ARM instructions, we will + * emit a warning, as it is not a "sane" platform to compile for. + * + * Usually, if this happens, it is because of an accident and you probably need + * to specify -march, as you likely meant to compile for a newer architecture. + */ +#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) + #warning "XXH3 is highly inefficient without ARM or Thumb-2." +#endif + +/* ========================================== + * Vectorization detection + * ========================================== */ +#define XXH_SCALAR 0 /* Portable scalar version */ +#define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */ +#define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */ +#define XXH_AVX512 3 /* AVX512 for Skylake and Icelake */ +#define XXH_NEON 4 /* NEON for most ARMv7-A and all AArch64 */ +#define XXH_VSX 5 /* VSX and ZVector for POWER8/z13 */ + +#ifndef XXH_VECTOR /* can be defined on command line */ + #if defined(__AVX512F__) + #define XXH_VECTOR XXH_AVX512 + #elif defined(__AVX2__) + #define XXH_VECTOR XXH_AVX2 + #elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || \ + (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) + #define XXH_VECTOR XXH_SSE2 + #elif defined(__GNUC__) /* msvc support maybe later */ \ + && (defined(__ARM_NEON__) || defined(__ARM_NEON)) && \ + (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \ + || \ + (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) + #define XXH_VECTOR XXH_NEON + #elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) || \ + (defined(__s390x__) && defined(__VEC__)) && \ + defined(__GNUC__) /* TODO: IBM XL */ + #define XXH_VECTOR XXH_VSX + #else + #define XXH_VECTOR XXH_SCALAR + #endif +#endif + +/* + * Controls the alignment of the accumulator, + * for compatibility with aligned vector loads, which are usually faster. + */ +#ifndef XXH_ACC_ALIGN + #if defined(XXH_X86DISPATCH) + #define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ + #elif XXH_VECTOR == XXH_SCALAR /* scalar */ + #define XXH_ACC_ALIGN 8 + #elif XXH_VECTOR == XXH_SSE2 /* sse2 */ + #define XXH_ACC_ALIGN 16 + #elif XXH_VECTOR == XXH_AVX2 /* avx2 */ + #define XXH_ACC_ALIGN 32 + #elif XXH_VECTOR == XXH_NEON /* neon */ + #define XXH_ACC_ALIGN 16 + #elif XXH_VECTOR == XXH_VSX /* vsx */ + #define XXH_ACC_ALIGN 16 + #elif XXH_VECTOR == XXH_AVX512 /* avx512 */ + #define XXH_ACC_ALIGN 64 + #endif +#endif + +#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 || \ + XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 + #define XXH_SEC_ALIGN XXH_ACC_ALIGN +#else + #define XXH_SEC_ALIGN 8 +#endif + +/* + * UGLY HACK: + * GCC usually generates the best code with -O3 for xxHash. + * + * However, when targeting AVX2, it is overzealous in its unrolling resulting + * in code roughly 3/4 the speed of Clang. + * + * There are other issues, such as GCC splitting _mm256_loadu_si256 into + * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which + * only applies to Sandy and Ivy Bridge... which don't even support AVX2. + * + * That is why when compiling the AVX2 version, it is recommended to use either + * -O2 -mavx2 -march=haswell + * or + * -O2 -mavx2 -mno-avx256-split-unaligned-load + * for decent performance, or to use Clang instead. + * + * Fortunately, we can control the first one with a pragma that forces GCC into + * -O2, but the other one we can't control without "failed to inline always + * inline function due to target mismatch" warnings. + */ +#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ + && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ + && defined(__OPTIMIZE__) && \ + !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ + #pragma GCC push_options + #pragma GCC optimize("-O2") +#endif + +#if XXH_VECTOR == XXH_NEON + /* + * NEON's setup for vmlal_u32 is a little more complicated than it is on + * SSE2, AVX2, and VSX. + * + * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an + * upcast. + * + * To do the same operation, the 128-bit 'Q' register needs to be split into + * two 64-bit 'D' registers, performing this operation:: + * + * [ a | b ] + * | '---------. .--------' | + * | x | + * | .---------' '--------. | + * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] + * + * Due to significant changes in aarch64, the fastest method for aarch64 is + * completely different than the fastest method for ARMv7-A. + * + * ARMv7-A treats D registers as unions overlaying Q registers, so modifying + * D11 will modify the high half of Q5. This is similar to how modifying AH + * will only affect bits 8-15 of AX on x86. + * + * VZIP takes two registers, and puts even lanes in one register and odd lanes + * in the other. + * + * On ARMv7-A, this strangely modifies both parameters in place instead of + * taking the usual 3-operand form. + * + * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the + * lower and upper halves of the Q register to end up with the high and low + * halves where we want - all in one instruction. + * + * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], + * d11[1] } + * + * Unfortunately we need inline assembly for this: Instructions modifying two + * registers at once is not possible in GCC or Clang's IR, and they have to + * create a copy. + * + * aarch64 requires a different approach. + * + * In order to make it easier to write a decent compiler for aarch64, many + * quirks were removed, such as conditional execution. + * + * NEON was also affected by this. + * + * aarch64 cannot access the high bits of a Q-form register, and writes to a + * D-form register zero the high bits, similar to how writes to W-form scalar + * registers (or DWORD registers on x86_64) work. + * + * The formerly free vget_high intrinsics now require a vext (with a few + * exceptions) + * + * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent + * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one + * operand. + * + * The equivalent of the VZIP.32 on the lower and upper halves would be this + * mess: + * + * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } + * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } + * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } + * + * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 + * (SHRN): + * + * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); + * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); + * + * This is available on ARMv7-A, but is less efficient than a single VZIP.32. + */ + + /* + * Function-like macro: + * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t + * &outHi) + * { + + * outLo = (uint32x2_t)(in & 0xFFFFFFFF); + * outHi = (uint32x2_t)(in >> 32); + * in = UNDEFINED; + * } + */ + #if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ + && defined(__GNUC__) && !defined(__aarch64__) && !defined(__arm64__) + #define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ + do { \ + \ + /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = \ + * upper D half */ \ + /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 \ + */ \ + /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 \ + */ \ + __asm__("vzip.32 %e0, %f0" : "+w"(in)); \ + (outLo) = vget_low_u32(vreinterpretq_u32_u64(in)); \ + (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ + \ + } while (0) + #else + #define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ + do { \ + \ + (outLo) = vmovn_u64(in); \ + (outHi) = vshrn_n_u64((in), 32); \ + \ + } while (0) + #endif +#endif /* XXH_VECTOR == XXH_NEON */ + +/* + * VSX and Z Vector helpers. + * + * This is very messy, and any pull requests to clean this up are welcome. + * + * There are a lot of problems with supporting VSX and s390x, due to + * inconsistent intrinsics, spotty coverage, and multiple endiannesses. + */ +#if XXH_VECTOR == XXH_VSX + #if defined(__s390x__) + #include <s390intrin.h> + #else + #include <altivec.h> + #endif + + #undef vector /* Undo the pollution */ + +typedef __vector unsigned long long xxh_u64x2; +typedef __vector unsigned char xxh_u8x16; +typedef __vector unsigned xxh_u32x4; + + #ifndef XXH_VSX_BE + #if defined(__BIG_ENDIAN__) || \ + (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) + #define XXH_VSX_BE 1 + #elif defined(__VEC_ELEMENT_REG_ORDER__) && \ + __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ + #warning "-maltivec=be is not recommended. Please use native endianness." + #define XXH_VSX_BE 1 + #else + #define XXH_VSX_BE 0 + #endif + #endif /* !defined(XXH_VSX_BE) */ + + #if XXH_VSX_BE + /* A wrapper for POWER9's vec_revb. */ + #if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) + #define XXH_vec_revb vec_revb + #else +XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) { + + xxh_u8x16 const vByteSwap = {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, + 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08}; + return vec_perm(val, val, vByteSwap); + +} + + #endif + #endif /* XXH_VSX_BE */ + +/* + * Performs an unaligned load and byte swaps it on big endian. + */ +XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) { + + xxh_u64x2 ret; + memcpy(&ret, ptr, sizeof(xxh_u64x2)); + #if XXH_VSX_BE + ret = XXH_vec_revb(ret); + #endif + return ret; + +} + + /* + * vec_mulo and vec_mule are very problematic intrinsics on PowerPC + * + * These intrinsics weren't added until GCC 8, despite existing for a while, + * and they are endian dependent. Also, their meaning swap depending on + * version. + * */ + #if defined(__s390x__) + /* s390x is always big endian, no issue on this platform */ + #define XXH_vec_mulo vec_mulo + #define XXH_vec_mule vec_mule + #elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) + /* Clang has a better way to control this, we can just use the builtin which + * doesn't swap. */ + #define XXH_vec_mulo __builtin_altivec_vmulouw + #define XXH_vec_mule __builtin_altivec_vmuleuw + #else +/* gcc needs inline assembly */ +/* Adapted from + * https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ +XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) { + + xxh_u64x2 result; + __asm__("vmulouw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b)); + return result; + +} + +XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) { + + xxh_u64x2 result; + __asm__("vmuleuw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b)); + return result; + +} + + #endif /* XXH_vec_mulo, XXH_vec_mule */ +#endif /* XXH_VECTOR == XXH_VSX */ + +/* prefetch + * can be disabled, by declaring XXH_NO_PREFETCH build macro */ +#if defined(XXH_NO_PREFETCH) + #define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ +#else + #if defined(_MSC_VER) && \ + (defined(_M_X64) || \ + defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */ + #include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ + #define XXH_PREFETCH(ptr) _mm_prefetch((const char *)(ptr), _MM_HINT_T0) + #elif defined(__GNUC__) && \ + ((__GNUC__ >= 4) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1))) + #define XXH_PREFETCH(ptr) \ + __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) + #else + #define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ + #endif +#endif /* XXH_NO_PREFETCH */ + +/* ========================================== + * XXH3 default settings + * ========================================== */ + +#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ + +#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) + #error "default keyset is not large enough" +#endif + +/* Pseudorandom secret taken directly from FARSH */ +XXH_ALIGN(64) +static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { + + 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, + 0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, + 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e, + 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, + 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, + 0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, + 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97, + 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, + 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, + 0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, + 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, + + 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, + 0xfa, 0x13, 0x63, 0xeb, 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, + 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58, + 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, + 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, + 0xbb, 0x4b, 0x40, 0x7e, + +}; + +#ifdef XXH_OLD_NAMES + #define kSecret XXH3_kSecret +#endif + +/* + * Calculates a 32-bit to 64-bit long multiply. + * + * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't + * need to (but it shouldn't need to anyways, it is about 7 instructions to do + * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we + * use that instead of the normal method. + * + * If you are compiling for platforms like Thumb-1 and don't have a better + * option, you may also want to write your own long multiply routine here. + * + * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y) + * { + + * return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); + * } + */ +#if defined(_MSC_VER) && defined(_M_IX86) + #include <intrin.h> + #define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) +#else + /* + * Downcast + upcast is usually better than masking on older compilers like + * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. + * + * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both + * operands and perform a full 64x64 multiply -- entirely redundant on 32-bit. + */ + #define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) +#endif + +/* + * Calculates a 64->128-bit long multiply. + * + * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version. + */ +static XXH128_hash_t XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) { + + /* + * GCC/Clang __uint128_t method. + * + * On most 64-bit targets, GCC and Clang define a __uint128_t type. + * This is usually the best way as it usually uses a native long 64-bit + * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. + * + * Usually. + * + * Despite being a 32-bit platform, Clang (and emscripten) define this type + * despite not having the arithmetic for it. This results in a laggy + * compiler builtin call which calculates a full 128-bit multiply. + * In that case it is best to use the portable one. + * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 + */ +#if defined(__GNUC__) && !defined(__wasm__) && defined(__SIZEOF_INT128__) || \ + (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) + + __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; + XXH128_hash_t r128; + r128.low64 = (xxh_u64)(product); + r128.high64 = (xxh_u64)(product >> 64); + return r128; + + /* + * MSVC for x64's _umul128 method. + * + * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 + * *HighProduct); + * + * This compiles to single operand MUL on x64. + */ +#elif defined(_M_X64) || defined(_M_IA64) + + #ifndef _MSC_VER + #pragma intrinsic(_umul128) + #endif + xxh_u64 product_high; + xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); + XXH128_hash_t r128; + r128.low64 = product_low; + r128.high64 = product_high; + return r128; + +#else + /* + * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. + * + * This is a fast and simple grade school multiply, which is shown below + * with base 10 arithmetic instead of base 0x100000000. + * + * 9 3 // D2 lhs = 93 + * x 7 5 // D2 rhs = 75 + * ---------- + * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 + * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 + * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 + * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 + * --------- + * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 + * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 + * --------- + * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 + * + * The reasons for adding the products like this are: + * 1. It avoids manual carry tracking. Just like how + * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. + * This avoids a lot of complexity. + * + * 2. It hints for, and on Clang, compiles to, the powerful UMAAL + * instruction available in ARM's Digital Signal Processing extension + * in 32-bit ARMv6 and later, which is shown below: + * + * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) + * { + + * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; + * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); + * *RdHi = (xxh_u32)(product >> 32); + * } + * + * This instruction was designed for efficient long multiplication, and + * allows this to be calculated in only 4 instructions at speeds + * comparable to some 64-bit ALUs. + * + * 3. It isn't terrible on other platforms. Usually this will be a couple + * of 32-bit ADD/ADCs. + */ + + /* First calculate all of the cross products. */ + xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); + xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); + xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); + xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); + + /* Now add the products together. These will never overflow. */ + xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; + xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; + xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); + + XXH128_hash_t r128; + r128.low64 = lower; + r128.high64 = upper; + return r128; +#endif + +} + +/* + * Does a 64-bit to 128-bit multiply, then XOR folds it. + * + * The reason for the separate function is to prevent passing too many structs + * around by value. This will hopefully inline the multiply, but we don't force + * it. + */ +static xxh_u64 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) { + + XXH128_hash_t product = XXH_mult64to128(lhs, rhs); + return product.low64 ^ product.high64; + +} + +/* Seems to produce slightly better code on GCC for some reason. */ +XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) { + + XXH_ASSERT(0 <= shift && shift < 64); + return v64 ^ (v64 >> shift); + +} + +/* + * We don't need to (or want to) mix as much as XXH64. + * + * Short hashes are more evenly distributed, so it isn't necessary. + */ +static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) { + + h64 = XXH_xorshift64(h64, 37); + h64 *= 0x165667919E3779F9ULL; + h64 = XXH_xorshift64(h64, 32); + return h64; + +} + +/* ========================================== + * Short keys + * ========================================== + * One of the shortcomings of XXH32 and XXH64 was that their performance was + * sub-optimal on short lengths. It used an iterative algorithm which strongly + * favored lengths that were a multiple of 4 or 8. + * + * Instead of iterating over individual inputs, we use a set of single shot + * functions which piece together a range of lengths and operate in constant + * time. + * + * Additionally, the number of multiplies has been significantly reduced. This + * reduces latency, especially when emulating 64-bit multiplies on 32-bit. + * + * Depending on the platform, this may or may not be faster than XXH32, but it + * is almost guaranteed to be faster than XXH64. + */ + +/* + * At very short lengths, there isn't enough input to fully hide secrets, or use + * the entire secret. + * + * There is also only a limited amount of mixing we can do before significantly + * impacting performance. + * + * Therefore, we use different sections of the secret and always mix two secret + * samples with an XOR. This should have no effect on performance on the + * seedless or withSeed variants because everything _should_ be constant folded + * by modern compilers. + * + * The XOR mixing hides individual parts of the secret and increases entropy. + * + * This adds an extra layer of strength for custom secrets. + */ +XXH_FORCE_INLINE XXH64_hash_t XXH3_len_1to3_64b(const xxh_u8 *input, size_t len, + const xxh_u8 *secret, + XXH64_hash_t seed) { + + XXH_ASSERT(input != NULL); + XXH_ASSERT(1 <= len && len <= 3); + XXH_ASSERT(secret != NULL); + /* + * len = 1: combined = { input[0], 0x01, input[0], input[0] } + * len = 2: combined = { input[1], 0x02, input[0], input[1] } + * len = 3: combined = { input[2], 0x03, input[0], input[1] } + */ + { + + xxh_u8 const c1 = input[0]; + xxh_u8 const c2 = input[len >> 1]; + xxh_u8 const c3 = input[len - 1]; + xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) | + ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); + xxh_u64 const bitflip = + (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed; + xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; + xxh_u64 const mixed = keyed * XXH_PRIME64_1; + return XXH3_avalanche(mixed); + + } + +} + +XXH_FORCE_INLINE XXH64_hash_t XXH3_len_4to8_64b(const xxh_u8 *input, size_t len, + const xxh_u8 *secret, + XXH64_hash_t seed) { + + XXH_ASSERT(input != NULL); + XXH_ASSERT(secret != NULL); + XXH_ASSERT(4 <= len && len < 8); + seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; + { + + xxh_u32 const input1 = XXH_readLE32(input); + xxh_u32 const input2 = XXH_readLE32(input + len - 4); + xxh_u64 const bitflip = + (XXH_readLE64(secret + 8) ^ XXH_readLE64(secret + 16)) - seed; + xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); + xxh_u64 x = input64 ^ bitflip; + /* this mix is inspired by Pelle Evensen's rrmxmx */ + x ^= XXH_rotl64(x, 49) ^ XXH_rotl64(x, 24); + x *= 0x9FB21C651E98DF25ULL; + x ^= (x >> 35) + len; + x *= 0x9FB21C651E98DF25ULL; + return XXH_xorshift64(x, 28); + + } + +} + +XXH_FORCE_INLINE XXH64_hash_t XXH3_len_9to16_64b(const xxh_u8 *input, + size_t len, + const xxh_u8 *secret, + XXH64_hash_t seed) { + + XXH_ASSERT(input != NULL); + XXH_ASSERT(secret != NULL); + XXH_ASSERT(8 <= len && len <= 16); + { + + xxh_u64 const bitflip1 = + (XXH_readLE64(secret + 24) ^ XXH_readLE64(secret + 32)) + seed; + xxh_u64 const bitflip2 = + (XXH_readLE64(secret + 40) ^ XXH_readLE64(secret + 48)) - seed; + xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; + xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; + xxh_u64 const acc = len + XXH_swap64(input_lo) + input_hi + + XXH3_mul128_fold64(input_lo, input_hi); + return XXH3_avalanche(acc); + + } + +} + +XXH_FORCE_INLINE XXH64_hash_t XXH3_len_0to16_64b(const xxh_u8 *input, + size_t len, + const xxh_u8 *secret, + XXH64_hash_t seed) { + + XXH_ASSERT(len <= 16); + { + + if (XXH_likely(len > 8)) + return XXH3_len_9to16_64b(input, len, secret, seed); + if (XXH_likely(len >= 4)) + return XXH3_len_4to8_64b(input, len, secret, seed); + if (len) return XXH3_len_1to3_64b(input, len, secret, seed); + return XXH3_avalanche((XXH_PRIME64_1 + seed) ^ (XXH_readLE64(secret + 56) ^ + XXH_readLE64(secret + 64))); + + } + +} + +/* + * DISCLAIMER: There are known *seed-dependent* multicollisions here due to + * multiplication by zero, affecting hashes of lengths 17 to 240. + * + * However, they are very unlikely. + * + * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all + * unseeded non-cryptographic hashes, it does not attempt to defend itself + * against specially crafted inputs, only random inputs. + * + * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes + * cancelling out the secret is taken an arbitrary number of times (addressed + * in XXH3_accumulate_512), this collision is very unlikely with random inputs + * and/or proper seeding: + * + * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a + * function that is only called up to 16 times per hash with up to 240 bytes of + * input. + * + * This is not too bad for a non-cryptographic hash function, especially with + * only 64 bit outputs. + * + * The 128-bit variant (which trades some speed for strength) is NOT affected + * by this, although it is always a good idea to use a proper seed if you care + * about strength. + */ +XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8 *XXH_RESTRICT input, + const xxh_u8 *XXH_RESTRICT secret, + xxh_u64 seed64) { + +#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ + && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ + && \ + !