diff options
Diffstat (limited to 'docs/fuzzing_expert.md')
-rw-r--r-- | docs/fuzzing_expert.md | 628 |
1 files changed, 628 insertions, 0 deletions
diff --git a/docs/fuzzing_expert.md b/docs/fuzzing_expert.md new file mode 100644 index 00000000..ca884159 --- /dev/null +++ b/docs/fuzzing_expert.md @@ -0,0 +1,628 @@ +# Fuzzing with AFL++ + +The following describes how to fuzz with a target if source code is available. +If you have a binary-only target please skip to [#Instrumenting binary-only apps](#Instrumenting binary-only apps) + +Fuzzing source code is a three-step process. + +1. Compile the target with a special compiler that prepares the target to be + fuzzed efficiently. This step is called "instrumenting a target". +2. Prepare the fuzzing by selecting and optimizing the input corpus for the + target. +3. Perform the fuzzing of the target by randomly mutating input and assessing + if a generated input was processed in a new path in the target binary. + +### 1. Instrumenting that target + +#### a) Selecting the best AFL++ compiler for instrumenting the target + +AFL++ comes with a central compiler `afl-cc` that incorporates various different +kinds of compiler targets and and instrumentation options. +The following evaluation flow will help you to select the best possible. + +It is highly recommended to have the newest llvm version possible installed, +anything below 9 is not recommended. + +``` ++--------------------------------+ +| clang/clang++ 11+ is available | --> use LTO mode (afl-clang-lto/afl-clang-lto++) ++--------------------------------+ see [instrumentation/README.lto.md](instrumentation/README.lto.md) + | + | if not, or if the target fails with LTO afl-clang-lto/++ + | + v ++---------------------------------+ +| clang/clang++ 3.8+ is available | --> use LLVM mode (afl-clang-fast/afl-clang-fast++) ++---------------------------------+ see [instrumentation/README.llvm.md](instrumentation/README.llvm.md) + | + | if not, or if the target fails with LLVM afl-clang-fast/++ + | + v + +--------------------------------+ + | gcc 5+ is available | -> use GCC_PLUGIN mode (afl-gcc-fast/afl-g++-fast) + +--------------------------------+ see [instrumentation/README.gcc_plugin.md](instrumentation/README.gcc_plugin.md) and + [instrumentation/README.instrument_list.md](instrumentation/README.instrument_list.md) + | + | if not, or if you do not have a gcc with plugin support + | + v + use GCC mode (afl-gcc/afl-g++) (or afl-clang/afl-clang++ for clang) +``` + +Clickable README links for the chosen compiler: + + * [LTO mode - afl-clang-lto](../instrumentation/README.lto.md) + * [LLVM mode - afl-clang-fast](../instrumentation/README.llvm.md) + * [GCC_PLUGIN mode - afl-gcc-fast](../instrumentation/README.gcc_plugin.md) + * GCC/CLANG modes (afl-gcc/afl-clang) have no README as they have no own features + +You can select the mode for the afl-cc compiler by: + 1. use a symlink to afl-cc: afl-gcc, afl-g++, afl-clang, afl-clang++, + afl-clang-fast, afl-clang-fast++, afl-clang-lto, afl-clang-lto++, + afl-gcc-fast, afl-g++-fast (recommended!) + 2. using the environment variable AFL_CC_COMPILER with MODE + 3. passing --afl-MODE command line options to the compiler via CFLAGS/CXXFLAGS/CPPFLAGS + +MODE can be one of: LTO (afl-clang-lto*), LLVM (afl-clang-fast*), GCC_PLUGIN +(afl-g*-fast) or GCC (afl-gcc/afl-g++) or CLANG(afl-clang/afl-clang++). + +Because no AFL specific command-line options are accepted (beside the +--afl-MODE command), the compile-time tools make fairly broad use of environment +variables, which can be listed with `afl-cc -hh` or by reading [env_variables.md](env_variables.md). + +#### b) Selecting instrumentation options + +The following options are available when you instrument with LTO mode (afl-clang-fast/afl-clang-lto): + + * Splitting integer, string, float and switch comparisons so AFL++ can easier + solve these. This is an important option if you do not have a very good + and large input corpus. This technique is called laf-intel or COMPCOV. + To use this set the following environment variable before compiling the + target: `export AFL_LLVM_LAF_ALL=1` + You can read more about this in [instrumentation/README.laf-intel.md](../instrumentation/README.laf-intel.md) + * A different technique (and usually a better one than laf-intel) is to + instrument the target so that any compare values in the target are sent to + AFL++ which then tries to put these values into the fuzzing data at different + locations. This technique is very fast and good - if the target does not + transform input data before comparison. Therefore this technique is called + `input to state` or `redqueen`. + If you want to use this technique, then you have to compile the target + twice, once specifically with/for this mode, and pass this binary to afl-fuzz + via the `-c` parameter. + Note that you can compile also just a cmplog binary and use that for both + however there will be a performance penality. + You can read more about this in [instrumentation/README.cmplog.md](../instrumentation/README.cmplog.md) + +If you use LTO, LLVM or GCC_PLUGIN mode (afl-clang-fast/afl-clang-lto/afl-gcc-fast) +you have the option to selectively only instrument parts of the target that you +are interested in: + + * To instrument only those parts of the target that you are interested in + create a file with all the filenames of the source code that should be + instrumented. + For afl-clang-lto and afl-gcc-fast - or afl-clang-fast if a mode other than + DEFAULT/PCGUARD is used or you have llvm > 10.0.0 - just put one + filename or function per line (no directory information necessary for + filenames9, and either set `export AFL_LLVM_ALLOWLIST=allowlist.txt` **or** + `export AFL_LLVM_DENYLIST=denylist.txt` - depending on if you want per + default to instrument unless noted (DENYLIST) or not perform instrumentation + unless requested (ALLOWLIST). + **NOTE:** During optimization functions might be inlined and then would not match! + See [instrumentation/README.instrument_list.md](../instrumentation/README.instrument_list.md) + +There are many more options and modes available however these are most of the +time less effective. See: + * [instrumentation/README.ctx.md](../instrumentation/README.ctx.md) + * [instrumentation/README.ngram.md](../instrumentation/README.ngram.md) + +AFL++ performs "never zero" counting in its bitmap. You can read more about this +here: + * [instrumentation/README.neverzero.md](../instrumentation/README.neverzero.md) + +#### c) Sanitizers + +It is possible to use sanitizers when instrumenting targets for fuzzing, +which allows you to find bugs that would not necessarily result in a crash. + +Note that sanitizers have a huge impact on CPU (= less executions per second) +and RAM usage. Also you should only run one afl-fuzz instance per sanitizer type. +This is enough because a use-after-free bug will be picked up, e.g. by +ASAN (address sanitizer) anyway when syncing to other fuzzing instances, +so not all fuzzing instances need to be instrumented with ASAN. + +The following sanitizers have built-in support in AFL++: + * ASAN = Address SANitizer, finds memory corruption vulnerabilities like + use-after-free, NULL pointer dereference, buffer overruns, etc. + Enabled with `export AFL_USE_ASAN=1` before compiling. + * MSAN = Memory SANitizer, finds read access to uninitialized memory, eg. + a local variable that is defined and read before it is even set. + Enabled with `export AFL_USE_MSAN=1` before compiling. + * UBSAN = Undefined Behaviour SANitizer, finds instances where - by the + C and C++ standards - undefined behaviour happens, e.g. adding two + signed integers together where the result is larger than a signed integer + can hold. + Enabled with `export AFL_USE_UBSAN=1` before compiling. + * CFISAN = Control Flow Integrity SANitizer, finds instances where the + control flow is found to be illegal. Originally this was rather to + prevent return oriented programming exploit chains from functioning, + in fuzzing this is mostly reduced to detecting type confusion + vulnerabilities - which is however one of the most important and dangerous + C++ memory corruption classes! + Enabled with `export AFL_USE_CFISAN=1` before compiling. + * LSAN = Leak SANitizer, finds memory leaks in a program. This is not really + a security issue, but for developers this can be very valuable. + Note that unlike the other sanitizers above this needs + `__AFL_LEAK_CHECK();` added to all areas of the target source code where you + find a leak check necessary! + Enabled with `export AFL_USE_LSAN=1` before compiling. + +It is possible to further modify the behaviour of the sanitizers at run-time +by setting `ASAN_OPTIONS=...