diff options
Diffstat (limited to 'README.md')
-rw-r--r-- | README.md | 65 |
1 files changed, 57 insertions, 8 deletions
diff --git a/README.md b/README.md index d60253b3..cbbeb85f 100644 --- a/README.md +++ b/README.md @@ -2,8 +2,6 @@ <img align="right" src="https://raw.githubusercontent.com/andreafioraldi/AFLplusplus-website/master/static/logo_256x256.png" alt="AFL++ Logo"> -  - Release Version: [3.00c](https://github.com/AFLplusplus/AFLplusplus/releases) Github Version: 3.01a @@ -31,10 +29,10 @@ With afl++ 3.0 we introduced changes that break some previous afl and afl++ behaviours and defaults: * There are no llvm_mode and gcc_plugin subdirectories anymore and there is - only one compiler: afl-cc. All previous compilers now symlink to this. + only one compiler: afl-cc. All previous compilers now symlink to this one. All instrumentation source code is now in the `instrumentation/` folder. * The gcc_plugin was replaced with a new version submitted by AdaCore that - supports more features. thank you! + supports more features. Thank you! * qemu_mode got upgraded to QEMU 5.1, but to be able to build this a current ninja build tool version and python3 setuptools are required. qemu_mode also got new options like snapshotting, instrumenting specific @@ -55,6 +53,7 @@ behaviours and defaults: * a caching of testcases can now be performed and can be modified by editing config.h for TESTCASE_CACHE or by specifying the env variable `AFL_TESTCACHE_SIZE` (in MB). Good values are between 50-500 (default: 50). + * -M mains do not perform trimming * examples/ got renamed to utils/ * libtokencap/ libdislocator/ and qdbi_mode/ were moved to utils/ * afl-cmin/afl-cmin.bash now search first in PATH and last in AFL_PATH @@ -67,9 +66,10 @@ behaviours and defaults: 3. [How to fuzz a target](#how-to-fuzz-with-afl) 4. [Fuzzing binary-only targets](#fuzzing-binary-only-targets) 5. [Good examples and writeups of afl++ usages](#good-examples-and-writeups) - 6. [Branches](#branches) - 7. [Want to help?](#help-wanted) - 8. [Detailed help and description of afl++](#challenges-of-guided-fuzzing) + 6. [CI Fuzzing](#ci-fuzzing) + 7. [Branches](#branches) + 8. [Want to help?](#help-wanted) + 9. [Detailed help and description of afl++](#challenges-of-guided-fuzzing) ## Important features of afl++ @@ -689,6 +689,9 @@ If you want to know more, the rest of this README and the tons of texts in Note that there are also a lot of tools out there that help fuzzing with afl++ (some might be deprecated or unsupported): +Speeding up fuzzing: + * [libfiowrapper](https://github.com/marekzmyslowski/libfiowrapper) - if the function you want to fuzz requires loading a file, this allows using the shared memory testcase feature :-) - recommended. + Minimization of test cases: * [afl-pytmin](https://github.com/ilsani/afl-pytmin) - a wrapper for afl-tmin that tries to speed up the process of minimization of a single test case by using many CPU cores. * [afl-ddmin-mod](https://github.com/MarkusTeufelberger/afl-ddmin-mod) - a variation of afl-tmin based on the ddmin algorithm. @@ -718,11 +721,53 @@ Crash processing * [AFLize](https://github.com/d33tah/aflize) - a tool that automatically generates builds of debian packages suitable for AFL. * [afl-fid](https://github.com/FoRTE-Research/afl-fid) - a set of tools for working with input data. +## CI Fuzzing + +Some notes on CI Fuzzing - this fuzzing is different to normal fuzzing +campaigns as these are much shorter runnings. + +1. Always: + * LTO has a much longer compile time which is diametrical to short fuzzing - + hence use afl-clang-fast instead. + * If you compile with CMPLOG then you can save fuzzing time and reuse that + compiled target for both the -c option and the main fuzz target. + This will impact the speed by ~15% though. + * `AFL_FAST_CAL` - Enable fast calibration, this halfs the time the saturated + corpus needs to be loaded. + * `AFL_CMPLOG_ONLY_NEW` - only perform cmplog on new found paths, not the + initial corpus as this very likely has been done for them already. + * Keep the generated corpus, use afl-cmin and reuse it everytime! + +2. Additionally randomize the afl++ compilation options, e.g. + * 40% for `AFL_LLVM_CMPLOG` + * 10% for `AFL_LLVM_LAF_ALL` + +3. Also randomize the afl-fuzz runtime options, e.g. + * 60% for `AFL_DISABLE_TRIM` + * 50% use a dictionary generated by `AFL_LLVM_DICT2FILE` + * 50% use MOpt (`-L 0`) + * 40% for `AFL_EXPAND_HAVOC_NOW` + * 30% for old queue processing (`-Z`) + * for CMPLOG targets, 60% for `-l 2`, 40% for `-l 3` + +4. Do *not* run any `-M` modes, just running `-S` modes is better for CI fuzzing. + ## Fuzzing binary-only targets When source code is *NOT* available, afl++ offers various support for fast, on-the-fly instrumentation of black-box binaries. +If you do not have to use Unicorn the following setup is recommended: + * run 1 afl-fuzz -Q instance with CMPLOG (`-c 0` + `AFL_COMPCOV_LEVEL=2`) + * run 1 afl-fuzz -Q instance with QASAN (`AFL_USE_QASAN=1`) + * run 1 afl-fuzz -Q instance with LAF (``AFL_PRELOAD=libcmpcov.so` + `AFL_COMPCOV_LEVEL=2`) + +Then run as many instances as you have cores left with either -Q mode or - better - +use a binary rewriter like afl-dyninst, retrowrite, zipr, fibre, etc. + +For Qemu mode, check out the persistent mode and snapshot features, they give +a huge speed improvement! + ### QEMU For linux programs and its libraries this is accomplished with a version of @@ -733,7 +778,8 @@ feature by doing: cd qemu_mode ./build_qemu_support.sh ``` -For additional instructions and caveats, see [qemu_mode/README.md](qemu_mode/README.md). +For additional instructions and caveats, see [qemu_mode/README.md](qemu_mode/README.md) - +check out the snapshot feature! :-) If possible you should use the persistent mode, see [qemu_mode/README.persistent.md](qemu_mode/README.persistent.md). The mode is approximately 2-5x slower than compile-time instrumentation, and is less conducive to parallelization. @@ -741,6 +787,9 @@ less conducive to parallelization. If [afl-dyninst](https://github.com/vanhauser-thc/afl-dyninst) works for your binary, then you can use afl-fuzz normally and it will have twice the speed compared to qemu_mode (but slower than persistent mode). +Note that several other binary rewriters exist, all with their advantages and +caveats. As rewriting a binary is much faster than Qemu this is a highly +recommended approach! ### Unicorn |