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ + /* + * UGLY HACK: + * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in + * slower code. + * + * By forcing seed64 into a register, we disrupt the cost model and + * cause it to scalarize. See `XXH32_round()` + * + * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, + * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on + * GCC 9.2, despite both emitting scalar code. + * + * GCC generates much better scalar code than Clang for the rest of XXH3, + * which is why finding a more optimal codepath is an interest. + */ + __asm__("" : "+r"(seed64)); +#endif + { + + xxh_u64 const input_lo = XXH_readLE64(input); + xxh_u64 const input_hi = XXH_readLE64(input + 8); + return XXH3_mul128_fold64(input_lo ^ (XXH_readLE64(secret) + seed64), + input_hi ^ (XXH_readLE64(secret + 8) - seed64)); + + } + +} + +/* For mid range keys, XXH3 uses a Mum-hash variant. */ +XXH_FORCE_INLINE XXH64_hash_t XXH3_len_17to128_64b( + const xxh_u8 *XXH_RESTRICT input, size_t len, + const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { + + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); + (void)secretSize; + XXH_ASSERT(16 < len && len <= 128); + + { + + xxh_u64 acc = len * XXH_PRIME64_1; + if (len > 32) { + + if (len > 64) { + + if (len > 96) { + + acc += XXH3_mix16B(input + 48, secret + 96, seed); + acc += XXH3_mix16B(input + len - 64, secret + 112, seed); + + } + + acc += XXH3_mix16B(input + 32, secret + 64, seed); + acc += XXH3_mix16B(input + len - 48, secret + 80, seed); + + } + + acc += XXH3_mix16B(input + 16, secret + 32, seed); + acc += XXH3_mix16B(input + len - 32, secret + 48, seed); + + } + + acc += XXH3_mix16B(input + 0, secret + 0, seed); + acc += XXH3_mix16B(input + len - 16, secret + 16, seed); + + return XXH3_avalanche(acc); + + } + +} + +#define XXH3_MIDSIZE_MAX 240 + +XXH_NO_INLINE XXH64_hash_t XXH3_len_129to240_64b( + const xxh_u8 *XXH_RESTRICT input, size_t len, + const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { + + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); + (void)secretSize; + XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); + +#define XXH3_MIDSIZE_STARTOFFSET 3 +#define XXH3_MIDSIZE_LASTOFFSET 17 + + { + + xxh_u64 acc = len * XXH_PRIME64_1; + int const nbRounds = (int)len / 16; + int i; + for (i = 0; i < 8; i++) { + + acc += XXH3_mix16B(input + (16 * i), secret + (16 * i), seed); + + } + + acc = XXH3_avalanche(acc); + XXH_ASSERT(nbRounds >= 8); +#if defined(__clang__) /* Clang */ \ + && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ + && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ + /* + * UGLY HACK: + * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. + * In everywhere else, it uses scalar code. + * + * For 64->128-bit multiplies, even if the NEON was 100% optimal, it + * would still be slower than UMAAL (see XXH_mult64to128). + * + * Unfortunately, Clang doesn't handle the long multiplies properly and + * converts them to the nonexistent "vmulq_u64" intrinsic, which is then + * scalarized into an ugly mess of VMOV.32 instructions. + * + * This mess is difficult to avoid without turning autovectorization + * off completely, but they are usually relatively minor and/or not + * worth it to fix. + * + * This loop is the easiest to fix, as unlike XXH32, this pragma + * _actually works_ because it is a loop vectorization instead of an + * SLP vectorization. + */ + #pragma clang loop vectorize(disable) +#endif + for (i = 8; i < nbRounds; i++) { + + acc += + XXH3_mix16B(input + (16 * i), + secret + (16 * (i - 8)) + XXH3_MIDSIZE_STARTOFFSET, seed); + + } + + /* last bytes */ + acc += XXH3_mix16B(input + len - 16, + secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, + seed); + return XXH3_avalanche(acc); + + } + +} + +/* ======= Long Keys ======= */ + +#define XXH_STRIPE_LEN 64 +#define XXH_SECRET_CONSUME_RATE \ + 8 /* nb of secret bytes consumed at each accumulation */ +#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) + +#ifdef XXH_OLD_NAMES + #define STRIPE_LEN XXH_STRIPE_LEN + #define ACC_NB XXH_ACC_NB +#endif + +typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e; + +XXH_FORCE_INLINE void XXH_writeLE64(void *dst, xxh_u64 v64) { + + if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); + memcpy(dst, &v64, sizeof(v64)); + +} + +/* Several intrinsic functions below are supposed to accept __int64 as argument, + * as documented in + * https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . However, + * several environments do not define __int64 type, requiring a workaround. + */ +#if !defined(__VMS) && \ + (defined(__cplusplus) || \ + (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)) +typedef int64_t xxh_i64; +#else +/* the following type must have a width of 64-bit */ +typedef long long xxh_i64; +#endif + +/* + * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most + * optimized. + * + * It is a hardened version of UMAC, based off of FARSH's implementation. + * + * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD + * implementations, and it is ridiculously fast. + * + * We harden it by mixing the original input to the accumulators as well as the + * product. + * + * This means that in the (relatively likely) case of a multiply by zero, the + * original input is preserved. + * + * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve + * cross-pollination, as otherwise the upper and lower halves would be + * essentially independent. + * + * This doesn't matter on 64-bit hashes since they all get merged together in + * the end, so we skip the extra step. + * + * Both XXH3_64bits and XXH3_128bits use this subroutine. + */ + +#if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH) + + #ifndef XXH_TARGET_AVX512 + #define XXH_TARGET_AVX512 /* disable attribute target */ + #endif + +XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_accumulate_512_avx512( + void *XXH_RESTRICT acc, const void *XXH_RESTRICT input, + const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) { + + XXH_ALIGN(64) __m512i *const xacc = (__m512i *)acc; + XXH_ASSERT((((size_t)acc) & 63) == 0); + XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); + + { + + /* data_vec = input[0]; */ + __m512i const data_vec = _mm512_loadu_si512(input); + /* key_vec = secret[0]; */ + __m512i const key_vec = _mm512_loadu_si512(secret); + /* data_key = data_vec ^ key_vec; */ + __m512i const data_key = _mm512_xor_si512(data_vec, key_vec); + /* data_key_lo = data_key >> 32; */ + __m512i const data_key_lo = + _mm512_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1)); + /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ + __m512i const product = _mm512_mul_epu32(data_key, data_key_lo); + if (accWidth == XXH3_acc_128bits) { + + /* xacc[0] += swap(data_vec); */ + __m512i const data_swap = + _mm512_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); + __m512i const sum = _mm512_add_epi64(*xacc, data_swap); + /* xacc[0] += product; */ + *xacc = _mm512_add_epi64(product, sum); + + } else { /* XXH3_acc_64bits */ + + /* xacc[0] += data_vec; */ + __m512i const sum = _mm512_add_epi64(*xacc, data_vec); + /* xacc[0] += product; */ + *xacc = _mm512_add_epi64(product, sum); + + } + + } + +} + +/* + * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. + * + * Multiplication isn't perfect, as explained by Google in HighwayHash: + * + * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to + * // varying degrees. In descending order of goodness, bytes + * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. + * // As expected, the upper and lower bytes are much worse. + * + * Source: + * https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 + * + * Since our algorithm uses a pseudorandom secret to add some variance into the + * mix, we don't need to (or want to) mix as often or as much as HighwayHash + * does. + * + * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid + * extraction. + * + * Both XXH3_64bits and XXH3_128bits use this subroutine. + */ + +XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_scrambleAcc_avx512( + void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) { + + XXH_ASSERT((((size_t)acc) & 63) == 0); + XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); + { + + XXH_ALIGN(64) __m512i *const xacc = (__m512i *)acc; + const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); + + /* xacc[0] ^= (xacc[0] >> 47) */ + __m512i const acc_vec = *xacc; + __m512i const shifted = _mm512_srli_epi64(acc_vec, 47); + __m512i const data_vec = _mm512_xor_si512(acc_vec, shifted); + /* xacc[0] ^= secret; */ + __m512i const key_vec = _mm512_loadu_si512(secret); + __m512i const data_key = _mm512_xor_si512(data_vec, key_vec); + + /* xacc[0] *= XXH_PRIME32_1; */ + __m512i const data_key_hi = + _mm512_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1)); + __m512i const prod_lo = _mm512_mul_epu32(data_key, prime32); + __m512i const prod_hi = _mm512_mul_epu32(data_key_hi, prime32); + *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); + + } + +} + +XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_initCustomSecret_avx512( + void *XXH_RESTRICT customSecret, xxh_u64 seed64) { + + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); + XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); + XXH_ASSERT(((size_t)customSecret & 63) == 0); + (void)(&XXH_writeLE64); + { + + int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); + __m512i const seed = _mm512_mask_set1_epi64( + _mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64); + + XXH_ALIGN(64) const __m512i *const src = (const __m512i *)XXH3_kSecret; + XXH_ALIGN(64) __m512i *const dest = (__m512i *)customSecret; + int i; + for (i = 0; i < nbRounds; ++i) { + + // GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void + // const*', this will warn "discards ‘const’ qualifier". + union { + + XXH_ALIGN(64) const __m512i *const cp; + XXH_ALIGN(64) void *const p; + + } const remote_const_void = {.cp = src + i}; + + dest[i] = + _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed); + + } + + } + +} + +#endif + +#if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH) + + #ifndef XXH_TARGET_AVX2 + #define XXH_TARGET_AVX2 /* disable attribute target */ + #endif + +XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_accumulate_512_avx2( + void *XXH_RESTRICT acc, const void *XXH_RESTRICT input, + const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) { + + XXH_ASSERT((((size_t)acc) & 31) == 0); + { + + XXH_ALIGN(32) __m256i *const xacc = (__m256i *)acc; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. + */ + const __m256i *const xinput = (const __m256i *)input; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ + const __m256i *const xsecret = (const __m256i *)secret; + + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) { + + /* data_vec = xinput[i]; */ + __m256i const data_vec = _mm256_loadu_si256(xinput + i); + /* key_vec = xsecret[i]; */ + __m256i const key_vec = _mm256_loadu_si256(xsecret + i); + /* data_key = data_vec ^ key_vec; */ + __m256i const data_key = _mm256_xor_si256(data_vec, key_vec); + /* data_key_lo = data_key >> 32; */ + __m256i const data_key_lo = + _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1)); + /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ + __m256i const product = _mm256_mul_epu32(data_key, data_key_lo); + if (accWidth == XXH3_acc_128bits) { + + /* xacc[i] += swap(data_vec); */ + __m256i const data_swap = + _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); + __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); + /* xacc[i] += product; */ + xacc[i] = _mm256_add_epi64(product, sum); + + } else { /* XXH3_acc_64bits */ + + /* xacc[i] += data_vec; */ + __m256i const sum = _mm256_add_epi64(xacc[i], data_vec); + /* xacc[i] += product; */ + xacc[i] = _mm256_add_epi64(product, sum); + + } + + } + + } + +} + +XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_scrambleAcc_avx2( + void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) { + + XXH_ASSERT((((size_t)acc) & 31) == 0); + { + + XXH_ALIGN(32) __m256i *const xacc = (__m256i *)acc; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ + const __m256i *const xsecret = (const __m256i *)secret; + const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); + + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) { + + /* xacc[i] ^= (xacc[i] >> 47) */ + __m256i const acc_vec = xacc[i]; + __m256i const shifted = _mm256_srli_epi64(acc_vec, 47); + __m256i const data_vec = _mm256_xor_si256(acc_vec, shifted); + /* xacc[i] ^= xsecret; */ + __m256i const key_vec = _mm256_loadu_si256(xsecret + i); + __m256i const data_key = _mm256_xor_si256(data_vec, key_vec); + + /* xacc[i] *= XXH_PRIME32_1; */ + __m256i const data_key_hi = + _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1)); + __m256i const prod_lo = _mm256_mul_epu32(data_key, prime32); + __m256i const prod_hi = _mm256_mul_epu32(data_key_hi, prime32); + xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); + + } + + } + +} + +XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2( + void *XXH_RESTRICT customSecret, xxh_u64 seed64) { + + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); + XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); + (void)(&XXH_writeLE64); + XXH_PREFETCH(customSecret); + { + + __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, + -(xxh_i64)seed64, (xxh_i64)seed64); + + XXH_ALIGN(64) const __m256i *const src = (const __m256i *)XXH3_kSecret; + XXH_ALIGN(64) __m256i * dest = (__m256i *)customSecret; + + #if defined(__GNUC__) || defined(__clang__) + /* + * On GCC & Clang, marking 'dest' as modified will cause the compiler: + * - do not extract the secret from sse registers in the internal loop + * - use less common registers, and avoid pushing these reg into stack + * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with + * customSecret, and on aarch64, this prevented LDP from merging two + * loads together for free. Putting the loads together before the stores + * properly generates LDP. + */ + __asm__("" : "+r"(dest)); + #endif + + /* GCC -O2 need unroll loop manually */ + dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src + 0), seed); + dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src + 1), seed); + dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src + 2), seed); + dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src + 3), seed); + dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src + 4), seed); + dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src + 5), seed); + + } + +} + +#endif + +#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) + + #ifndef XXH_TARGET_SSE2 + #define XXH_TARGET_SSE2 /* disable attribute target */ + #endif + +XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_accumulate_512_sse2( + void *XXH_RESTRICT acc, const void *XXH_RESTRICT input, + const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) { + + /* SSE2 is just a half-scale version of the AVX2 version. */ + XXH_ASSERT((((size_t)acc) & 15) == 0); + { + + XXH_ALIGN(16) __m128i *const xacc = (__m128i *)acc; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ + const __m128i *const xinput = (const __m128i *)input; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ + const __m128i *const xsecret = (const __m128i *)secret; + + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) { + + /* data_vec = xinput[i]; */ + __m128i const data_vec = _mm_loadu_si128(xinput + i); + /* key_vec = xsecret[i]; */ + __m128i const key_vec = _mm_loadu_si128(xsecret + i); + /* data_key = data_vec ^ key_vec; */ + __m128i const data_key = _mm_xor_si128(data_vec, key_vec); + /* data_key_lo = data_key >> 32; */ + __m128i const data_key_lo = + _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1)); + /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ + __m128i const product = _mm_mul_epu32(data_key, data_key_lo); + if (accWidth == XXH3_acc_128bits) { + + /* xacc[i] += swap(data_vec); */ + __m128i const data_swap = + _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); + __m128i const sum = _mm_add_epi64(xacc[i], data_swap); + /* xacc[i] += product; */ + xacc[i] = _mm_add_epi64(product, sum); + + } else { /* XXH3_acc_64bits */ + + /* xacc[i] += data_vec; */ + __m128i const sum = _mm_add_epi64(xacc[i], data_vec); + /* xacc[i] += product; */ + xacc[i] = _mm_add_epi64(product, sum); + + } + + } + + } + +} + +XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_scrambleAcc_sse2( + void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) { + + XXH_ASSERT((((size_t)acc) & 15) == 0); + { + + XXH_ALIGN(16) __m128i *const xacc = (__m128i *)acc; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ + const __m128i *const xsecret = (const __m128i *)secret; + const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); + + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) { + + /* xacc[i] ^= (xacc[i] >> 47) */ + __m128i const acc_vec = xacc[i]; + __m128i const shifted = _mm_srli_epi64(acc_vec, 47); + __m128i const data_vec = _mm_xor_si128(acc_vec, shifted); + /* xacc[i] ^= xsecret[i]; */ + __m128i const key_vec = _mm_loadu_si128(xsecret + i); + __m128i const data_key = _mm_xor_si128(data_vec, key_vec); + + /* xacc[i] *= XXH_PRIME32_1; */ + __m128i const data_key_hi = + _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1)); + __m128i const prod_lo = _mm_mul_epu32(data_key, prime32); + __m128i const prod_hi = _mm_mul_epu32(data_key_hi, prime32); + xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); + + } + + } + +} + +XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2( + void *XXH_RESTRICT customSecret, xxh_u64 seed64) { + + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); + (void)(&XXH_writeLE64); + { + + int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); + + #if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 + // MSVC 32bit mode does not support _mm_set_epi64x before 2015 + XXH_ALIGN(16) + const xxh_i64 seed64x2[2] = {(xxh_i64)seed64, -(xxh_i64)seed64}; + __m128i const seed = _mm_load_si128((__m128i const *)seed64x2); + #else + __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64); + #endif + int i; + + XXH_ALIGN(64) const float *const src = (float const *)XXH3_kSecret; + XXH_ALIGN(XXH_SEC_ALIGN) __m128i *dest = (__m128i *)customSecret; + #if defined(__GNUC__) || defined(__clang__) + /* + * On GCC & Clang, marking 'dest' as modified will cause the compiler: + * - do not extract the secret from sse registers in the internal loop + * - use less common registers, and avoid pushing these reg into stack + */ + __asm__("" : "+r"(dest)); + #endif + + for (i = 0; i < nbRounds; ++i) { + + dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src + i * 4)), seed); + + } + + } + +} + +#endif + +#if (XXH_VECTOR == XXH_NEON) + +XXH_FORCE_INLINE void XXH3_accumulate_512_neon(void *XXH_RESTRICT acc, + const void *XXH_RESTRICT input, + const void *XXH_RESTRICT secret, + XXH3_accWidth_e accWidth) { + + XXH_ASSERT((((size_t)acc) & 15) == 0); + { + + XXH_ALIGN(16) uint64x2_t *const xacc = (uint64x2_t *)acc; + /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. + */ + uint8_t const *const xinput = (const uint8_t *)input; + uint8_t const *const xsecret = (const uint8_t *)secret; + + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) { + + /* data_vec = xinput[i]; */ + uint8x16_t data_vec = vld1q_u8(xinput + (i * 16)); + /* key_vec = xsecret[i]; */ + uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); + uint64x2_t data_key; + uint32x2_t data_key_lo, data_key_hi; + if (accWidth == XXH3_acc_64bits) { + + /* xacc[i] += data_vec; */ + xacc[i] = vaddq_u64(xacc[i], vreinterpretq_u64_u8(data_vec)); + + } else { /* XXH3_acc_128bits */ + + /* xacc[i] += swap(data_vec); */ + uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec); + uint64x2_t const swapped = vextq_u64(data64, data64, 1); + xacc[i] = vaddq_u64(xacc[i], swapped); + + } + + /* data_key = data_vec ^ key_vec; */ + data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); + /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); + * data_key_hi = (uint32x2_t) (data_key >> 32); + * data_key = UNDEFINED; */ + XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); + /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ + xacc[i] = vmlal_u32(xacc[i], data_key_lo, data_key_hi); + + } + + } + +} + +XXH_FORCE_INLINE void XXH3_scrambleAcc_neon(void *XXH_RESTRICT acc, + const void *XXH_RESTRICT secret) { + + XXH_ASSERT((((size_t)acc) & 15) == 0); + + { + + uint64x2_t * xacc = (uint64x2_t *)acc; + uint8_t const *xsecret = (uint8_t const *)secret; + uint32x2_t prime = vdup_n_u32(XXH_PRIME32_1); + + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) { + + /* xacc[i] ^= (xacc[i] >> 47); */ + uint64x2_t acc_vec = xacc[i]; + uint64x2_t shifted = vshrq_n_u64(acc_vec, 47); + uint64x2_t data_vec = veorq_u64(acc_vec, shifted); + + /* xacc[i] ^= xsecret[i]; */ + uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); + uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec)); + + /* xacc[i] *= XXH_PRIME32_1 */ + uint32x2_t data_key_lo, data_key_hi; + /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); + * data_key_hi = (uint32x2_t) (xacc[i] >> 32); + * xacc[i] = UNDEFINED; */ + XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); + { /* + * prod_hi = (data_key >> 32) * XXH_PRIME32_1; + * + * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will + * incorrectly "optimize" this: + * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); + * shifted = vshll_n_u32(tmp, 32); + * to this: + * tmp = "vmulq_u64"(a, b); // no such thing! + * shifted = vshlq_n_u64(tmp, 32); + * + * However, unlike SSE, Clang lacks a 64-bit multiply routine + * for NEON, and it scalarizes two 64-bit multiplies instead. + * + * vmull_u32 has the same timing as vmul_u32, and it avoids + * this bug completely. + * See https://bugs.llvm.org/show_bug.cgi?id=39967 + */ + uint64x2_t prod_hi = vmull_u32(data_key_hi, prime); + /* xacc[i] = prod_hi << 32; */ + xacc[i] = vshlq_n_u64(prod_hi, 32); + /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ + xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); + + } + + } + + } + +} + +#endif + +#if (XXH_VECTOR == XXH_VSX) + +XXH_FORCE_INLINE void XXH3_accumulate_512_vsx(void *XXH_RESTRICT acc, + const void *XXH_RESTRICT input, + const void *XXH_RESTRICT secret, + XXH3_accWidth_e accWidth) { + + xxh_u64x2 *const xacc = (xxh_u64x2 *)acc; /* presumed aligned */ + xxh_u64x2 const *const xinput = + (xxh_u64x2 const *)input; /* no alignment restriction */ + xxh_u64x2 const *const xsecret = + (xxh_u64x2 const *)secret; /* no alignment restriction */ + xxh_u64x2 const v32 = {32, 32}; + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { + + /* data_vec = xinput[i]; */ + xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); + /* key_vec = xsecret[i]; */ + xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); + xxh_u64x2 const data_key = data_vec ^ key_vec; + /* shuffled = (data_key << 32) | (data_key >> 32); */ + xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); + /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & + * 0xFFFFFFFF); */ + xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); + xacc[i] += product; + + if (accWidth == XXH3_acc_64bits) { + + xacc[i] += data_vec; + + } else { /* XXH3_acc_128bits */ + + /* swap high and low halves */ + #ifdef __s390x__ + xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2); + #else + xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2); + #endif + xacc[i] += data_swapped; + + } + + } + +} + +XXH_FORCE_INLINE void XXH3_scrambleAcc_vsx(void *XXH_RESTRICT acc, + const void *XXH_RESTRICT secret) { + + XXH_ASSERT((((size_t)acc) & 15) == 0); + + { + + xxh_u64x2 *const xacc = (xxh_u64x2 *)acc; + const xxh_u64x2 *const xsecret = (const xxh_u64x2 *)secret; + /* constants */ + xxh_u64x2 const v32 = {32, 32}; + xxh_u64x2 const v47 = {47, 47}; + xxh_u32x4 const prime = {XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, + XXH_PRIME32_1}; + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { + + /* xacc[i] ^= (xacc[i] >> 47); */ + xxh_u64x2 const acc_vec = xacc[i]; + xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); + + /* xacc[i] ^= xsecret[i]; */ + xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); + xxh_u64x2 const data_key = data_vec ^ key_vec; + + /* xacc[i] *= XXH_PRIME32_1 */ + /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & + * 0xFFFFFFFF); */ + xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); + /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ + xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); + xacc[i] = prod_odd + (prod_even << v32); + + } + + } + +} + +#endif + +/* scalar variants - universal */ + +XXH_FORCE_INLINE void XXH3_accumulate_512_scalar( + void *XXH_RESTRICT acc, const void *XXH_RESTRICT input, + const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) { + + XXH_ALIGN(XXH_ACC_ALIGN) + xxh_u64 *const xacc = (xxh_u64 *)acc; /* presumed aligned */ + const xxh_u8 *const xinput = + (const xxh_u8 *)input; /* no alignment restriction */ + const xxh_u8 *const xsecret = + (const xxh_u8 *)secret; /* no alignment restriction */ + size_t i; + XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN - 1)) == 0); + for (i = 0; i < XXH_ACC_NB; i++) { + + xxh_u64 const data_val = XXH_readLE64(xinput + 8 * i); + xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i * 8); + + if (accWidth == XXH3_acc_64bits) { + + xacc[i] += data_val; + + } else { + + xacc[i ^ 1] += data_val; /* swap adjacent lanes */ + + } + + xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); + + } + +} + +XXH_FORCE_INLINE void XXH3_scrambleAcc_scalar(void *XXH_RESTRICT acc, + const void *XXH_RESTRICT secret) { + + XXH_ALIGN(XXH_ACC_ALIGN) + xxh_u64 *const xacc = (xxh_u64 *)acc; /* presumed aligned */ + const xxh_u8 *const xsecret = + (const xxh_u8 *)secret; /* no alignment restriction */ + size_t i; + XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN - 1)) == 0); + for (i = 0; i < XXH_ACC_NB; i++) { + + xxh_u64 const key64 = XXH_readLE64(xsecret + 8 * i); + xxh_u64 acc64 = xacc[i]; + acc64 = XXH_xorshift64(acc64, 47); + acc64 ^= key64; + acc64 *= XXH_PRIME32_1; + xacc[i] = acc64; + + } + +} + +XXH_FORCE_INLINE void XXH3_initCustomSecret_scalar( + void *XXH_RESTRICT customSecret, xxh_u64 seed64) { + + /* + * We need a separate pointer for the hack below, + * which requires a non-const pointer. + * Any decent compiler will optimize this out otherwise. + */ + const xxh_u8 *kSecretPtr = XXH3_kSecret; + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); + +#if defined(__clang__) && defined(__aarch64__) + /* + * UGLY HACK: + * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are + * placed sequentially, in order, at the top of the unrolled loop. + * + * While MOVK is great for generating constants (2 cycles for a 64-bit + * constant compared to 4 cycles for LDR), long MOVK chains stall the + * integer pipelines: + * I L S + * MOVK + * MOVK + * MOVK + * MOVK + * ADD + * SUB STR + * STR + * By forcing loads from memory (as the asm line causes Clang to assume + * that XXH3_kSecretPtr has been changed), the pipelines are used more + * efficiently: + * I L S + * LDR + * ADD LDR + * SUB STR + * STR + * XXH3_64bits_withSeed, len == 256, Snapdragon 835 + * without hack: 2654.4 MB/s + * with hack: 3202.9 MB/s + */ + __asm__("" : "+r"(kSecretPtr)); +#endif + /* + * Note: in debug mode, this overrides the asm optimization + * and Clang will emit MOVK chains again. + */ + XXH_ASSERT(kSecretPtr == XXH3_kSecret); + + { + + int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; + int i; + for (i = 0; i < nbRounds; i++) { + + /* + * The asm hack causes Clang to assume that kSecretPtr aliases with + * customSecret, and on aarch64, this prevented LDP from merging two + * loads together for free. Putting the loads together before the stores + * properly generates LDP. + */ + xxh_u64 lo = XXH_readLE64(kSecretPtr + 16 * i) + seed64; + xxh_u64 hi = XXH_readLE64(kSecretPtr + 16 * i + 8) - seed64; + XXH_writeLE64((xxh_u8 *)customSecret + 16 * i, lo); + XXH_writeLE64((xxh_u8 *)customSecret + 16 * i + 8, hi); + + } + + } + +} + +typedef void (*XXH3_f_accumulate_512)(void *XXH_RESTRICT, const void *, + const void *, XXH3_accWidth_e); +typedef void (*XXH3_f_scrambleAcc)(void *XXH_RESTRICT, const void *); +typedef void (*XXH3_f_initCustomSecret)(void *XXH_RESTRICT, xxh_u64); + +#if (XXH_VECTOR == XXH_AVX512) + + #define XXH3_accumulate_512 XXH3_accumulate_512_avx512 + #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 + #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 + +#elif (XXH_VECTOR == XXH_AVX2) + + #define XXH3_accumulate_512 XXH3_accumulate_512_avx2 + #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 + #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 + +#elif (XXH_VECTOR == XXH_SSE2) + + #define XXH3_accumulate_512 XXH3_accumulate_512_sse2 + #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 + #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 + +#elif (XXH_VECTOR == XXH_NEON) + + #define XXH3_accumulate_512 XXH3_accumulate_512_neon + #define XXH3_scrambleAcc XXH3_scrambleAcc_neon + #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar + +#elif (XXH_VECTOR == XXH_VSX) + + #define XXH3_accumulate_512 XXH3_accumulate_512_vsx + #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx + #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar + +#else /* scalar */ + + #define XXH3_accumulate_512 XXH3_accumulate_512_scalar + #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar + #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar + +#endif + +#ifndef XXH_PREFETCH_DIST + #ifdef __clang__ + #define XXH_PREFETCH_DIST 320 + #else + #if (XXH_VECTOR == XXH_AVX512) + #define XXH_PREFETCH_DIST 512 + #else + #define XXH_PREFETCH_DIST 384 + #endif + #endif /* __clang__ */ +#endif /* XXH_PREFETCH_DIST */ + +/* + * XXH3_accumulate() + * Loops over XXH3_accumulate_512(). + * Assumption: nbStripes will not overflow the secret size + */ +XXH_FORCE_INLINE void XXH3_accumulate(xxh_u64 *XXH_RESTRICT acc, + const xxh_u8 *XXH_RESTRICT input, + const xxh_u8 *XXH_RESTRICT secret, + size_t nbStripes, + XXH3_accWidth_e accWidth, + XXH3_f_accumulate_512 f_acc512) { + + size_t n; + for (n = 0; n < nbStripes; n++) { + + const xxh_u8 *const in = input + n * XXH_STRIPE_LEN; + XXH_PREFETCH(in + XXH_PREFETCH_DIST); + f_acc512(acc, in, secret + n * XXH_SECRET_CONSUME_RATE, accWidth); + + } + +} + +XXH_FORCE_INLINE void XXH3_hashLong_internal_loop( + xxh_u64 *XXH_RESTRICT acc, const xxh_u8 *XXH_RESTRICT input, size_t len, + const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, + XXH3_accWidth_e accWidth, XXH3_f_accumulate_512 f_acc512, + XXH3_f_scrambleAcc f_scramble) { + + size_t const nb_rounds = + (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; + size_t const block_len = XXH_STRIPE_LEN * nb_rounds; + size_t const nb_blocks = len / block_len; + + size_t n; + + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); + + for (n = 0; n < nb_blocks; n++) { + + XXH3_accumulate(acc, input + n * block_len, secret, nb_rounds, accWidth, + f_acc512); + f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); + + } + + /* last partial block */ + XXH_ASSERT(len > XXH_STRIPE_LEN); + { + + size_t const nbStripes = (len - (block_len * nb_blocks)) / XXH_STRIPE_LEN; + XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); + XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes, + accWidth, f_acc512); + + /* last stripe */ + if (len & (XXH_STRIPE_LEN - 1)) { + + const xxh_u8 *const p = input + len - XXH_STRIPE_LEN; + /* Do not align on 8, so that the secret is different from the scrambler + */ +#define XXH_SECRET_LASTACC_START 7 + f_acc512(acc, p, + secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START, + accWidth); + + } + + } + +} + +XXH_FORCE_INLINE xxh_u64 XXH3_mix2Accs(const xxh_u64 *XXH_RESTRICT acc, + const xxh_u8 *XXH_RESTRICT secret) { + + return XXH3_mul128_fold64(acc[0] ^ XXH_readLE64(secret), + acc[1] ^ XXH_readLE64(secret + 8)); + +} + +static XXH64_hash_t XXH3_mergeAccs(const xxh_u64 *XXH_RESTRICT acc, + const xxh_u8 *XXH_RESTRICT secret, + xxh_u64 start) { + + xxh_u64 result64 = start; + size_t i = 0; + + for (i = 0; i < 4; i++) { + + result64 += XXH3_mix2Accs(acc + 2 * i, secret + 16 * i); +#if defined(__clang__) /* Clang */ \ + && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ + && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ + && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ + /* + * UGLY HACK: + * Prevent autovectorization on Clang ARMv7-a. Exact same problem as + * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. + * XXH3_64bits, len == 256, Snapdragon 835: + * without hack: 2063.7 MB/s + * with hack: 2560.7 MB/s + */ + __asm__("" : "+r"(result64)); +#endif + + } + + return XXH3_avalanche(result64); + +} + +#define XXH3_INIT_ACC \ + { \ + \ + XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, XXH_PRIME64_4, \ + XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 \ + \ + } + +XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_internal( + const xxh_u8 *XXH_RESTRICT input, size_t len, + const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, + XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble) { + + XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; + + XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, + XXH3_acc_64bits, f_acc512, f_scramble); + + /* converge into final hash */ + XXH_STATIC_ASSERT(sizeof(acc) == 64); + /* do not align on 8, so that the secret is different from the accumulator */ +#define XXH_SECRET_MERGEACCS_START 11 + XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); + return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, + (xxh_u64)len * XXH_PRIME64_1); + +} + +/* + * It's important for performance that XXH3_hashLong is not inlined. + */ +XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSecret( + const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, + const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) { + + (void)seed64; + return XXH3_hashLong_64b_internal(input, len, secret, secretLen, + XXH3_accumulate_512, XXH3_scrambleAcc); + +} + +/* + * XXH3_hashLong_64b_withSeed(): + * Generate a custom key based on alteration of default XXH3_kSecret with the + * seed, and then use this key for long mode hashing. + * + * This operation is decently fast but nonetheless costs a little bit of time. + * Try to avoid it whenever possible (typically when seed==0). + * + * It's important for performance that XXH3_hashLong is not inlined. Not sure + * why (uop cache maybe?), but the difference is large and easily measurable. + */ +XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed_internal( + const xxh_u8 *input, size_t len, XXH64_hash_t seed, + XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble, + XXH3_f_initCustomSecret f_initSec) { + + if (seed == 0) + return XXH3_hashLong_64b_internal( + input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc512, f_scramble); + { + + XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; + f_initSec(secret, seed); + return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), + f_acc512, f_scramble); + + } + +} + +/* + * It's important for performance that XXH3_hashLong is not inlined. + */ +XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed(const xxh_u8 *input, + size_t len, + XXH64_hash_t seed, + const xxh_u8 *secret, + size_t secretLen) { + + (void)secret; + (void)secretLen; + return XXH3_hashLong_64b_withSeed_internal( + input, len, seed, XXH3_accumulate_512, XXH3_scrambleAcc, + XXH3_initCustomSecret); + +} + +typedef XXH64_hash_t (*XXH3_hashLong64_f)(const xxh_u8 *XXH_RESTRICT, size_t, + XXH64_hash_t, + const xxh_u8 *XXH_RESTRICT, size_t); + +XXH_FORCE_INLINE XXH64_hash_t +XXH3_64bits_internal(const void *XXH_RESTRICT input, size_t len, + XXH64_hash_t seed64, const void *XXH_RESTRICT secret, + size_t secretLen, XXH3_hashLong64_f f_hashLong) { + + XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); + /* + * If an action is to be taken if `secretLen` condition is not respected, + * it should be done here. + * For now, it's a contract pre-condition. + * Adding a check and a branch here would cost performance at every hash. + * Also, note that function signature doesn't offer room to return an error. + */ + if (len <= 16) + return XXH3_len_0to16_64b((const xxh_u8 *)input, len, + (const xxh_u8 *)secret, seed64); + if (len <= 128) + return XXH3_len_17to128_64b((const xxh_u8 *)input, len, + (const xxh_u8 *)secret, secretLen, seed64); + if (len <= XXH3_MIDSIZE_MAX) + return XXH3_len_129to240_64b((const xxh_u8 *)input, len, + (const xxh_u8 *)secret, secretLen, seed64); + return f_hashLong((const xxh_u8 *)input, len, seed64, (const xxh_u8 *)secret, + secretLen); + +} + +/* === Public entry point === */ + +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void *input, size_t len) { + + return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), + XXH3_hashLong_64b_withSecret); + +} + +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void *input, + size_t len, + const void *secret, + size_t secretSize) { + + return XXH3_64bits_internal(input, len, 0, secret, secretSize, + XXH3_hashLong_64b_withSecret); + +} + +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void *input, size_t len, + XXH64_hash_t seed) { + + return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, + sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); + +} + +/* === XXH3 streaming === */ + +/* + * Malloc's a pointer that is always aligned to align. + * + * This must be freed with `XXH_alignedFree()`. + * + * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte + * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 + * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. + * + * This underalignment previously caused a rather obvious crash which went + * completely unnoticed due to XXH3_createState() not actually being tested. + * Credit to RedSpah for noticing this bug. + * + * The alignment is done manually: Functions like posix_memalign or _mm_malloc + * are avoided: To maintain portability, we would have to write a fallback + * like this anyways, and besides, testing for the existence of library + * functions without relying on external build tools is impossible. + * + * The method is simple: Overallocate, manually align, and store the offset + * to the original behind the returned pointer. + * + * Align must be a power of 2 and 8 <= align <= 128. + */ +static void *XXH_alignedMalloc(size_t s, size_t align) { + + XXH_ASSERT(align <= 128 && align >= 8); /* range check */ + XXH_ASSERT((align & (align - 1)) == 0); /* power of 2 */ + XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ + { /* Overallocate to make room for manual realignment and an offset byte */ + xxh_u8 *base = (xxh_u8 *)XXH_malloc(s + align); + if (base != NULL) { + + /* + * Get the offset needed to align this pointer. + * + * Even if the returned pointer is aligned, there will always be + * at least one byte to store the offset to the original pointer. + */ + size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ + /* Add the offset for the now-aligned pointer */ + xxh_u8 *ptr = base + offset; + + XXH_ASSERT((size_t)ptr % align == 0); + + /* Store the offset immediately before the returned pointer. */ + ptr[-1] = (xxh_u8)offset; + return ptr; + + } + + return NULL; + + } + +} + +/* + * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass + * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. + */ +static void XXH_alignedFree(void *p) { + + if (p != NULL) { + + xxh_u8 *ptr = (xxh_u8 *)p; + /* Get the offset byte we added in XXH_malloc. */ + xxh_u8 offset = ptr[-1]; + /* Free the original malloc'd pointer */ + xxh_u8 *base = ptr - offset; + XXH_free(base); + + } + +} + +XXH_PUBLIC_API XXH3_state_t *XXH3_createState(void) { + + return (XXH3_state_t *)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); + +} + +XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t *statePtr) { + + XXH_alignedFree(statePtr); + return XXH_OK; + +} + +XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t * dst_state, + const XXH3_state_t *src_state) { + + memcpy(dst_state, src_state, sizeof(*dst_state)); + +} + +static void XXH3_64bits_reset_internal(XXH3_state_t *statePtr, + XXH64_hash_t seed, const xxh_u8 *secret, + size_t secretSize) { + + XXH_ASSERT(statePtr != NULL); + memset(statePtr, 0, sizeof(*statePtr)); + statePtr->acc[0] = XXH_PRIME32_3; + statePtr->acc[1] = XXH_PRIME64_1; + statePtr->acc[2] = XXH_PRIME64_2; + statePtr->acc[3] = XXH_PRIME64_3; + statePtr->acc[4] = XXH_PRIME64_4; + statePtr->acc[5] = XXH_PRIME32_2; + statePtr->acc[6] = XXH_PRIME64_5; + statePtr->acc[7] = XXH_PRIME32_1; + statePtr->seed = seed; + XXH_ASSERT(secret != NULL); + statePtr->extSecret = secret; + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); + statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; + statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; + +} + +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t *statePtr) { + + if (statePtr == NULL) return XXH_ERROR; + XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret, + XXH_SECRET_DEFAULT_SIZE); + return XXH_OK; + +} + +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret( + XXH3_state_t *statePtr, const void *secret, size_t secretSize) { + + if (statePtr == NULL) return XXH_ERROR; + XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8 *)secret, secretSize); + if (secret == NULL) return XXH_ERROR; + if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; + return XXH_OK; + +} + +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t *statePtr, + XXH64_hash_t seed) { + + if (statePtr == NULL) return XXH_ERROR; + XXH3_64bits_reset_internal(statePtr, seed, XXH3_kSecret, + XXH_SECRET_DEFAULT_SIZE); + XXH3_initCustomSecret(statePtr->customSecret, seed); + statePtr->extSecret = NULL; + return XXH_OK; + +} + +XXH_FORCE_INLINE void XXH3_consumeStripes( + xxh_u64 *XXH_RESTRICT acc, size_t *XXH_RESTRICT nbStripesSoFarPtr, + size_t nbStripesPerBlock, const xxh_u8 *XXH_RESTRICT input, + size_t totalStripes, const xxh_u8 *XXH_RESTRICT secret, size_t secretLimit, + XXH3_accWidth_e accWidth, XXH3_f_accumulate_512 f_acc512, + XXH3_f_scrambleAcc f_scramble) { + + XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); + if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) { + + /* need a scrambling operation */ + size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr; + XXH3_accumulate(acc, input, + secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, + nbStripes, accWidth, f_acc512); + f_scramble(acc, secret + secretLimit); + XXH3_accumulate(acc, input + nbStripes * XXH_STRIPE_LEN, secret, + totalStripes - nbStripes, accWidth, f_acc512); + *nbStripesSoFarPtr = totalStripes - nbStripes; + + } else { + + XXH3_accumulate(acc, input, + secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, + totalStripes, accWidth, f_acc512); + *nbStripesSoFarPtr += totalStripes; + + } + +} + +/* + * Both XXH3_64bits_update and XXH3_128bits_update use this routine. + */ +XXH_FORCE_INLINE XXH_errorcode XXH3_update(XXH3_state_t *state, + const xxh_u8 *input, size_t len, + XXH3_accWidth_e accWidth, + XXH3_f_accumulate_512 f_acc512, + XXH3_f_scrambleAcc f_scramble) { + + if (input == NULL) +#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ + (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) + return XXH_OK; +#else + return XXH_ERROR; +#endif + + { + + const xxh_u8 *const bEnd = input + len; + const unsigned char *const secret = + (state->extSecret == NULL) ? state->customSecret : state->extSecret; + + state->totalLen += len; + + if (state->bufferedSize + len <= + XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */ + XXH_memcpy(state->buffer + state->bufferedSize, input, len); + state->bufferedSize += (XXH32_hash_t)len; + return XXH_OK; + + } + + /* input is now > XXH3_INTERNALBUFFER_SIZE */ + +#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) + XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == + 0); /* clean multiple */ + + /* + * There is some input left inside the internal buffer. + * Fill it, then consume it. + */ + if (state->bufferedSize) { + + size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; + XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); + input += loadSize; + XXH3_consumeStripes(state->acc, &state->nbStripesSoFar, + state->nbStripesPerBlock, state->buffer, + XXH3_INTERNALBUFFER_STRIPES, secret, + state->secretLimit, accWidth, f_acc512, f_scramble); + state->bufferedSize = 0; + + } + + /* Consume input by full buffer quantities */ + if (input + XXH3_INTERNALBUFFER_SIZE <= bEnd) { + + const xxh_u8 *const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; + do { + + XXH3_consumeStripes(state->acc, &state->nbStripesSoFar, + state->nbStripesPerBlock, input, + XXH3_INTERNALBUFFER_STRIPES, secret, + state->secretLimit, accWidth, f_acc512, f_scramble); + input += XXH3_INTERNALBUFFER_SIZE; + + } while (input <= limit); + + /* for last partial stripe */ + memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, + input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); + + } + + if (input < bEnd) { /* Some remaining input: buffer it */ + XXH_memcpy(state->buffer, input, (size_t)(bEnd - input)); + state->bufferedSize = (XXH32_hash_t)(bEnd - input); + + } + + } + + return XXH_OK; + +} + +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t *state, + const void *input, size_t len) { + + return XXH3_update(state, (const xxh_u8 *)input, len, XXH3_acc_64bits, + XXH3_accumulate_512, XXH3_scrambleAcc); + +} + +XXH_FORCE_INLINE void XXH3_digest_long(XXH64_hash_t * acc, + const XXH3_state_t * state, + const unsigned char *secret, + XXH3_accWidth_e accWidth) { + + /* + * Digest on a local copy. This way, the state remains unaltered, and it can + * continue ingesting more input afterwards. + */ + memcpy(acc, state->acc, sizeof(state->acc)); + if (state->bufferedSize >= XXH_STRIPE_LEN) { + + size_t const nbStripes = state->bufferedSize / XXH_STRIPE_LEN; + size_t nbStripesSoFar = state->nbStripesSoFar; + XXH3_consumeStripes(acc, &nbStripesSoFar, state->nbStripesPerBlock, + state->buffer, nbStripes, secret, state->secretLimit, + accWidth, XXH3_accumulate_512, XXH3_scrambleAcc); + if (state->bufferedSize % XXH_STRIPE_LEN) { /* one last partial stripe */ + XXH3_accumulate_512( + acc, state->buffer + state->bufferedSize - XXH_STRIPE_LEN, + secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth); + + } + + } else { /* bufferedSize < XXH_STRIPE_LEN */ + + if (state->bufferedSize) { /* one last stripe */ + xxh_u8 lastStripe[XXH_STRIPE_LEN]; + size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; + memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, + catchupSize); + memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); + XXH3_accumulate_512( + acc, lastStripe, + secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth); + + } + + } + +} + +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest(const XXH3_state_t *state) { + + const unsigned char *const secret = + (state->extSecret == NULL) ? state->customSecret : state->extSecret; + if (state->totalLen > XXH3_MIDSIZE_MAX) { + + XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; + XXH3_digest_long(acc, state, secret, XXH3_acc_64bits); + return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, + (xxh_u64)state->totalLen * XXH_PRIME64_1); + + } + + /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ + if (state->seed) + return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, + state->seed); + return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), + secret, state->secretLimit + XXH_STRIPE_LEN); + +} + +#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) + +XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer, + const void *customSeed, + size_t customSeedSize) { + + XXH_ASSERT(secretBuffer != NULL); + if (customSeedSize == 0) { + + memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); + return; + + } + + XXH_ASSERT(customSeed != NULL); + + { + + size_t const segmentSize = sizeof(XXH128_hash_t); + size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize; + XXH128_canonical_t scrambler; + XXH64_hash_t seeds[12]; + size_t segnb; + XXH_ASSERT(nbSegments == 12); + XXH_ASSERT(segmentSize * nbSegments == + XXH_SECRET_DEFAULT_SIZE); /* exact multiple */ + XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); + + /* + * Copy customSeed to seeds[], truncating or repeating as necessary. + */ + { + + size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds)); + size_t filled = toFill; + memcpy(seeds, customSeed, toFill); + while (filled < sizeof(seeds)) { + + toFill = XXH_MIN(filled, sizeof(seeds) - filled); + memcpy((char *)seeds + filled, seeds, toFill); + filled += toFill; + + } + + } + + /* generate secret */ + memcpy(secretBuffer, &scrambler, sizeof(scrambler)); + for (segnb = 1; segnb < nbSegments; segnb++) { + + size_t const segmentStart = segnb * segmentSize; + XXH128_canonical_t segment; + XXH128_canonicalFromHash(&segment, + XXH128(&scrambler, sizeof(scrambler), + XXH_readLE64(seeds + segnb) + segnb)); + memcpy((char *)secretBuffer + segmentStart, &segment, sizeof(segment)); + + } + + } + +} + +/* ========================================== + * XXH3 128 bits (a.k.a XXH128) + * ========================================== + * XXH3's 128-bit variant has better mixing and strength than the 64-bit + * variant, even without counting the significantly larger output size. + * + * For example, extra steps are taken to avoid the seed-dependent collisions + * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). + * + * This strength naturally comes at the cost of some speed, especially on short + * lengths. Note that longer hashes are about as fast as the 64-bit version + * due to it using only a slight modification of the 64-bit loop. + * + * XXH128 is also more oriented towards 64-bit machines. It is still extremely + * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). + */ + +XXH_FORCE_INLINE XXH128_hash_t XXH3_len_1to3_128b(const xxh_u8 *input, + size_t len, + const xxh_u8 *secret, + XXH64_hash_t seed) { + + /* A doubled version of 1to3_64b with different constants. */ + XXH_ASSERT(input != NULL); + XXH_ASSERT(1 <= len && len <= 3); + XXH_ASSERT(secret != NULL); + /* + * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } + * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } + * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } + */ + { + + xxh_u8 const c1 = input[0]; + xxh_u8 const c2 = input[len >> 1]; + xxh_u8 const c3 = input[len - 1]; + xxh_u32 const combinedl = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) | + ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); + xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); + xxh_u64 const bitflipl = + (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed; + xxh_u64 const bitfliph = + (XXH_readLE32(secret + 8) ^ XXH_readLE32(secret + 12)) - seed; + xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; + xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; + xxh_u64 const mixedl = keyed_lo * XXH_PRIME64_1; + xxh_u64 const mixedh = keyed_hi * XXH_PRIME64_5; + XXH128_hash_t h128; + h128.low64 = XXH3_avalanche(mixedl); + h128.high64 = XXH3_avalanche(mixedh); + return h128; + + } + +} + +XXH_FORCE_INLINE XXH128_hash_t XXH3_len_4to8_128b(const xxh_u8 *input, + size_t len, + const xxh_u8 *secret, + XXH64_hash_t seed) { + + XXH_ASSERT(input != NULL); + XXH_ASSERT(secret != NULL); + XXH_ASSERT(4 <= len && len <= 8); + seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; + { + + xxh_u32 const input_lo = XXH_readLE32(input); + xxh_u32 const input_hi = XXH_readLE32(input + len - 4); + xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); + xxh_u64 const bitflip = + (XXH_readLE64(secret + 16) ^ XXH_readLE64(secret + 24)) + seed; + xxh_u64 const keyed = input_64 ^ bitflip; + + /* Shift len to the left to ensure it is even, this avoids even multiplies. + */ + XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); + + m128.high64 += (m128.low64 << 1); + m128.low64 ^= (m128.high64 >> 3); + + m128.low64 = XXH_xorshift64(m128.low64, 35); + m128.low64 *= 0x9FB21C651E98DF25ULL; + m128.low64 = XXH_xorshift64(m128.low64, 28); + m128.high64 = XXH3_avalanche(m128.high64); + return m128; + + } + +} + +XXH_FORCE_INLINE XXH128_hash_t XXH3_len_9to16_128b(const xxh_u8 *input, + size_t len, + const xxh_u8 *secret, + XXH64_hash_t seed) { + + XXH_ASSERT(input != NULL); + XXH_ASSERT(secret != NULL); + XXH_ASSERT(9 <= len && len <= 16); + { + + xxh_u64 const bitflipl = + (XXH_readLE64(secret + 32) ^ XXH_readLE64(secret + 40)) - seed; + xxh_u64 const bitfliph = + (XXH_readLE64(secret + 48) ^ XXH_readLE64(secret + 56)) + seed; + xxh_u64 const input_lo = XXH_readLE64(input); + xxh_u64 input_hi = XXH_readLE64(input + len - 8); + XXH128_hash_t m128 = + XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); + /* + * Put len in the middle of m128 to ensure that the length gets mixed to + * both the low and high bits in the 128x64 multiply below. + */ + m128.low64 += (xxh_u64)(len - 1) << 54; + input_hi ^= bitfliph; + /* + * Add the high 32 bits of input_hi to the high 32 bits of m128, then + * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to + * the high 64 bits of m128. + * + * The best approach to this operation is different on 32-bit and 64-bit. + */ + if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ + /* + * 32-bit optimized version, which is more readable. + * + * On 32-bit, it removes an ADC and delays a dependency between the two + * halves of m128.high64, but it generates an extra mask on 64-bit. + */ + m128.high64 += (input_hi & 0xFFFFFFFF00000000) + + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); + + } else { + + /* + * 64-bit optimized (albeit more confusing) version. + * + * Uses some properties of addition and multiplication to remove the mask: + * + * Let: + * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) + * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) + * c = XXH_PRIME32_2 + * + * a + (b * c) + * Inverse Property: x + y - x == y + * a + (b * (1 + c - 1)) + * Distributive Property: x * (y + z) == (x * y) + (x * z) + * a + (b * 1) + (b * (c - 1)) + * Identity Property: x * 1 == x + * a + b + (b * (c - 1)) + * + * Substitute a, b, and c: + * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - + * 1)) + * + * Since input_hi.hi + input_hi.lo == input_hi, we get this: + * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) + */ + m128.high64 += + input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); + + } + + /* m128 ^= XXH_swap64(m128 >> 64); */ + m128.low64 ^= XXH_swap64(m128.high64); + + { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ + XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); + h128.high64 += m128.high64 * XXH_PRIME64_2; + + h128.low64 = XXH3_avalanche(h128.low64); + h128.high64 = XXH3_avalanche(h128.high64); + return h128; + + } + + } + +} + +/* + * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN + */ +XXH_FORCE_INLINE XXH128_hash_t XXH3_len_0to16_128b(const xxh_u8 *input, + size_t len, + const xxh_u8 *secret, + XXH64_hash_t seed) { + + XXH_ASSERT(len <= 16); + { + + if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); + if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); + if (len) return XXH3_len_1to3_128b(input, len, secret, seed); + { + + XXH128_hash_t h128; + xxh_u64 const bitflipl = + XXH_readLE64(secret + 64) ^ XXH_readLE64(secret + 72); + xxh_u64 const bitfliph = + XXH_readLE64(secret + 80) ^ XXH_readLE64(secret + 88); + h128.low64 = XXH3_avalanche((XXH_PRIME64_1 + seed) ^ bitflipl); + h128.high64 = XXH3_avalanche((XXH_PRIME64_2 - seed) ^ bitfliph); + return h128; + + } + + } + +} + +/* + * A bit slower than XXH3_mix16B, but handles multiply by zero better. + */ +XXH_FORCE_INLINE XXH128_hash_t XXH128_mix32B(XXH128_hash_t acc, + const xxh_u8 *input_1, + const xxh_u8 *input_2, + const xxh_u8 *secret, + XXH64_hash_t seed) { + + acc.low64 += XXH3_mix16B(input_1, secret + 0, seed); + acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); + acc.high64 += XXH3_mix16B(input_2, secret + 16, seed); + acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); + return acc; + +} + +XXH_FORCE_INLINE XXH128_hash_t XXH3_len_17to128_128b( + const xxh_u8 *XXH_RESTRICT input, size_t len, + const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { + + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); + (void)secretSize; + XXH_ASSERT(16 < len && len <= 128); + + { + + XXH128_hash_t acc; + acc.low64 = len * XXH_PRIME64_1; + acc.high64 = 0; + if (len > 32) { + + if (len > 64) { + + if (len > 96) { + + acc = XXH128_mix32B(acc, input + 48, input + len - 64, secret + 96, + seed); + + } + + acc = + XXH128_mix32B(acc, input + 32, input + len - 48, secret + 64, seed); + + } + + acc = XXH128_mix32B(acc, input + 16, input + len - 32, secret + 32, seed); + + } + + acc = XXH128_mix32B(acc, input, input + len - 16, secret, seed); + { + + XXH128_hash_t h128; + h128.low64 = acc.low64 + acc.high64; + h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) + + ((len - seed) * XXH_PRIME64_2); + h128.low64 = XXH3_avalanche(h128.low64); + h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); + return h128; + + } + + } + +} + +XXH_NO_INLINE XXH128_hash_t XXH3_len_129to240_128b( + const xxh_u8 *XXH_RESTRICT input, size_t len, + const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { + + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); + (void)secretSize; + XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); + + { + + XXH128_hash_t acc; + int const nbRounds = (int)len / 32; + int i; + acc.low64 = len * XXH_PRIME64_1; + acc.high64 = 0; + for (i = 0; i < 4; i++) { + + acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16, + secret + (32 * i), seed); + + } + + acc.low64 = XXH3_avalanche(acc.low64); + acc.high64 = XXH3_avalanche(acc.high64); + XXH_ASSERT(nbRounds >= 4); + for (i = 4; i < nbRounds; i++) { + + acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16, + secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), + seed); + + } + + /* last bytes */ + acc = XXH128_mix32B( + acc, input + len - 16, input + len - 32, + secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, + 0ULL - seed); + + { + + XXH128_hash_t h128; + h128.low64 = acc.low64 + acc.high64; + h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) + + ((len - seed) * XXH_PRIME64_2); + h128.low64 = XXH3_avalanche(h128.low64); + h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); + return h128; + + } + + } + +} + +XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_internal( + const xxh_u8 *XXH_RESTRICT input, size_t len, + const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, + XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble) { + + XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; + + XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, + XXH3_acc_128bits, f_acc512, f_scramble); + + /* converge into final hash */ + XXH_STATIC_ASSERT(sizeof(acc) == 64); + XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); + { + + XXH128_hash_t h128; + h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, + (xxh_u64)len * XXH_PRIME64_1); + h128.high64 = XXH3_mergeAccs( + acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START, + ~((xxh_u64)len * XXH_PRIME64_2)); + return h128; + + } + +} + +/* + * It's important for performance that XXH3_hashLong is not inlined. + */ +XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_defaultSecret( + const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, + const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) { + + (void)seed64; + (void)secret; + (void)secretLen; + return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, + sizeof(XXH3_kSecret), XXH3_accumulate_512, + XXH3_scrambleAcc); + +} + +/* + * It's important for performance that XXH3_hashLong is not inlined. + */ +XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSecret( + const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, + const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) { + + (void)seed64; + return XXH3_hashLong_128b_internal(input, len, secret, secretLen, + XXH3_accumulate_512, XXH3_scrambleAcc); + +} + +XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed_internal( + const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, + XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble, + XXH3_f_initCustomSecret f_initSec) { + + if (seed64 == 0) + return XXH3_hashLong_128b_internal( + input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc512, f_scramble); + { + + XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; + f_initSec(secret, seed64); + return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret), + f_acc512, f_scramble); + + } + +} + +/* + * It's important for performance that XXH3_hashLong is not inlined. + */ +XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed( + const xxh_u8 *input, size_t len, XXH64_hash_t seed64, + const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) { + + (void)secret; + (void)secretLen; + return XXH3_hashLong_128b_withSeed_internal( + input, len, seed64, XXH3_accumulate_512, XXH3_scrambleAcc, + XXH3_initCustomSecret); + +} + +typedef XXH128_hash_t (*XXH3_hashLong128_f)(const xxh_u8 *XXH_RESTRICT, size_t, + XXH64_hash_t, + const xxh_u8 *XXH_RESTRICT, size_t); + +XXH_FORCE_INLINE XXH128_hash_t +XXH3_128bits_internal(const void *input, size_t len, XXH64_hash_t seed64, + const xxh_u8 *XXH_RESTRICT secret, size_t secretLen, + XXH3_hashLong128_f f_hl128) { + + XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); + /* + * If an action is to be taken if `secret` conditions are not respected, + * it should be done here. + * For now, it's a contract pre-condition. + * Adding a check and a branch here would cost performance at every hash. + */ + if (len <= 16) + return XXH3_len_0to16_128b((const xxh_u8 *)input, len, secret, seed64); + if (len <= 128) + return XXH3_len_17to128_128b((const xxh_u8 *)input, len, secret, secretLen, + seed64); + if (len <= XXH3_MIDSIZE_MAX) + return XXH3_len_129to240_128b((const xxh_u8 *)input, len, secret, secretLen, + seed64); + return f_hl128((const xxh_u8 *)input, len, seed64, secret, secretLen); + +} + +/* === Public XXH128 API === */ + +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void *input, size_t len) { + + return XXH3_128bits_internal(input, len, 0, XXH3_kSecret, + sizeof(XXH3_kSecret), + XXH3_hashLong_128b_withSecret); + +} + +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void *input, + size_t len, + const void *secret, + size_t secretSize) { + + return XXH3_128bits_internal(input, len, 0, (const xxh_u8 *)secret, + secretSize, XXH3_hashLong_128b_defaultSecret); + +} + +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void * input, + size_t len, + XXH64_hash_t seed) { + + return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, + sizeof(XXH3_kSecret), + XXH3_hashLong_128b_withSeed); + +} + +XXH_PUBLIC_API XXH128_hash_t XXH128(const void *input, size_t len, + XXH64_hash_t seed) { + + return XXH3_128bits_withSeed(input, len, seed); + +} + +/* === XXH3 128-bit streaming === */ + +/* + * All the functions are actually the same as for 64-bit streaming variant. + * The only difference is the finalizatiom routine. + */ + +static void XXH3_128bits_reset_internal(XXH3_state_t *statePtr, + XXH64_hash_t seed, const xxh_u8 *secret, + size_t secretSize) { + + XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize); + +} + +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t *statePtr) { + + if (statePtr == NULL) return XXH_ERROR; + XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret, + XXH_SECRET_DEFAULT_SIZE); + return XXH_OK; + +} + +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret( + XXH3_state_t *statePtr, const void *secret, size_t secretSize) { + + if (statePtr == NULL) return XXH_ERROR; + XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8 *)secret, secretSize); + if (secret == NULL) return XXH_ERROR; + if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; + return XXH_OK; + +} + +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t *statePtr, + XXH64_hash_t seed) { + + if (statePtr == NULL) return XXH_ERROR; + XXH3_128bits_reset_internal(statePtr, seed, XXH3_kSecret, + XXH_SECRET_DEFAULT_SIZE); + XXH3_initCustomSecret(statePtr->customSecret, seed); + statePtr->extSecret = NULL; + return XXH_OK; + +} + +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t *state, + const void * input, + size_t len) { + + return XXH3_update(state, (const xxh_u8 *)input, len, XXH3_acc_128bits, + XXH3_accumulate_512, XXH3_scrambleAcc); + +} + +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest(const XXH3_state_t *state) { + + const unsigned char *const secret = + (state->extSecret == NULL) ? state->customSecret : state->extSecret; + if (state->totalLen > XXH3_MIDSIZE_MAX) { + + XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; + XXH3_digest_long(acc, state, secret, XXH3_acc_128bits); + XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= + sizeof(acc) + XXH_SECRET_MERGEACCS_START); + { + + XXH128_hash_t h128; + h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, + (xxh_u64)state->totalLen * XXH_PRIME64_1); + h128.high64 = + XXH3_mergeAccs(acc, + secret + state->secretLimit + XXH_STRIPE_LEN - + sizeof(acc) - XXH_SECRET_MERGEACCS_START, + ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); + return h128; + + } + + } + + /* len <= XXH3_MIDSIZE_MAX : short code */ + if (state->seed) + return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, + state->seed); + return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), + secret, state->secretLimit + XXH_STRIPE_LEN); + +} + +/* 128-bit utility functions */ + +#include <string.h> /* memcmp, memcpy */ + +/* return : 1 is equal, 0 if different */ +XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) { + + /* note : XXH128_hash_t is compact, it has no padding byte */ + return !(memcmp(&h1, &h2, sizeof(h1))); + +} + +/* This prototype is compatible with stdlib's qsort(). + * return : >0 if *h128_1 > *h128_2 + * <0 if *h128_1 < *h128_2 + * =0 if *h128_1 == *h128_2 */ +XXH_PUBLIC_API int XXH128_cmp(const void *h128_1, const void *h128_2) { + + XXH128_hash_t const h1 = *(const XXH128_hash_t *)h128_1; + XXH128_hash_t const h2 = *(const XXH128_hash_t *)h128_2; + int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); + /* note : bets that, in most cases, hash values are different */ + if (hcmp) return hcmp; + return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); + +} + +/*====== Canonical representation ======*/ +XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t *dst, + XXH128_hash_t hash) { + + XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); + if (XXH_CPU_LITTLE_ENDIAN) { + + hash.high64 = XXH_swap64(hash.high64); + hash.low64 = XXH_swap64(hash.low64); + + } + + memcpy(dst, &hash.high64, sizeof(hash.high64)); + memcpy((char *)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); + +} + +XXH_PUBLIC_API XXH128_hash_t +XXH128_hashFromCanonical(const XXH128_canonical_t *src) { + + XXH128_hash_t h; + h.high64 = XXH_readBE64(src); + h.low64 = XXH_readBE64(src->digest + 8); + return h; + +} + +/* Pop our optimization override from above */ +#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ + && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ + && defined(__OPTIMIZE__) && \ + !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ + #pragma GCC pop_options +#endif + +#endif /* XXH3_H_1397135465 */ + diff --git a/include/xxhash.h b/include/xxhash.h new file mode 100644 index 00000000..b4d640ae --- /dev/null +++ b/include/xxhash.h @@ -0,0 +1,2438 @@ +/* + * xxHash - Extremely Fast Hash algorithm + * Header File + * Copyright (C) 2012-2020 Yann Collet + * + * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following disclaimer + * in the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * You can contact the author at: + * - xxHash homepage: https://www.xxhash.com + * - xxHash source repository: https://github.com/Cyan4973/xxHash + */ + +/* TODO: update */ +/* Notice extracted from xxHash homepage: + +xxHash is an extremely fast hash algorithm, running at RAM speed limits. +It also successfully passes all tests from the SMHasher suite. + +Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo +@3GHz) + +Name Speed Q.Score Author +xxHash 5.4 GB/s 10 +CrapWow 3.2 GB/s 2 Andrew +MumurHash 3a 2.7 GB/s 10 Austin Appleby +SpookyHash 2.0 GB/s 10 Bob Jenkins +SBox 1.4 GB/s 9 Bret Mulvey +Lookup3 1.2 GB/s 9 Bob Jenkins +SuperFastHash 1.2 GB/s 1 Paul Hsieh +CityHash64 1.05 GB/s 10 Pike & Alakuijala +FNV 0.55 GB/s 5 Fowler, Noll, Vo +CRC32 0.43 GB/s 9 +MD5-32 0.33 GB/s 10 Ronald L. Rivest +SHA1-32 0.28 GB/s 10 + +Q.Score is a measure of quality of the hash function. +It depends on successfully passing SMHasher test set. +10 is a perfect score. + +Note: SMHasher's CRC32 implementation is not the fastest one. +Other speed-oriented implementations can be faster, +especially in combination with PCLMUL instruction: +https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735 + +A 64-bit version, named XXH64, is available since r35. +It offers much better speed, but for 64-bit applications only. +Name Speed on 64 bits Speed on 32 bits +XXH64 13.8 GB/s 1.9 GB/s +XXH32 6.8 GB/s 6.0 GB/s +*/ + +#if defined(__cplusplus) +extern "C" { + +#endif + +/* **************************** + * INLINE mode + ******************************/ +/*! + * XXH_INLINE_ALL (and XXH_PRIVATE_API) + * Use these build macros to inline xxhash into the target unit. + * Inlining improves performance on small inputs, especially when the length is + * expressed as a compile-time constant: + * + * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html + * + * It also keeps xxHash symbols private to the unit, so they are not exported. + * + * Usage: + * #define XXH_INLINE_ALL + * #include "xxhash.h" + * + * Do not compile and link xxhash.o as a separate object, as it is not useful. + */ +#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) && \ + !defined(XXH_INLINE_ALL_31684351384) +/* this section should be traversed only once */ + #define XXH_INLINE_ALL_31684351384 +/* give access to the advanced API, required to compile implementations */ + #undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ + #define XXH_STATIC_LINKING_ONLY +/* make all functions private */ + #undef XXH_PUBLIC_API + #if defined(__GNUC__) + #define XXH_PUBLIC_API static __inline __attribute__((unused)) + #elif defined(__cplusplus) || \ + (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) + #define XXH_PUBLIC_API static inline + #elif defined(_MSC_VER) + #define XXH_PUBLIC_API static __inline + #else + /* note: this version may generate warnings for unused static functions */ + #define XXH_PUBLIC_API static + #endif + +/* + * This part deals with the special case where a unit wants to inline xxHash, + * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such + * as part of some previously included *.h header file. + * Without further action, the new include would just be ignored, + * and functions would effectively _not_ be inlined (silent failure). + * The following macros solve this situation by prefixing all inlined names, + * avoiding naming collision with previous inclusions. + */ + #ifdef XXH_NAMESPACE + #error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported" + /* + * Note: Alternative: #undef all symbols (it's a pretty large list). + * Without #error: it compiles, but functions are actually not inlined. + */ + #endif + #define XXH_NAMESPACE XXH_INLINE_ +/* + * Some identifiers (enums, type names) are not symbols, but they must + * still be renamed to avoid redeclaration. + * Alternative solution: do not redeclare them. + * However, this requires some #ifdefs, and is a more dispersed action. + * Meanwhile, renaming can be achieved in a single block + */ + #define XXH_IPREF(Id) XXH_INLINE_##Id + #define XXH_OK XXH_IPREF(XXH_OK) + #define XXH_ERROR XXH_IPREF(XXH_ERROR) + #define XXH_errorcode XXH_IPREF(XXH_errorcode) + #define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) + #define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) + #define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) + #define XXH32_state_s XXH_IPREF(XXH32_state_s) + #define XXH32_state_t XXH_IPREF(XXH32_state_t) + #define XXH64_state_s XXH_IPREF(XXH64_state_s) + #define XXH64_state_t XXH_IPREF(XXH64_state_t) + #define XXH3_state_s XXH_IPREF(XXH3_state_s) + #define XXH3_state_t XXH_IPREF(XXH3_state_t) + #define XXH128_hash_t XXH_IPREF(XXH128_hash_t) +/* Ensure the header is parsed again, even if it was previously included */ + #undef XXHASH_H_5627135585666179 + #undef XXHASH_H_STATIC_13879238742 +#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ + +/* **************************************************************** + * Stable API + *****************************************************************/ +#ifndef XXHASH_H_5627135585666179 + #define XXHASH_H_5627135585666179 1 + + /* specific declaration modes for Windows */ + #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) + #if defined(WIN32) && defined(_MSC_VER) && \ + (defined(XXH_IMPORT) || defined(XXH_EXPORT)) + #ifdef XXH_EXPORT + #define XXH_PUBLIC_API __declspec(dllexport) + #elif XXH_IMPORT + #define XXH_PUBLIC_API __declspec(dllimport) + #endif + #else + #define XXH_PUBLIC_API /* do nothing */ + #endif + #endif + + /*! + * XXH_NAMESPACE, aka Namespace Emulation: + * + * If you want to include _and expose_ xxHash functions from within your own + * library, but also want to avoid symbol collisions with other libraries + * which may also include xxHash, you can use XXH_NAMESPACE to automatically + * prefix any public symbol from xxhash library with the value of + * XXH_NAMESPACE (therefore, avoid empty or numeric values). + * + * Note that no change is required within the calling program as long as it + * includes `xxhash.h`: Regular symbol names will be automatically translated + * by this header. + */ + #ifdef XXH_NAMESPACE + #define XXH_CAT(A, B) A##B + #define XXH_NAME2(A, B) XXH_CAT(A, B) + #define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) + #define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) + #define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) + #define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) + #define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) + #define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) + #define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) + #define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) + #define XXH32_canonicalFromHash \ + XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) + #define XXH32_hashFromCanonical \ + XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) + #define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) + #define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) + #define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) + #define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) + #define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) + #define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) + #define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) + #define XXH64_canonicalFromHash \ + XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) + #define XXH64_hashFromCanonical \ + XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) + #endif + + /* ************************************* + * Version + ***************************************/ + #define XXH_VERSION_MAJOR 0 + #define XXH_VERSION_MINOR 7 + #define XXH_VERSION_RELEASE 4 + #define XXH_VERSION_NUMBER \ + (XXH_VERSION_MAJOR * 100 * 100 + XXH_VERSION_MINOR * 100 + \ + XXH_VERSION_RELEASE) +XXH_PUBLIC_API unsigned XXH_versionNumber(void); + + /* **************************** + * Definitions + ******************************/ + #include <stddef.h> /* size_t */ +typedef enum { XXH_OK = 0, XXH_ERROR } XXH_errorcode; + + /*-********************************************************************** + * 32-bit hash + ************************************************************************/ + #if !defined(__VMS) && \ + (defined(__cplusplus) || \ + (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)) + #include <stdint.h> +typedef uint32_t XXH32_hash_t; + #else + #include <limits.h> + #if UINT_MAX == 0xFFFFFFFFUL +typedef unsigned int XXH32_hash_t; + #else + #if ULONG_MAX == 0xFFFFFFFFUL +typedef unsigned long XXH32_hash_t; + #else + #error "unsupported platform: need a 32-bit type" + #endif + #endif + #endif + +/*! + * XXH32(): + * Calculate the 32-bit hash of sequence "length" bytes stored at memory + * address "input". The memory between input & input+length must be valid + * (allocated and read-accessible). "seed" can be used to alter the result + * predictably. Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher + * benchmark): 5.4 GB/s + * + * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, + * and offers true 64/128 bit hash results. It provides a superior level of + * dispersion, and greatly reduces the risks of collisions. + */ +XXH_PUBLIC_API XXH32_hash_t XXH32(const void *input, size_t length, + XXH32_hash_t seed); + +/******* Streaming *******/ + +/* + * Streaming functions generate the xxHash value from an incrememtal input. + * This method is slower than single-call functions, due to state management. + * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. + * + * An XXH state must first be allocated using `XXH*_createState()`. + * + * Start a new hash by initializing the state with a seed using `XXH*_reset()`. + * + * Then, feed the hash state by calling `XXH*_update()` as many times as + * necessary. + * + * The function returns an error code, with 0 meaning OK, and any other value + * meaning there is an error. + * + * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. + * This function returns the nn-bits hash as an int or long long. + * + * It's still possible to continue inserting input into the hash state after a + * digest, and generate new hash values later on by invoking `XXH*_digest()`. + * + * When done, release the state using `XXH*_freeState()`. + */ + +typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */ +XXH_PUBLIC_API XXH32_state_t *XXH32_createState(void); +XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t *statePtr); +XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t * dst_state, + const XXH32_state_t *src_state); + +XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t *statePtr, + XXH32_hash_t seed); +XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t *statePtr, + const void *input, size_t length); +XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t *statePtr); + +/******* Canonical representation *******/ + +/* + * The default return values from XXH functions are unsigned 32 and 64 bit + * integers. + * This the simplest and fastest format for further post-processing. + * + * However, this leaves open the question of what is the order on the byte + * level, since little and big endian conventions will store the same number + * differently. + * + * The canonical representation settles this issue by mandating big-endian + * convention, the same convention as human-readable numbers (large digits + * first). + * + * When writing hash values to storage, sending them over a network, or printing + * them, it's highly recommended to use the canonical representation to ensure + * portability across a wider range of systems, present and future. + * + * The following functions allow transformation of hash values to and from + * canonical format. + */ + +typedef struct { + + unsigned char digest[4]; + +} XXH32_canonical_t; + +XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t *dst, + XXH32_hash_t hash); +XXH_PUBLIC_API XXH32_hash_t +XXH32_hashFromCanonical(const XXH32_canonical_t *src); + + #ifndef XXH_NO_LONG_LONG + /*-********************************************************************** + * 64-bit hash + ************************************************************************/ + #if !defined(__VMS) && \ + (defined(__cplusplus) || (defined(__STDC_VERSION__) && \ + (__STDC_VERSION__ >= 199901L) /* C99 */)) + #include <stdint.h> +typedef uint64_t XXH64_hash_t; + #else +/* the following type must have a width of 64-bit */ +typedef unsigned long long XXH64_hash_t; + #endif + +/*! + * XXH64(): + * Returns the 64-bit hash of sequence of length @length stored at memory + * address @input. + * @seed can be used to alter the result predictably. + * + * This function usually runs faster on 64-bit systems, but slower on 32-bit + * systems (see benchmark). + * + * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, + * and offers true 64/128 bit hash results. It provides a superior level of + * dispersion, and greatly reduces the risks of collisions. + */ +XXH_PUBLIC_API XXH64_hash_t XXH64(const void *input, size_t length, + XXH64_hash_t seed); + +/******* Streaming *******/ +typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ +XXH_PUBLIC_API XXH64_state_t *XXH64_createState(void); +XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t *statePtr); +XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t * dst_state, + const XXH64_state_t *src_state); + +XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t *statePtr, + XXH64_hash_t seed); +XXH_PUBLIC_API XXH_errorcode XXH64_update(XXH64_state_t *statePtr, + const void *input, size_t length); +XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t *statePtr); + +/******* Canonical representation *******/ +typedef struct { + + unsigned char digest[sizeof(XXH64_hash_t)]; + +} XXH64_canonical_t; + +XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t *dst, + XXH64_hash_t hash); +XXH_PUBLIC_API XXH64_hash_t +XXH64_hashFromCanonical(const XXH64_canonical_t *src); + + #endif /* XXH_NO_LONG_LONG */ + +#endif /* XXHASH_H_5627135585666179 */ + +#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) + #define XXHASH_H_STATIC_13879238742 +/* **************************************************************************** + * This section contains declarations which are not guaranteed to remain stable. + * They may change in future versions, becoming incompatible with a different + * version of the library. + * These declarations should only be used with static linking. + * Never use them in association with dynamic linking! + ***************************************************************************** +*/ + +/* + * These definitions are only present to allow static allocation of an XXH + * state, for example, on the stack or in a struct. + * Never **ever** access members directly. + */ + +struct XXH32_state_s { + + XXH32_hash_t total_len_32; + XXH32_hash_t large_len; + XXH32_hash_t v1; + XXH32_hash_t v2; + XXH32_hash_t v3; + XXH32_hash_t v4; + XXH32_hash_t mem32[4]; + XXH32_hash_t memsize; + XXH32_hash_t + reserved; /* never read nor write, might be removed in a future version */ + +}; /* typedef'd to XXH32_state_t */ + + #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ + +struct XXH64_state_s { + + XXH64_hash_t total_len; + XXH64_hash_t v1; + XXH64_hash_t v2; + XXH64_hash_t v3; + XXH64_hash_t v4; + XXH64_hash_t mem64[4]; + XXH32_hash_t memsize; + XXH32_hash_t reserved32; /* required for padding anyway */ + XXH64_hash_t reserved64; /* never read nor write, might be removed in a future + version */ + +}; /* typedef'd to XXH64_state_t */ + + /*-********************************************************************** + * XXH3 + * New experimental hash + ************************************************************************/ + + /* ************************************************************************ + * XXH3 is a new hash algorithm featuring: + * - Improved speed for both small and large inputs + * - True 64-bit and 128-bit outputs + * - SIMD acceleration + * - Improved 32-bit viability + * + * Speed analysis methodology is explained here: + * + * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html + * + * In general, expect XXH3 to run about ~2x faster on large inputs and >3x + * faster on small ones compared to XXH64, though exact differences depend on + * the platform. + * + * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash + * on all platforms. + * + * It benefits greatly from SIMD and 64-bit arithmetic, but does not require + * it. + * + * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run + * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are + * explained in the implementation. + * + * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, + * POWER8, ZVector and scalar targets. This can be controlled with the + * XXH_VECTOR macro. + * + * XXH3 offers 2 variants, _64bits and _128bits. + * When only 64 bits are needed, prefer calling the _64bits variant, as it + * reduces the amount of mixing, resulting in faster speed on small inputs. + * + * It's also generally simpler to manipulate a scalar return type than a + * struct. + * + * The 128-bit version adds additional strength, but it is slightly slower. + * + * The XXH3 algorithm is still in development. + * The results it produces may still change in future versions. + * + * Results produced by v0.7.x are not comparable with results from v0.7.y. + * However, the API is completely stable, and it can safely be used for + * ephemeral data (local sessions). + * + * Avoid storing values in long-term storage until the algorithm is finalized. + * + * Since v0.7.3, XXH3 has reached "release candidate" status, meaning that, if + * everything remains fine, its current format will be "frozen" and become the + * final one. + * + * After which, return values of XXH3 and XXH128 will no longer change in + * future versions. + * + * XXH3's return values will be officially finalized upon reaching v0.8.0. + * + * The API supports one-shot hashing, streaming mode, and custom secrets. + */ + + #ifdef XXH_NAMESPACE + #define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) + #define XXH3_64bits_withSecret \ + XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) + #define XXH3_64bits_withSeed \ + XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) + + #define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) + #define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) + #define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) + + #define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) + #define XXH3_64bits_reset_withSeed \ + XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) + #define XXH3_64bits_reset_withSecret \ + XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) + #define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) + #define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) + + #define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) + #endif + +/* XXH3_64bits(): + * default 64-bit variant, using default secret and default seed of 0. + * It's the fastest variant. */ +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void *data, size_t len); + +/* + * XXH3_64bits_withSeed(): + * This variant generates a custom secret on the fly based on the default + * secret, altered using the `seed` value. + * While this operation is decently fast, note that it's not completely free. + * Note: seed==0 produces the same results as XXH3_64bits(). + */ +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void *data, size_t len, + XXH64_hash_t seed); + + /* + * XXH3_64bits_withSecret(): + * It's possible to provide any blob of bytes as a "secret" to generate the + * hash. This makes it more difficult for an external actor to prepare an + * intentional collision. secretSize *must* be large enough (>= + * XXH3_SECRET_SIZE_MIN). The hash quality depends on the secret's high + * entropy, meaning that the secret should look like a bunch of random + * bytes. Avoid "trivial" sequences such as text or a bunch of repeated + * characters. If you are unsure of the "randonmess" of the blob of bytes, + * consider making it a "custom seed" instead, + * and use "XXH_generateSecret()" to generate a high quality secret. + */ + #define XXH3_SECRET_SIZE_MIN 136 +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void *data, size_t len, + const void *secret, + size_t secretSize); + + /* streaming 64-bit */ + + #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */ + #include <stdalign.h> + #define XXH_ALIGN(n) alignas(n) + #elif defined(__GNUC__) + #define XXH_ALIGN(n) __attribute__((aligned(n))) + #elif defined(_MSC_VER) + #define XXH_ALIGN(n) __declspec(align(n)) + #else + #define XXH_ALIGN(n) /* disabled */ + #endif + + /* Old GCC versions only accept the attribute after the type in structures. + */ + #if !(defined(__STDC_VERSION__) && \ + (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ + && defined(__GNUC__) + #define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) + #else + #define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type + #endif + +typedef struct XXH3_state_s XXH3_state_t; + + #define XXH3_INTERNALBUFFER_SIZE 256 + #define XXH3_SECRET_DEFAULT_SIZE 192 +struct XXH3_state_s { + + XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); + /* used to store a custom secret generated from a seed */ + XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); + XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); + XXH32_hash_t bufferedSize; + XXH32_hash_t reserved32; + size_t nbStripesPerBlock; + size_t nbStripesSoFar; + size_t secretLimit; + XXH64_hash_t totalLen; + XXH64_hash_t seed; + XXH64_hash_t reserved64; + const unsigned char *extSecret; /* reference to external secret; + * if == NULL, use .customSecret instead */ + /* note: there may be some padding at the end due to alignment on 64 bytes */ + +}; /* typedef'd to XXH3_state_t */ + + #undef XXH_ALIGN_MEMBER + +/* + * Streaming requires state maintenance. + * This operation costs memory and CPU. + * As a consequence, streaming is slower than one-shot hashing. + * For better performance, prefer one-shot functions whenever possible. + */ +XXH_PUBLIC_API XXH3_state_t *XXH3_createState(void); +XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t *statePtr); +XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t * dst_state, + const XXH3_state_t *src_state); + +/* + * XXH3_64bits_reset(): + * Initialize with the default parameters. + * The result will be equivalent to `XXH3_64bits()`. + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t *statePtr); +/* + * XXH3_64bits_reset_withSeed(): + * Generate a custom secret from `seed`, and store it into `statePtr`. + * digest will be equivalent to `XXH3_64bits_withSeed()`. + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t *statePtr, + XXH64_hash_t seed); +/* + * XXH3_64bits_reset_withSecret(): + * `secret` is referenced, and must outlive the hash streaming session, so + * be careful when using stack arrays. + * `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`. + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret( + XXH3_state_t *statePtr, const void *secret, size_t secretSize); + +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t *statePtr, + const void * input, + size_t length); +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest(const XXH3_state_t *statePtr); + + /* 128-bit */ + + #ifdef XXH_NAMESPACE + #define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) + #define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) + #define XXH3_128bits_withSeed \ + XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) + #define XXH3_128bits_withSecret \ + XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) + + #define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) + #define XXH3_128bits_reset_withSeed \ + XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) + #define XXH3_128bits_reset_withSecret \ + XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) + #define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) + #define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) + + #define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) + #define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) + #define XXH128_canonicalFromHash \ + XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) + #define XXH128_hashFromCanonical \ + XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) + #endif + +typedef struct { + + XXH64_hash_t low64; + XXH64_hash_t high64; + +} XXH128_hash_t; + +XXH_PUBLIC_API XXH128_hash_t XXH128(const void *data, size_t len, + XXH64_hash_t seed); +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void *data, size_t len); +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed( + const void *data, size_t len, XXH64_hash_t seed); /* == XXH128() */ +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void *data, + size_t len, + const void *secret, + size_t secretSize); + +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t *statePtr); +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t *statePtr, + XXH64_hash_t seed); +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret( + XXH3_state_t *statePtr, const void *secret, size_t secretSize); + +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t *statePtr, + const void * input, + size_t length); +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest(const XXH3_state_t *statePtr); + +/* Note: For better performance, these functions can be inlined using + * XXH_INLINE_ALL */ + +/*! + * XXH128_isEqual(): + * Return: 1 if `h1` and `h2` are equal, 0 if they are not. + */ +XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); + +/*! + * XXH128_cmp(): + * + * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. + * + * return: >0 if *h128_1 > *h128_2 + * =0 if *h128_1 == *h128_2 + * <0 if *h128_1 < *h128_2 + */ +XXH_PUBLIC_API int XXH128_cmp(const void *h128_1, const void *h128_2); + +/******* Canonical representation *******/ +typedef struct { + + unsigned char digest[sizeof(XXH128_hash_t)]; + +} XXH128_canonical_t; + +XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t *dst, + XXH128_hash_t hash); +XXH_PUBLIC_API XXH128_hash_t +XXH128_hashFromCanonical(const XXH128_canonical_t *src); + +/* === Experimental API === */ +/* Symbols defined below must be considered tied to a specific library version. + */ + +/* + * XXH3_generateSecret(): + * + * Derive a secret for use with `*_withSecret()` prototypes of XXH3. + * Use this if you need a higher level of security than the one provided by + * 64bit seed. + * + * Take as input a custom seed of any length and any content, + * generate from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE + * into already allocated buffer secretBuffer. + * The generated secret ALWAYS is XXH_SECRET_DEFAULT_SIZE bytes long. + * + * The generated secret can then be used with any `*_withSecret()` variant. + * The functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`, + * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()` + * are part of this list. They all accept a `secret` parameter + * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN) + * _and_ feature very high entropy (consist of random-looking bytes). + * These conditions can be a high bar to meet, so + * this function can be used to generate a secret of proper quality. + * + * customSeed can be anything. It can have any size, even small ones, + * and its content can be anything, even some "low entropy" source such as a + * bunch of zeroes. The resulting `secret` will nonetheless respect all expected + * qualities. + * + * Supplying NULL as the customSeed copies the default secret into + * `secretBuffer`. When customSeedSize > 0, supplying NULL as customSeed is + * undefined behavior. + */ +XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer, + const void *customSeed, + size_t customSeedSize); + + #endif /* XXH_NO_LONG_LONG */ + + #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) + #define XXH_IMPLEMENTATION + #endif + +#endif /* defined(XXH_STATIC_LINKING_ONLY) && \ + !defined(XXHASH_H_STATIC_13879238742) */ + +/* ======================================================================== */ +/* ======================================================================== */ +/* ======================================================================== */ + +/*-********************************************************************** + * xxHash implementation + *-********************************************************************** + * xxHash's implementation used to be found in xxhash.c. + * + * However, code inlining requires the implementation to be visible to the + * compiler, usually within the header. + * + * As a workaround, xxhash.c used to be included within xxhash.h. This caused + * some issues with some build systems, especially ones which treat .c files + * as source files. + * + * Therefore, the implementation is now directly integrated within xxhash.h. + * Another small advantage is that xxhash.c is no longer needed in /include. + ************************************************************************/ + +#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) || \ + defined(XXH_IMPLEMENTATION)) && \ + !defined(XXH_IMPLEM_13a8737387) + #define XXH_IMPLEM_13a8737387 + + /* ************************************* + * Tuning parameters + ***************************************/ + /*! + * XXH_FORCE_MEMORY_ACCESS: + * By default, access to unaligned memory is controlled by `memcpy()`, which + * is safe and portable. + * + * Unfortunately, on some target/compiler combinations, the generated assembly + * is sub-optimal. + * + * The below switch allow to select a different access method for improved + * performance. + * Method 0 (default): + * Use `memcpy()`. Safe and portable. + * Method 1: + * `__attribute__((packed))` statement. It depends on compiler extensions + * and is therefore not portable. + * This method is safe if your compiler supports it, and *generally* as + * fast or faster than `memcpy`. + * Method 2: + * Direct access via cast. This method doesn't depend on the compiler but + * violates the C standard. + * It can generate buggy code on targets which do not support unaligned + * memory accesses. + * But in some circumstances, it's the only known way to get the most + * performance (ie GCC + ARMv6) + * Method 3: + * Byteshift. This can generate the best code on old compilers which don't + * inline small `memcpy()` calls, and it might also be faster on + * big-endian systems which lack a native byteswap instruction. See + * https://stackoverflow.com/a/32095106/646947 for details. Prefer these + * methods in priority order (0 > 1 > 2 > 3) + */ + #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command \ + line for example */ + #if !defined(__clang__) && defined(__GNUC__) && \ + defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && \ + (__ARM_ARCH == 6) + #define XXH_FORCE_MEMORY_ACCESS 2 + #elif !defined(__clang__) && \ + ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ + (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7))) + #define XXH_FORCE_MEMORY_ACCESS 1 + #endif + #endif + + /*! + * XXH_ACCEPT_NULL_INPUT_POINTER: + * If the input pointer is NULL, xxHash's default behavior is to dereference + * it, triggering a segfault. When this macro is enabled, xxHash actively + * checks the input for a null pointer. If it is, the result for null input + * pointers is the same as a zero-length input. + */ + #ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */ + #define XXH_ACCEPT_NULL_INPUT_POINTER 0 + #endif + + /*! + * XXH_FORCE_ALIGN_CHECK: + * This is an important performance trick + * for architectures without decent unaligned memory access performance. + * It checks for input alignment, and when conditions are met, + * uses a "fast path" employing direct 32-bit/64-bit read, + * resulting in _dramatically faster_ read speed. + * + * The check costs one initial branch per hash, which is generally negligible, + * but not zero. Moreover, it's not useful to generate binary for an + * additional code path if memory access uses same instruction for both + * aligned and unaligned adresses. + * + * In these cases, the alignment check can be removed by setting this macro to + * 0. Then the code will always use unaligned memory access. Align check is + * automatically disabled on x86, x64 & arm64, which are platforms known to + * offer good unaligned memory accesses performance. + * + * This option does not affect XXH3 (only XXH32 and XXH64). + */ + #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ + #if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || \ + defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */ + #define XXH_FORCE_ALIGN_CHECK 0 + #else + #define XXH_FORCE_ALIGN_CHECK 1 + #endif + #endif + + /*! + * XXH_NO_INLINE_HINTS: + * + * By default, xxHash tries to force the compiler to inline almost all + * internal functions. + * + * This can usually improve performance due to reduced jumping and improved + * constant folding, but significantly increases the size of the binary which + * might not be favorable. + * + * Additionally, sometimes the forced inlining can be detrimental to + * performance, depending on the architecture. + * + * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the + * compiler full control on whether to inline or not. + * + * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using + * -fno-inline with GCC or Clang, this will automatically be defined. + */ + #ifndef XXH_NO_INLINE_HINTS + #if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \ + || defined(__NO_INLINE__) /* -O0, -fno-inline */ + #define XXH_NO_INLINE_HINTS 1 + #else + #define XXH_NO_INLINE_HINTS 0 + #endif + #endif + + /*! + * XXH_REROLL: + * Whether to reroll XXH32_finalize, and XXH64_finalize, + * instead of using an unrolled jump table/if statement loop. + * + * This is automatically defined on -Os/-Oz on GCC and Clang. + */ + #ifndef XXH_REROLL + #if defined(__OPTIMIZE_SIZE__) + #define XXH_REROLL 1 + #else + #define XXH_REROLL 0 + #endif + #endif + + /* ************************************* + * Includes & Memory related functions + ***************************************/ + /*! + * Modify the local functions below should you wish to use some other memory + * routines for malloc() and free() + */ + #include <stdlib.h> + +static void *XXH_malloc(size_t s) { + + return malloc(s); + +} + +static void XXH_free(void *p) { + + free(p); + +} + + /*! and for memcpy() */ + #include <string.h> +static void *XXH_memcpy(void *dest, const void *src, size_t size) { + + return memcpy(dest, src, size); + +} + + #include <limits.h> /* ULLONG_MAX */ + + /* ************************************* + * Compiler Specific Options + ***************************************/ + #ifdef _MSC_VER /* Visual Studio warning fix */ + #pragma warning(disable : 4127) /* disable: C4127: conditional expression \ + is constant */ + #endif + + #if XXH_NO_INLINE_HINTS /* disable inlining hints */ + #if defined(__GNUC__) + #define XXH_FORCE_INLINE static __attribute__((unused)) + #else + #define XXH_FORCE_INLINE static + #endif + #define XXH_NO_INLINE static + /* enable inlining hints */ + #elif defined(_MSC_VER) /* Visual Studio */ + #define XXH_FORCE_INLINE static __forceinline + #define XXH_NO_INLINE static __declspec(noinline) + #elif defined(__GNUC__) + #define XXH_FORCE_INLINE \ + static __inline__ __attribute__((always_inline, unused)) + #define XXH_NO_INLINE static __attribute__((noinline)) + #elif defined(__cplusplus) || \ + (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ + #define XXH_FORCE_INLINE static inline + #define XXH_NO_INLINE static + #else + #define XXH_FORCE_INLINE static + #define XXH_NO_INLINE static + #endif + + /* ************************************* + * Debug + ***************************************/ + /* + * XXH_DEBUGLEVEL is expected to be defined externally, typically via the + * compiler's command line options. The value must be a number. + */ + #ifndef XXH_DEBUGLEVEL + #ifdef DEBUGLEVEL /* backwards compat */ + #define XXH_DEBUGLEVEL DEBUGLEVEL + #else + #define XXH_DEBUGLEVEL 0 + #endif + #endif + + #if (XXH_DEBUGLEVEL >= 1) + #include <assert.h> /* note: can still be disabled with NDEBUG */ + #define XXH_ASSERT(c) assert(c) + #else + #define XXH_ASSERT(c) ((void)0) + #endif + + /* note: use after variable declarations */ + #define XXH_STATIC_ASSERT(c) \ + do { \ + \ + enum { XXH_sa = 1 / (int)(!!(c)) }; \ + \ + } while (0) + + /* ************************************* + * Basic Types + ***************************************/ + #if !defined(__VMS) && \ + (defined(__cplusplus) || \ + (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)) + #include <stdint.h> +typedef uint8_t xxh_u8; + #else +typedef unsigned char xxh_u8; + #endif +typedef XXH32_hash_t xxh_u32; + + #ifdef XXH_OLD_NAMES + #define BYTE xxh_u8 + #define U8 xxh_u8 + #define U32 xxh_u32 + #endif + +/* *** Memory access *** */ + + #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3)) + /* + * Manual byteshift. Best for old compilers which don't inline memcpy. + * We actually directly use XXH_readLE32 and XXH_readBE32. + */ + #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2)) + +/* + * Force direct memory access. Only works on CPU which support unaligned memory + * access in hardware. + */ +static xxh_u32 XXH_read32(const void *memPtr) { + + return *(const xxh_u32 *)memPtr; + +} + + #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1)) + + /* + * __pack instructions are safer but compiler specific, hence potentially + * problematic for some compilers. + * + * Currently only defined for GCC and ICC. + */ + #ifdef XXH_OLD_NAMES +typedef union { + + xxh_u32 u32; + +} __attribute__((packed)) unalign; + + #endif +static xxh_u32 XXH_read32(const void *ptr) { + + typedef union { + + xxh_u32 u32; + + } __attribute__((packed)) xxh_unalign; + + return ((const xxh_unalign *)ptr)->u32; + +} + + #else + +/* + * Portable and safe solution. Generally efficient. + * see: https://stackoverflow.com/a/32095106/646947 + */ +static xxh_u32 XXH_read32(const void *memPtr) { + + xxh_u32 val; + memcpy(&val, memPtr, sizeof(val)); + return val; + +} + + #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ + +/* *** Endianess *** */ +typedef enum { XXH_bigEndian = 0, XXH_littleEndian = 1 } XXH_endianess; + + /*! + * XXH_CPU_LITTLE_ENDIAN: + * Defined to 1 if the target is little endian, or 0 if it is big endian. + * It can be defined externally, for example on the compiler command line. + * + * If it is not defined, a runtime check (which is usually constant folded) + * is used instead. + */ + #ifndef XXH_CPU_LITTLE_ENDIAN + /* + * Try to detect endianness automatically, to avoid the nonstandard behavior + * in `XXH_isLittleEndian()` + */ + #if defined(_WIN32) /* Windows is always little endian */ \ + || defined(__LITTLE_ENDIAN__) || \ + (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) + #define XXH_CPU_LITTLE_ENDIAN 1 + #elif defined(__BIG_ENDIAN__) || \ + (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) + #define XXH_CPU_LITTLE_ENDIAN 0 + #else +/* + * runtime test, presumed to simplify to a constant by compiler + */ +static int XXH_isLittleEndian(void) { + + /* + * Portable and well-defined behavior. + * Don't use static: it is detrimental to performance. + */ + const union { + + xxh_u32 u; + xxh_u8 c[4]; + + } one = {1}; + + return one.c[0]; + +} +\ + #define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() + #endif + #endif + + /* **************************************** + * Compiler-specific Functions and Macros + ******************************************/ + #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) + + #ifdef __has_builtin + #define XXH_HAS_BUILTIN(x) __has_builtin(x) + #else + #define XXH_HAS_BUILTIN(x) 0 + #endif + + #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) && \ + XXH_HAS_BUILTIN(__builtin_rotateleft64) + #define XXH_rotl32 __builtin_rotateleft32 + #define XXH_rotl64 __builtin_rotateleft64 + /* Note: although _rotl exists for minGW (GCC under windows), performance + * seems poor */ + #elif defined(_MSC_VER) + #define XXH_rotl32(x, r) _rotl(x, r) + #define XXH_rotl64(x, r) _rotl64(x, r) + #else + #define XXH_rotl32(x, r) (((x) << (r)) | ((x) >> (32 - (r)))) + #define XXH_rotl64(x, r) (((x) << (r)) | ((x) >> (64 - (r)))) + #endif + + #if defined(_MSC_VER) /* Visual Studio */ + #define XXH_swap32 _byteswap_ulong + #elif XXH_GCC_VERSION >= 403 + #define XXH_swap32 __builtin_bswap32 + #else +static xxh_u32 XXH_swap32(xxh_u32 x) { + + return ((x << 24) & 0xff000000) | ((x << 8) & 0x00ff0000) | + ((x >> 8) & 0x0000ff00) | ((x >> 24) & 0x000000ff); + +} + + #endif + +/* *************************** + * Memory reads + *****************************/ +typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; + + /* + * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. + * + * This is ideal for older compilers which don't inline memcpy. + */ + #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3)) + +XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void *memPtr) { + + const xxh_u8 *bytePtr = (const xxh_u8 *)memPtr; + return bytePtr[0] | ((xxh_u32)bytePtr[1] << 8) | ((xxh_u32)bytePtr[2] << 16) | + ((xxh_u32)bytePtr[3] << 24); + +} + +XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void *memPtr) { + + const xxh_u8 *bytePtr = (const xxh_u8 *)memPtr; + return bytePtr[3] | ((xxh_u32)bytePtr[2] << 8) | ((xxh_u32)bytePtr[1] << 16) | + ((xxh_u32)bytePtr[0] << 24); + +} + + #else +XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void *ptr) { + + return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); + +} + +static xxh_u32 XXH_readBE32(const void *ptr) { + + return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); + +} + + #endif + +XXH_FORCE_INLINE xxh_u32 XXH_readLE32_align(const void * ptr, + XXH_alignment align) { + + if (align == XXH_unaligned) { + + return XXH_readLE32(ptr); + + } else { + + return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32 *)ptr + : XXH_swap32(*(const xxh_u32 *)ptr); + + } + +} + +/* ************************************* + * Misc + ***************************************/ +XXH_PUBLIC_API unsigned XXH_versionNumber(void) { + + return XXH_VERSION_NUMBER; + +} + +/* ******************************************************************* + * 32-bit hash functions + *********************************************************************/ +static const xxh_u32 XXH_PRIME32_1 = + 0x9E3779B1U; /* 0b10011110001101110111100110110001 */ +static const xxh_u32 XXH_PRIME32_2 = + 0x85EBCA77U; /* 0b10000101111010111100101001110111 */ +static const xxh_u32 XXH_PRIME32_3 = + 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */ +static const xxh_u32 XXH_PRIME32_4 = + 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */ +static const xxh_u32 XXH_PRIME32_5 = + 0x165667B1U; /* 0b00010110010101100110011110110001 */ + + #ifdef XXH_OLD_NAMES + #define PRIME32_1 XXH_PRIME32_1 + #define PRIME32_2 XXH_PRIME32_2 + #define PRIME32_3 XXH_PRIME32_3 + #define PRIME32_4 XXH_PRIME32_4 + #define PRIME32_5 XXH_PRIME32_5 + #endif + +static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) { + + acc += input * XXH_PRIME32_2; + acc = XXH_rotl32(acc, 13); + acc *= XXH_PRIME32_1; + #if defined(__GNUC__) && defined(__SSE4_1__) && \ + !defined(XXH_ENABLE_AUTOVECTORIZE) + /* + * UGLY HACK: + * This inline assembly hack forces acc into a normal register. This is the + * only thing that prevents GCC and Clang from autovectorizing the XXH32 + * loop (pragmas and attributes don't work for some resason) without globally + * disabling SSE4.1. + * + * The reason we want to avoid vectorization is because despite working on + * 4 integers at a time, there are multiple factors slowing XXH32 down on + * SSE4: + * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on + * newer chips!) making it slightly slower to multiply four integers at + * once compared to four integers independently. Even when pmulld was + * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE + * just to multiply unless doing a long operation. + * + * - Four instructions are required to rotate, + * movqda tmp, v // not required with VEX encoding + * pslld tmp, 13 // tmp <<= 13 + * psrld v, 19 // x >>= 19 + * por v, tmp // x |= tmp + * compared to one for scalar: + * roll v, 13 // reliably fast across the board + * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason + * + * - Instruction level parallelism is actually more beneficial here because + * the SIMD actually serializes this operation: While v1 is rotating, v2 + * can load data, while v3 can multiply. SSE forces them to operate + * together. + * + * How this hack works: + * __asm__("" // Declare an assembly block but don't declare any + * instructions : // However, as an Input/Output Operand, + * "+r" // constrain a read/write operand (+) as a general purpose + * register (r). (acc) // and set acc as the operand + * ); + * + * Because of the 'r', the compiler has promised that seed will be in a + * general purpose register and the '+' says that it will be 'read/write', + * so it has to assume it has changed. It is like volatile without all the + * loads and stores. + * + * Since the argument has to be in a normal register (not an SSE register), + * each time XXH32_round is called, it is impossible to vectorize. + */ + __asm__("" : "+r"(acc)); + #endif + return acc; + +} + +/* mix all bits */ +static xxh_u32 XXH32_avalanche(xxh_u32 h32) { + + h32 ^= h32 >> 15; + h32 *= XXH_PRIME32_2; + h32 ^= h32 >> 13; + h32 *= XXH_PRIME32_3; + h32 ^= h32 >> 16; + return (h32); + +} + + #define XXH_get32bits(p) XXH_readLE32_align(p, align) + +static xxh_u32 XXH32_finalize(xxh_u32 h32, const xxh_u8 *ptr, size_t len, + XXH_alignment align) { +\ + #define XXH_PROCESS1 \ + do { \ + \ + h32 += (*ptr++) * XXH_PRIME32_5; \ + h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \ + \ + } while (0) + + #define XXH_PROCESS4 \ + do { \ + \ + h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \ + ptr += 4; \ + h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \ + \ + } while (0) + + /* Compact rerolled version */ + if (XXH_REROLL) { + + len &= 15; + while (len >= 4) { + + XXH_PROCESS4; + len -= 4; + + } + + while (len > 0) { + + XXH_PROCESS1; + --len; + + } + + return XXH32_avalanche(h32); + + } else { + + switch (len & 15) /* or switch(bEnd - p) */ { + + case 12: + XXH_PROCESS4; + /* fallthrough */ + case 8: + XXH_PROCESS4; + /* fallthrough */ + case 4: + XXH_PROCESS4; + return XXH32_avalanche(h32); + + case 13: + XXH_PROCESS4; + /* fallthrough */ + case 9: + XXH_PROCESS4; + /* fallthrough */ + case 5: + XXH_PROCESS4; + XXH_PROCESS1; + return XXH32_avalanche(h32); + + case 14: + XXH_PROCESS4; + /* fallthrough */ + case 10: + XXH_PROCESS4; + /* fallthrough */ + case 6: + XXH_PROCESS4; + XXH_PROCESS1; + XXH_PROCESS1; + return XXH32_avalanche(h32); + + case 15: + XXH_PROCESS4; + /* fallthrough */ + case 11: + XXH_PROCESS4; + /* fallthrough */ + case 7: + XXH_PROCESS4; + /* fallthrough */ + case 3: + XXH_PROCESS1; + /* fallthrough */ + case 2: + XXH_PROCESS1; + /* fallthrough */ + case 1: + XXH_PROCESS1; + /* fallthrough */ + case 0: + return XXH32_avalanche(h32); + + } + + XXH_ASSERT(0); + return h32; /* reaching this point is deemed impossible */ + + } + +} + + #ifdef XXH_OLD_NAMES + #define PROCESS1 XXH_PROCESS1 + #define PROCESS4 XXH_PROCESS4 + #else + #undef XXH_PROCESS1 + #undef XXH_PROCESS4 + #endif + +XXH_FORCE_INLINE xxh_u32 XXH32_endian_align(const xxh_u8 *input, size_t len, + xxh_u32 seed, XXH_alignment align) { + + const xxh_u8 *bEnd = input + len; + xxh_u32 h32; + + #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ + (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) + if (input == NULL) { + + len = 0; + bEnd = input = (const xxh_u8 *)(size_t)16; + + } + + #endif + + if (len >= 16) { + + const xxh_u8 *const limit = bEnd - 15; + xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; + xxh_u32 v2 = seed + XXH_PRIME32_2; + xxh_u32 v3 = seed + 0; + xxh_u32 v4 = seed - XXH_PRIME32_1; + + do { + + v1 = XXH32_round(v1, XXH_get32bits(input)); + input += 4; + v2 = XXH32_round(v2, XXH_get32bits(input)); + input += 4; + v3 = XXH32_round(v3, XXH_get32bits(input)); + input += 4; + v4 = XXH32_round(v4, XXH_get32bits(input)); + input += 4; + + } while (input < limit); + + h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + + XXH_rotl32(v4, 18); + + } else { + + h32 = seed + XXH_PRIME32_5; + + } + + h32 += (xxh_u32)len; + + return XXH32_finalize(h32, input, len & 15, align); + +} + +XXH_PUBLIC_API XXH32_hash_t XXH32(const void *input, size_t len, + XXH32_hash_t seed) { + + #if 0 + /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ + XXH32_state_t state; + XXH32_reset(&state, seed); + XXH32_update(&state, (const xxh_u8*)input, len); + return XXH32_digest(&state); + + #else + + if (XXH_FORCE_ALIGN_CHECK) { + + if ((((size_t)input) & 3) == + 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ + return XXH32_endian_align((const xxh_u8 *)input, len, seed, XXH_aligned); + + } + + } + + return XXH32_endian_align((const xxh_u8 *)input, len, seed, XXH_unaligned); + #endif + +} + +/******* Hash streaming *******/ + +XXH_PUBLIC_API XXH32_state_t *XXH32_createState(void) { + + return (XXH32_state_t *)XXH_malloc(sizeof(XXH32_state_t)); + +} + +XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t *statePtr) { + + XXH_free(statePtr); + return XXH_OK; + +} + +XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t * dstState, + const XXH32_state_t *srcState) { + + memcpy(dstState, srcState, sizeof(*dstState)); + +} + +XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t *statePtr, + XXH32_hash_t seed) { + + XXH32_state_t state; /* using a local state to memcpy() in order to avoid + strict-aliasing warnings */ + memset(&state, 0, sizeof(state)); + state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; + state.v2 = seed + XXH_PRIME32_2; + state.v3 = seed + 0; + state.v4 = seed - XXH_PRIME32_1; + /* do not write into reserved, planned to be removed in a future version */ + memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); + return XXH_OK; + +} + +XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t *state, + const void *input, size_t len) { + + if (input == NULL) + #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ + (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) + return XXH_OK; + #else + return XXH_ERROR; + #endif + + { + + const xxh_u8 * p = (const xxh_u8 *)input; + const xxh_u8 *const bEnd = p + len; + + state->total_len_32 += (XXH32_hash_t)len; + state->large_len |= + (XXH32_hash_t)((len >= 16) | (state->total_len_32 >= 16)); + + if (state->memsize + len < 16) { /* fill in tmp buffer */ + XXH_memcpy((xxh_u8 *)(state->mem32) + state->memsize, input, len); + state->memsize += (XXH32_hash_t)len; + return XXH_OK; + + } + + if (state->memsize) { /* some data left from previous update */ + XXH_memcpy((xxh_u8 *)(state->mem32) + state->memsize, input, + 16 - state->memsize); + { + + const xxh_u32 *p32 = state->mem32; + state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); + p32++; + state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); + p32++; + state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); + p32++; + state->v4 = XXH32_round(state->v4, XXH_readLE32(p32)); + + } + + p += 16 - state->memsize; + state->memsize = 0; + + } + + if (p <= bEnd - 16) { + + const xxh_u8 *const limit = bEnd - 16; + xxh_u32 v1 = state->v1; + xxh_u32 v2 = state->v2; + xxh_u32 v3 = state->v3; + xxh_u32 v4 = state->v4; + + do { + + v1 = XXH32_round(v1, XXH_readLE32(p)); + p += 4; + v2 = XXH32_round(v2, XXH_readLE32(p)); + p += 4; + v3 = XXH32_round(v3, XXH_readLE32(p)); + p += 4; + v4 = XXH32_round(v4, XXH_readLE32(p)); + p += 4; + + } while (p <= limit); + + state->v1 = v1; + state->v2 = v2; + state->v3 = v3; + state->v4 = v4; + + } + + if (p < bEnd) { + + XXH_memcpy(state->mem32, p, (size_t)(bEnd - p)); + state->memsize = (unsigned)(bEnd - p); + + } + + } + + return XXH_OK; + +} + +XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t *state) { + + xxh_u32 h32; + + if (state->large_len) { + + h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); + + } else { + + h32 = state->v3 /* == seed */ + XXH_PRIME32_5; + + } + + h32 += state->total_len_32; + + return XXH32_finalize(h32, (const xxh_u8 *)state->mem32, state->memsize, + XXH_aligned); + +} + +/******* Canonical representation *******/ + +/* + * The default return values from XXH functions are unsigned 32 and 64 bit + * integers. + * + * The canonical representation uses big endian convention, the same convention + * as human-readable numbers (large digits first). + * + * This way, hash values can be written into a file or buffer, remaining + * comparable across different systems. + * + * The following functions allow transformation of hash values to and from their + * canonical format. + */ +XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t *dst, + XXH32_hash_t hash) { + + XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); + if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); + memcpy(dst, &hash, sizeof(*dst)); + +} + +XXH_PUBLIC_API XXH32_hash_t +XXH32_hashFromCanonical(const XXH32_canonical_t *src) { + + return XXH_readBE32(src); + +} + + #ifndef XXH_NO_LONG_LONG + +/* ******************************************************************* + * 64-bit hash functions + *********************************************************************/ + +/******* Memory access *******/ + +typedef XXH64_hash_t xxh_u64; + + #ifdef XXH_OLD_NAMES + #define U64 xxh_u64 + #endif + + /*! + * XXH_REROLL_XXH64: + * Whether to reroll the XXH64_finalize() loop. + * + * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a + * performance gain on 64-bit hosts, as only one jump is required. + * + * However, on 32-bit hosts, because arithmetic needs to be done with two + * 32-bit registers, and 64-bit arithmetic needs to be simulated, it isn't + * beneficial to unroll. The code becomes ridiculously large (the largest + * function in the binary on i386!), and rerolling it saves anywhere from + * 3kB to 20kB. It is also slightly faster because it fits into cache better + * and is more likely to be inlined by the compiler. + * + * If XXH_REROLL is defined, this is ignored and the loop is always + * rerolled. + */ + #ifndef XXH_REROLL_XXH64 + #if (defined(__ILP32__) || \ + defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \ + || !(defined(__x86_64__) || defined(_M_X64) || \ + defined(_M_AMD64) /* x86-64 */ \ + || defined(_M_ARM64) || defined(__aarch64__) || \ + defined(__arm64__) /* aarch64 */ \ + || defined(__PPC64__) || defined(__PPC64LE__) || \ + defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \ + || defined(__mips64__) || defined(__mips64)) /* mips64 */ \ + || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */ + #define XXH_REROLL_XXH64 1 + #else + #define XXH_REROLL_XXH64 0 + #endif + #endif /* !defined(XXH_REROLL_XXH64) */ + + #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3)) + /* + * Manual byteshift. Best for old compilers which don't inline memcpy. + * We actually directly use XXH_readLE64 and XXH_readBE64. + */ + #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2)) + +/* Force direct memory access. Only works on CPU which support unaligned memory + * access in hardware */ +static xxh_u64 XXH_read64(const void *memPtr) { + + return *(const xxh_u64 *)memPtr; + +} + + #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1)) + + /* + * __pack instructions are safer, but compiler specific, hence potentially + * problematic for some compilers. + * + * Currently only defined for GCC and ICC. + */ + #ifdef XXH_OLD_NAMES +typedef union { + + xxh_u32 u32; + xxh_u64 u64; + +} __attribute__((packed)) unalign64; + + #endif +static xxh_u64 XXH_read64(const void *ptr) { + + typedef union { + + xxh_u32 u32; + xxh_u64 u64; + + } __attribute__((packed)) xxh_unalign64; + + return ((const xxh_unalign64 *)ptr)->u64; + +} + + #else + +/* + * Portable and safe solution. Generally efficient. + * see: https://stackoverflow.com/a/32095106/646947 + */ +static xxh_u64 XXH_read64(const void *memPtr) { + + xxh_u64 val; + memcpy(&val, memPtr, sizeof(val)); + return val; + +} + + #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ + + #if defined(_MSC_VER) /* Visual Studio */ + #define XXH_swap64 _byteswap_uint64 + #elif XXH_GCC_VERSION >= 403 + #define XXH_swap64 __builtin_bswap64 + #else +static xxh_u64 XXH_swap64(xxh_u64 x) { + + return ((x << 56) & 0xff00000000000000ULL) | + ((x << 40) & 0x00ff000000000000ULL) | + ((x << 24) & 0x0000ff0000000000ULL) | + ((x << 8) & 0x000000ff00000000ULL) | + ((x >> 8) & 0x00000000ff000000ULL) | + ((x >> 24) & 0x0000000000ff0000ULL) | + ((x >> 40) & 0x000000000000ff00ULL) | + ((x >> 56) & 0x00000000000000ffULL); + +} + + #endif + + /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ + #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3)) + +XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void *memPtr) { + + const xxh_u8 *bytePtr = (const xxh_u8 *)memPtr; + return bytePtr[0] | ((xxh_u64)bytePtr[1] << 8) | ((xxh_u64)bytePtr[2] << 16) | + ((xxh_u64)bytePtr[3] << 24) | ((xxh_u64)bytePtr[4] << 32) | + ((xxh_u64)bytePtr[5] << 40) | ((xxh_u64)bytePtr[6] << 48) | + ((xxh_u64)bytePtr[7] << 56); + +} + +XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void *memPtr) { + + const xxh_u8 *bytePtr = (const xxh_u8 *)memPtr; + return bytePtr[7] | ((xxh_u64)bytePtr[6] << 8) | ((xxh_u64)bytePtr[5] << 16) | + ((xxh_u64)bytePtr[4] << 24) | ((xxh_u64)bytePtr[3] << 32) | + ((xxh_u64)bytePtr[2] << 40) | ((xxh_u64)bytePtr[1] << 48) | + ((xxh_u64)bytePtr[0] << 56); + +} + + #else +XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void *ptr) { + + return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); + +} + +static xxh_u64 XXH_readBE64(const void *ptr) { + + return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); + +} + + #endif + +XXH_FORCE_INLINE xxh_u64 XXH_readLE64_align(const void * ptr, + XXH_alignment align) { + + if (align == XXH_unaligned) + return XXH_readLE64(ptr); + else + return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64 *)ptr + : XXH_swap64(*(const xxh_u64 *)ptr); + +} + +/******* xxh64 *******/ + +static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 + */ +static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 + */ +static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 + */ +static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 + */ +static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 + */ + + #ifdef XXH_OLD_NAMES + #define PRIME64_1 XXH_PRIME64_1 + #define PRIME64_2 XXH_PRIME64_2 + #define PRIME64_3 XXH_PRIME64_3 + #define PRIME64_4 XXH_PRIME64_4 + #define PRIME64_5 XXH_PRIME64_5 + #endif + +static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) { + + acc += input * XXH_PRIME64_2; + acc = XXH_rotl64(acc, 31); + acc *= XXH_PRIME64_1; + return acc; + +} + +static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) { + + val = XXH64_round(0, val); + acc ^= val; + acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; + return acc; + +} + +static xxh_u64 XXH64_avalanche(xxh_u64 h64) { + + h64 ^= h64 >> 33; + h64 *= XXH_PRIME64_2; + h64 ^= h64 >> 29; + h64 *= XXH_PRIME64_3; + h64 ^= h64 >> 32; + return h64; + +} + + #define XXH_get64bits(p) XXH_readLE64_align(p, align) + +static xxh_u64 XXH64_finalize(xxh_u64 h64, const xxh_u8 *ptr, size_t len, + XXH_alignment align) { +\ + #define XXH_PROCESS1_64 \ + do { \ + \ + h64 ^= (*ptr++) * XXH_PRIME64_5; \ + h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; \ + \ + } while (0) + + #define XXH_PROCESS4_64 \ + do { \ + \ + h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; \ + ptr += 4; \ + h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; \ + \ + } while (0) + + #define XXH_PROCESS8_64 \ + do { \ + \ + xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \ + ptr += 8; \ + h64 ^= k1; \ + h64 = XXH_rotl64(h64, 27) * XXH_PRIME64_1 + XXH_PRIME64_4; \ + \ + } while (0) + + /* Rerolled version for 32-bit targets is faster and much smaller. */ + if (XXH_REROLL || XXH_REROLL_XXH64) { + + len &= 31; + while (len >= 8) { + + XXH_PROCESS8_64; + len -= 8; + + } + + if (len >= 4) { + + XXH_PROCESS4_64; + len -= 4; + + } + + while (len > 0) { + + XXH_PROCESS1_64; + --len; + + } + + return XXH64_avalanche(h64); + + } else { + + switch (len & 31) { + + case 24: + XXH_PROCESS8_64; + /* fallthrough */ + case 16: + XXH_PROCESS8_64; + /* fallthrough */ + case 8: + XXH_PROCESS8_64; + return XXH64_avalanche(h64); + + case 28: + XXH_PROCESS8_64; + /* fallthrough */ + case 20: + XXH_PROCESS8_64; + /* fallthrough */ + case 12: + XXH_PROCESS8_64; + /* fallthrough */ + case 4: + XXH_PROCESS4_64; + return XXH64_avalanche(h64); + + case 25: + XXH_PROCESS8_64; + /* fallthrough */ + case 17: + XXH_PROCESS8_64; + /* fallthrough */ + case 9: + XXH_PROCESS8_64; + XXH_PROCESS1_64; + return XXH64_avalanche(h64); + + case 29: + XXH_PROCESS8_64; + /* fallthrough */ + case 21: + XXH_PROCESS8_64; + /* fallthrough */ + case 13: + XXH_PROCESS8_64; + /* fallthrough */ + case 5: + XXH_PROCESS4_64; + XXH_PROCESS1_64; + return XXH64_avalanche(h64); + + case 26: + XXH_PROCESS8_64; + /* fallthrough */ + case 18: + XXH_PROCESS8_64; + /* fallthrough */ + case 10: + XXH_PROCESS8_64; + XXH_PROCESS1_64; + XXH_PROCESS1_64; + return XXH64_avalanche(h64); + + case 30: + XXH_PROCESS8_64; + /* fallthrough */ + case 22: + XXH_PROCESS8_64; + /* fallthrough */ + case 14: + XXH_PROCESS8_64; + /* fallthrough */ + case 6: + XXH_PROCESS4_64; + XXH_PROCESS1_64; + XXH_PROCESS1_64; + return XXH64_avalanche(h64); + + case 27: + XXH_PROCESS8_64; + /* fallthrough */ + case 19: + XXH_PROCESS8_64; + /* fallthrough */ + case 11: + XXH_PROCESS8_64; + XXH_PROCESS1_64; + XXH_PROCESS1_64; + XXH_PROCESS1_64; + return XXH64_avalanche(h64); + + case 31: + XXH_PROCESS8_64; + /* fallthrough */ + case 23: + XXH_PROCESS8_64; + /* fallthrough */ + case 15: + XXH_PROCESS8_64; + /* fallthrough */ + case 7: + XXH_PROCESS4_64; + /* fallthrough */ + case 3: + XXH_PROCESS1_64; + /* fallthrough */ + case 2: + XXH_PROCESS1_64; + /* fallthrough */ + case 1: + XXH_PROCESS1_64; + /* fallthrough */ + case 0: + return XXH64_avalanche(h64); + + } + + } + + /* impossible to reach */ + XXH_ASSERT(0); + return 0; /* unreachable, but some compilers complain without it */ + +} + + #ifdef XXH_OLD_NAMES + #define PROCESS1_64 XXH_PROCESS1_64 + #define PROCESS4_64 XXH_PROCESS4_64 + #define PROCESS8_64 XXH_PROCESS8_64 + #else + #undef XXH_PROCESS1_64 + #undef XXH_PROCESS4_64 + #undef XXH_PROCESS8_64 + #endif + +XXH_FORCE_INLINE xxh_u64 XXH64_endian_align(const xxh_u8 *input, size_t len, + xxh_u64 seed, XXH_alignment align) { + + const xxh_u8 *bEnd = input + len; + xxh_u64 h64; + + #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ + (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) + if (input == NULL) { + + len = 0; + bEnd = input = (const xxh_u8 *)(size_t)32; + + } + + #endif + + if (len >= 32) { + + const xxh_u8 *const limit = bEnd - 32; + xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; + xxh_u64 v2 = seed + XXH_PRIME64_2; + xxh_u64 v3 = seed + 0; + xxh_u64 v4 = seed - XXH_PRIME64_1; + + do { + + v1 = XXH64_round(v1, XXH_get64bits(input)); + input += 8; + v2 = XXH64_round(v2, XXH_get64bits(input)); + input += 8; + v3 = XXH64_round(v3, XXH_get64bits(input)); + input += 8; + v4 = XXH64_round(v4, XXH_get64bits(input)); + input += 8; + + } while (input <= limit); + + h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + + XXH_rotl64(v4, 18); + h64 = XXH64_mergeRound(h64, v1); + h64 = XXH64_mergeRound(h64, v2); + h64 = XXH64_mergeRound(h64, v3); + h64 = XXH64_mergeRound(h64, v4); + + } else { + + h64 = seed + XXH_PRIME64_5; + + } + + h64 += (xxh_u64)len; + + return XXH64_finalize(h64, input, len, align); + +} + +XXH_PUBLIC_API XXH64_hash_t XXH64(const void *input, size_t len, + XXH64_hash_t seed) { + + #if 0 + /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ + XXH64_state_t state; + XXH64_reset(&state, seed); + XXH64_update(&state, (const xxh_u8*)input, len); + return XXH64_digest(&state); + + #else + + if (XXH_FORCE_ALIGN_CHECK) { + + if ((((size_t)input) & 7) == + 0) { /* Input is aligned, let's leverage the speed advantage */ + return XXH64_endian_align((const xxh_u8 *)input, len, seed, XXH_aligned); + + } + + } + + return XXH64_endian_align((const xxh_u8 *)input, len, seed, XXH_unaligned); + + #endif + +} + +/******* Hash Streaming *******/ + +XXH_PUBLIC_API XXH64_state_t *XXH64_createState(void) { + + return (XXH64_state_t *)XXH_malloc(sizeof(XXH64_state_t)); + +} + +XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t *statePtr) { + + XXH_free(statePtr); + return XXH_OK; + +} + +XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t * dstState, + const XXH64_state_t *srcState) { + + memcpy(dstState, srcState, sizeof(*dstState)); + +} + +XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t *statePtr, + XXH64_hash_t seed) { + + XXH64_state_t state; /* use a local state to memcpy() in order to avoid + strict-aliasing warnings */ + memset(&state, 0, sizeof(state)); + state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; + state.v2 = seed + XXH_PRIME64_2; + state.v3 = seed + 0; + state.v4 = seed - XXH_PRIME64_1; + /* do not write into reserved64, might be removed in a future version */ + memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64)); + return XXH_OK; + +} + +XXH_PUBLIC_API XXH_errorcode XXH64_update(XXH64_state_t *state, + const void *input, size_t len) { + + if (input == NULL) + #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ + (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) + return XXH_OK; + #else + return XXH_ERROR; + #endif + + { + + const xxh_u8 * p = (const xxh_u8 *)input; + const xxh_u8 *const bEnd = p + len; + + state->total_len += len; + + if (state->memsize + len < 32) { /* fill in tmp buffer */ + XXH_memcpy(((xxh_u8 *)state->mem64) + state->memsize, input, len); + state->memsize += (xxh_u32)len; + return XXH_OK; + + } + + if (state->memsize) { /* tmp buffer is full */ + XXH_memcpy(((xxh_u8 *)state->mem64) + state->memsize, input, + 32 - state->memsize); + state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64 + 0)); + state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64 + 1)); + state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64 + 2)); + state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64 + 3)); + p += 32 - state->memsize; + state->memsize = 0; + + } + + if (p + 32 <= bEnd) { + + const xxh_u8 *const limit = bEnd - 32; + xxh_u64 v1 = state->v1; + xxh_u64 v2 = state->v2; + xxh_u64 v3 = state->v3; + xxh_u64 v4 = state->v4; + + do { + + v1 = XXH64_round(v1, XXH_readLE64(p)); + p += 8; + v2 = XXH64_round(v2, XXH_readLE64(p)); + p += 8; + v3 = XXH64_round(v3, XXH_readLE64(p)); + p += 8; + v4 = XXH64_round(v4, XXH_readLE64(p)); + p += 8; + + } while (p <= limit); + + state->v1 = v1; + state->v2 = v2; + state->v3 = v3; + state->v4 = v4; + + } + + if (p < bEnd) { + + XXH_memcpy(state->mem64, p, (size_t)(bEnd - p)); + state->memsize = (unsigned)(bEnd - p); + + } + + } + + return XXH_OK; + +} + +XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t *state) { + + xxh_u64 h64; + + if (state->total_len >= 32) { + + xxh_u64 const v1 = state->v1; + xxh_u64 const v2 = state->v2; + xxh_u64 const v3 = state->v3; + xxh_u64 const v4 = state->v4; + + h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + + XXH_rotl64(v4, 18); + h64 = XXH64_mergeRound(h64, v1); + h64 = XXH64_mergeRound(h64, v2); + h64 = XXH64_mergeRound(h64, v3); + h64 = XXH64_mergeRound(h64, v4); + + } else { + + h64 = state->v3 /*seed*/ + XXH_PRIME64_5; + + } + + h64 += (xxh_u64)state->total_len; + + return XXH64_finalize(h64, (const xxh_u8 *)state->mem64, + (size_t)state->total_len, XXH_aligned); + +} + +/******* Canonical representation *******/ + +XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t *dst, + XXH64_hash_t hash) { + + XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); + if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); + memcpy(dst, &hash, sizeof(*dst)); + +} + +XXH_PUBLIC_API XXH64_hash_t +XXH64_hashFromCanonical(const XXH64_canonical_t *src) { + + return XXH_readBE64(src); + +} + + /* ********************************************************************* + * XXH3 + * New generation hash designed for speed on small keys and vectorization + ************************************************************************ */ + + #include "xxh3.h" + + #endif /* XXH_NO_LONG_LONG */ + +#endif /* XXH_IMPLEMENTATION */ + +#if defined(__cplusplus) + +} + +#endif + diff --git a/llvm_mode/afl-llvm-rt.o.c b/llvm_mode/afl-llvm-rt.o.c index 80ffc19f..17b70f26 100644 --- a/llvm_mode/afl-llvm-rt.o.c +++ b/llvm_mode/afl-llvm-rt.o.c @@ -139,7 +139,8 @@ static void __afl_map_shm_fuzz() { } - map = (u8 *)mmap(0, MAX_FILE + sizeof(u32), PROT_READ, MAP_SHARED, shm_fd, 0); + map = + (u8 *)mmap(0, MAX_FILE + sizeof(u32), PROT_READ, MAP_SHARED, shm_fd, 0); #else u32 shm_id = atoi(id_str); diff --git a/src/afl-analyze.c b/src/afl-analyze.c index 900fbeb1..60ea0968 100644 --- a/src/afl-analyze.c +++ b/src/afl-analyze.c @@ -222,7 +222,7 @@ static u32 analyze_run_target(char **argv, u8 *mem, u32 len, u8 first_run) { int status = 0; s32 prog_in_fd; - u32 cksum; + u64 cksum; memset(trace_bits, 0, map_size); MEM_BARRIER(); @@ -321,7 +321,7 @@ static u32 analyze_run_target(char **argv, u8 *mem, u32 len, u8 first_run) { } - cksum = hash32(trace_bits, map_size, HASH_CONST); + cksum = hash64(trace_bits, map_size, HASH_CONST); /* We don't actually care if the target is crashing or not, except that when it does, the checksum should be different. */ diff --git a/src/afl-forkserver.c b/src/afl-forkserver.c index edabe5df..ad482224 100644 --- a/src/afl-forkserver.c +++ b/src/afl-forkserver.c @@ -839,8 +839,9 @@ void afl_fsrv_write_to_testcase(afl_forkserver_t *fsrv, u8 *buf, size_t len) { *fsrv->shmem_fuzz_len = len; memcpy(fsrv->shmem_fuzz, buf, len); #ifdef _DEBUG - fprintf(stderr, "FS crc: %08x len: %u\n", hash32(fsrv->shmem_fuzz, - *fsrv->shmem_fuzz_len, 0xa5b35705), *fsrv->shmem_fuzz_len); + fprintf(stderr, "FS crc: %08x len: %u\n", + hash64(fsrv->shmem_fuzz, *fsrv->shmem_fuzz_len, 0xa5b35705), + *fsrv->shmem_fuzz_len); fprintf(stderr, "SHM :"); for (int i = 0; i < *fsrv->shmem_fuzz_len; i++) fprintf(stderr, "%02x", fsrv->shmem_fuzz[i]); diff --git a/src/afl-fuzz-bitmap.c b/src/afl-fuzz-bitmap.c index 5b98be9e..6075a87e 100644 --- a/src/afl-fuzz-bitmap.c +++ b/src/afl-fuzz-bitmap.c @@ -546,7 +546,7 @@ u8 save_if_interesting(afl_state_t *afl, void *mem, u32 len, u8 fault) { u8 fn[PATH_MAX]; /* Update path frequency. */ - u32 cksum = hash32(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); + u64 cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); struct queue_entry *q = afl->queue; while (q) { diff --git a/src/afl-fuzz-mutators.c b/src/afl-fuzz-mutators.c index 29e10d02..f149bb4c 100644 --- a/src/afl-fuzz-mutators.c +++ b/src/afl-fuzz-mutators.c @@ -272,7 +272,7 @@ u8 trim_case_custom(afl_state_t *afl, struct queue_entry *q, u8 *in_buf, sprintf(afl->stage_name_buf, "ptrim %s", u_stringify_int(val_buf, trim_exec)); - u32 cksum; + u64 cksum; size_t retlen = mutator->afl_custom_trim(mutator->data, &retbuf); @@ -295,7 +295,7 @@ u8 trim_case_custom(afl_state_t *afl, struct queue_entry *q, u8 *in_buf, if (afl->stop_soon || fault == FSRV_RUN_ERROR) { goto abort_trimming; } - cksum = hash32(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); + cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); if (cksum == q->exec_cksum) { diff --git a/src/afl-fuzz-one.c b/src/afl-fuzz-one.c index 4a411e2f..d4083c07 100644 --- a/src/afl-fuzz-one.c +++ b/src/afl-fuzz-one.c @@ -364,8 +364,8 @@ u8 fuzz_one_original(afl_state_t *afl) { s32 len, fd, temp_len, i, j; u8 *in_buf, *out_buf, *orig_in, *ex_tmp, *eff_map = 0; - u64 havoc_queued = 0, orig_hit_cnt, new_hit_cnt = 0; - u32 splice_cycle = 0, perf_score = 100, orig_perf, prev_cksum, eff_cnt = 1; + u64 havoc_queued = 0, orig_hit_cnt, new_hit_cnt = 0, prev_cksum; + u32 splice_cycle = 0, perf_score = 100, orig_perf, eff_cnt = 1; u8 ret_val = 1, doing_det = 0; @@ -653,7 +653,7 @@ u8 fuzz_one_original(afl_state_t *afl) { if (!afl->non_instrumented_mode && (afl->stage_cur & 7) == 7) { - u32 cksum = hash32(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); + u64 cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); if (afl->stage_cur == afl->stage_max - 1 && cksum == prev_cksum) { @@ -821,14 +821,14 @@ u8 fuzz_one_original(afl_state_t *afl) { if (!eff_map[EFF_APOS(afl->stage_cur)]) { - u32 cksum; + u64 cksum; /* If in non-instrumented mode or if the file is very short, just flag everything without wasting time on checksums. */ if (!afl->non_instrumented_mode && len >= EFF_MIN_LEN) { - cksum = hash32(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); + cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); } else { @@ -2539,8 +2539,8 @@ static u8 mopt_common_fuzzing(afl_state_t *afl, MOpt_globals_t MOpt_globals) { s32 len, fd, temp_len, i, j; u8 *in_buf, *out_buf, *orig_in, *ex_tmp, *eff_map = 0; - u64 havoc_queued = 0, orig_hit_cnt, new_hit_cnt = 0, cur_ms_lv; - u32 splice_cycle = 0, perf_score = 100, orig_perf, prev_cksum, eff_cnt = 1; + u64 havoc_queued = 0, orig_hit_cnt, new_hit_cnt = 0, cur_ms_lv, prev_cksum; + u32 splice_cycle = 0, perf_score = 100, orig_perf, eff_cnt = 1; u8 ret_val = 1, doing_det = 0; @@ -2806,7 +2806,7 @@ static u8 mopt_common_fuzzing(afl_state_t *afl, MOpt_globals_t MOpt_globals) { if (!afl->non_instrumented_mode && (afl->stage_cur & 7) == 7) { - u32 cksum = hash32(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); + u64 cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); if (afl->stage_cur == afl->stage_max - 1 && cksum == prev_cksum) { @@ -2974,14 +2974,14 @@ static u8 mopt_common_fuzzing(afl_state_t *afl, MOpt_globals_t MOpt_globals) { if (!eff_map[EFF_APOS(afl->stage_cur)]) { - u32 cksum; + u64 cksum; /* If in non-instrumented mode or if the file is very short, just flag everything without wasting time on checksums. */ if (!afl->non_instrumented_mode && len >= EFF_MIN_LEN) { - cksum = hash32(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); + cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); } else { diff --git a/src/afl-fuzz-redqueen.c b/src/afl-fuzz-redqueen.c index 7621d180..7251550c 100644 --- a/src/afl-fuzz-redqueen.c +++ b/src/afl-fuzz-redqueen.c @@ -89,11 +89,11 @@ static struct range *pop_biggest_range(struct range **ranges) { } -static u8 get_exec_checksum(afl_state_t *afl, u8 *buf, u32 len, u32 *cksum) { +static u8 get_exec_checksum(afl_state_t *afl, u8 *buf, u32 len, u64 *cksum) { if (unlikely(common_fuzz_stuff(afl, buf, len))) { return 1; } - *cksum = hash32(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); + *cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); return 0; } @@ -109,7 +109,7 @@ static void rand_replace(afl_state_t *afl, u8 *buf, u32 len) { } -static u8 colorization(afl_state_t *afl, u8 *buf, u32 len, u32 exec_cksum) { +static u8 colorization(afl_state_t *afl, u8 *buf, u32 len, u64 exec_cksum) { struct range *ranges = add_range(NULL, 0, len); u8 * backup = ck_alloc_nozero(len); @@ -137,7 +137,7 @@ static u8 colorization(afl_state_t *afl, u8 *buf, u32 len, u32 exec_cksum) { memcpy(backup, buf + rng->start, s); rand_replace(afl, buf + rng->start, s); - u32 cksum; + u64 cksum; u64 start_us = get_cur_time_us(); if (unlikely(get_exec_checksum(afl, buf, len, &cksum))) { @@ -695,7 +695,7 @@ static u8 rtn_fuzz(afl_state_t *afl, u32 key, u8 *orig_buf, u8 *buf, u32 len) { // afl->queue_cur->exec_cksum u8 input_to_state_stage(afl_state_t *afl, u8 *orig_buf, u8 *buf, u32 len, - u32 exec_cksum) { + u64 exec_cksum) { u8 r = 1; if (afl->orig_cmp_map == NULL) { diff --git a/src/afl-fuzz-run.c b/src/afl-fuzz-run.c index a85e00fe..b45d0b8a 100644 --- a/src/afl-fuzz-run.c +++ b/src/afl-fuzz-run.c @@ -256,7 +256,7 @@ u8 calibrate_case(afl_state_t *afl, struct queue_entry *q, u8 *use_mem, for (afl->stage_cur = 0; afl->stage_cur < afl->stage_max; ++afl->stage_cur) { - u32 cksum; + u64 cksum; if (!first_run && !(afl->stage_cur % afl->stats_update_freq)) { @@ -281,7 +281,7 @@ u8 calibrate_case(afl_state_t *afl, struct queue_entry *q, u8 *use_mem, } - cksum = hash32(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); + cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); if (q->exec_cksum != cksum) { hnb = has_new_bits(afl, afl->virgin_bits); @@ -646,7 +646,7 @@ u8 trim_case(afl_state_t *afl, struct queue_entry *q, u8 *in_buf) { while (remove_pos < q->len) { u32 trim_avail = MIN(remove_len, q->len - remove_pos); - u32 cksum; + u64 cksum; write_with_gap(afl, in_buf, q->len, remove_pos, trim_avail); @@ -658,7 +658,7 @@ u8 trim_case(afl_state_t *afl, struct queue_entry *q, u8 *in_buf) { /* Note that we don't keep track of crashes or hangs here; maybe TODO? */ - cksum = hash32(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); + cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST); /* If the deletion had no impact on the trace, make it permanent. This isn't perfect for variable-path inputs, but we're just making a diff --git a/src/afl-fuzz.c b/src/afl-fuzz.c index fdc96931..e1401757 100644 --- a/src/afl-fuzz.c +++ b/src/afl-fuzz.c @@ -819,8 +819,14 @@ int main(int argc, char **argv_orig, char **envp) { } - srandom((u32)afl->init_seed); - srand((u32)afl->init_seed); // in case it is a different implementation + if (afl->init_seed) { + afl->rand_seed[0] = afl->init_seed; + afl->rand_seed[1] = afl->init_seed ^ 0x1234567890abcdef; + afl->rand_seed[2] = afl->init_seed & 0x0123456789abcdef; + afl->rand_seed[3] = afl->init_seed | 0x01abcde43f567908; + } + //srandom((u32)afl->init_seed); + //srand((u32)afl->init_seed); // in case it is a different implementation if (afl->use_radamsa) { diff --git a/src/afl-performance.c b/src/afl-performance.c new file mode 100644 index 00000000..a2eca8c9 --- /dev/null +++ b/src/afl-performance.c @@ -0,0 +1,135 @@ +/* Written in 2019 by David Blackman and Sebastiano Vigna (vigna@acm.org) + +To the extent possible under law, the author has dedicated all copyright +and related and neighboring rights to this software to the public domain +worldwide. This software is distributed without any warranty. + +See <http://creativecommons.org/publicdomain/zero/1.0/>. + + This is xoshiro256++ 1.0, one of our all-purpose, rock-solid generators. + It has excellent (sub-ns) speed, a state (256 bits) that is large + enough for any parallel application, and it passes all tests we are + aware of. + + For generating just floating-point numbers, xoshiro256+ is even faster. + + The state must be seeded so that it is not everywhere zero. If you have + a 64-bit seed, we suggest to seed a splitmix64 generator and use its + output to fill s. */ + +#include <stdint.h> +#include "afl-fuzz.h" +#include "types.h" +#include "xxh3.h" + +static inline uint64_t rotl(const uint64_t x, int k) { + + return (x << k) | (x >> (64 - k)); + +} + +uint64_t rand_next(afl_state_t *afl) { + + const uint64_t result = + rotl(afl->rand_seed[0] + afl->rand_seed[3], 23) + afl->rand_seed[0]; + + const uint64_t t = afl->rand_seed[1] << 17; + + afl->rand_seed[2] ^= afl->rand_seed[0]; + afl->rand_seed[3] ^= afl->rand_seed[1]; + afl->rand_seed[1] ^= afl->rand_seed[2]; + afl->rand_seed[0] ^= afl->rand_seed[3]; + + afl->rand_seed[2] ^= t; + + afl->rand_seed[3] = rotl(afl->rand_seed[3], 45); + + return result; + +} + +/* This is the jump function for the generator. It is equivalent + to 2^128 calls to rand_next(); it can be used to generate 2^128 + non-overlapping subsequences for parallel computations. */ + +void jump(afl_state_t *afl) { + + static const uint64_t JUMP[] = {0x180ec6d33cfd0aba, 0xd5a61266f0c9392c, + 0xa9582618e03fc9aa, 0x39abdc4529b1661c}; + + uint64_t s0 = 0; + uint64_t s1 = 0; + uint64_t s2 = 0; + uint64_t s3 = 0; + for (int i = 0; i < sizeof JUMP / sizeof *JUMP; i++) + for (int b = 0; b < 64; b++) { + + if (JUMP[i] & UINT64_C(1) << b) { + + s0 ^= afl->rand_seed[0]; + s1 ^= afl->rand_seed[1]; + s2 ^= afl->rand_seed[2]; + s3 ^= afl->rand_seed[3]; + + } + + rand_next(afl); + + } + + afl->rand_seed[0] = s0; + afl->rand_seed[1] = s1; + afl->rand_seed[2] = s2; + afl->rand_seed[3] = s3; + +} + +/* This is the long-jump function for the generator. It is equivalent to + 2^192 calls to rand_next(); it can be used to generate 2^64 starting points, + from each of which jump() will generate 2^64 non-overlapping + subsequences for parallel distributed computations. */ + +void long_jump(afl_state_t *afl) { + + static const uint64_t LONG_JUMP[] = {0x76e15d3efefdcbbf, 0xc5004e441c522fb3, + 0x77710069854ee241, 0x39109bb02acbe635}; + + uint64_t s0 = 0; + uint64_t s1 = 0; + uint64_t s2 = 0; + uint64_t s3 = 0; + for (int i = 0; i < sizeof LONG_JUMP / sizeof *LONG_JUMP; i++) + for (int b = 0; b < 64; b++) { + + if (LONG_JUMP[i] & UINT64_C(1) << b) { + + s0 ^= afl->rand_seed[0]; + s1 ^= afl->rand_seed[1]; + s2 ^= afl->rand_seed[2]; + s3 ^= afl->rand_seed[3]; + + } + + rand_next(afl); + + } + + afl->rand_seed[0] = s0; + afl->rand_seed[1] = s1; + afl->rand_seed[2] = s2; + afl->rand_seed[3] = s3; + +} + +u32 hash32(const void *key, u32 len, u32 seed) { + + return XXH64(key, len, seed) % 0x100000000; + +} + +u64 hash64(const void *key, u32 len, u64 seed) { + + return XXH64(key, len, seed); + +} + diff --git a/src/afl-tmin.c b/src/afl-tmin.c index 091e5177..13fee660 100644 --- a/src/afl-tmin.c +++ b/src/afl-tmin.c @@ -300,7 +300,7 @@ static u8 tmin_run_target(afl_forkserver_t *fsrv, char **argv, u8 *mem, u32 len, if (ret == FSRV_RUN_NOINST) { FATAL("Binary not instrumented?"); } - u32 cksum = hash32(fsrv->trace_bits, fsrv->map_size, HASH_CONST); + u64 cksum = hash64(fsrv->trace_bits, fsrv->map_size, HASH_CONST); if (first_run) { orig_cksum = cksum; } |