`, `LSAN_OPTIONS` etc. - the available parameters +can be looked up in the sanitizer documentation of llvm/clang. +afl-fuzz however requires some specific parameters important for fuzzing to be +set. If you want to set your own, it might bail and report what it is missing. + +Note that some sanitizers cannot be used together, e.g. ASAN and MSAN, and +others often cannot work together because of target weirdness, e.g. ASAN and +CFISAN. You might need to experiment which sanitizers you can combine in a +target (which means more instances can be run without a sanitized target, +which is more effective). + +#### d) Modify the target + +If the target has features that make fuzzing more difficult, e.g. +checksums, HMAC, etc. then modify the source code so that checks for these +values are removed. +This can even be done safely for source code used in operational products +by eliminating these checks within these AFL specific blocks: + +``` +#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + // say that the checksum or HMAC was fine - or whatever is required + // to eliminate the need for the fuzzer to guess the right checksum + return 0; +#endif +``` + +All AFL++ compilers will set this preprocessor definition automatically. + +#### e) Instrument the target + +In this step the target source code is compiled so that it can be fuzzed. + +Basically you have to tell the target build system that the selected AFL++ +compiler is used. Also - if possible - you should always configure the +build system such that the target is compiled statically and not dynamically. +How to do this is described below. + +The #1 rule when instrumenting a target is: avoid instrumenting shared +libraries at all cost. You would need to set LD_LIBRARY_PATH to point to +these, you could accidently type "make install" and install them system wide - +so don't. Really don't. +**Always compile libraries you want to have instrumented as static and link +these to the target program!** + +Then build the target. (Usually with `make`) + +**NOTES** + +1. sometimes configure and build systems are fickle and do not like + stderr output (and think this means a test failure) - which is something + AFL++ likes to do to show statistics. It is recommended to disable AFL++ + instrumentation reporting via `export AFL_QUIET=1`. + +2. sometimes configure and build systems error on warnings - these should be + disabled (e.g. `--disable-werror` for some configure scripts). + +3. in case the configure/build system complains about AFL++'s compiler and + aborts then set `export AFL_NOOPT=1` which will then just behave like the + real compiler. This option has to be unset again before building the target! + +##### configure + +For `configure` build systems this is usually done by: +`CC=afl-clang-fast CXX=afl-clang-fast++ ./configure --disable-shared` + +Note that if you are using the (better) afl-clang-lto compiler you also have to +set AR to llvm-ar[-VERSION] and RANLIB to llvm-ranlib[-VERSION] - as is +described in [instrumentation/README.lto.md](../instrumentation/README.lto.md). + +##### cmake + +For `cmake` build systems this is usually done by: +`mkdir build; cd build; cmake -DCMAKE_C_COMPILER=afl-cc -DCMAKE_CXX_COMPILER=afl-c++ ..` + +Note that if you are using the (better) afl-clang-lto compiler you also have to +set AR to llvm-ar[-VERSION] and RANLIB to llvm-ranlib[-VERSION] - as is +described in [instrumentation/README.lto.md](../instrumentation/README.lto.md). + +##### meson + +For meson you have to set the AFL++ compiler with the very first command! +`CC=afl-cc CXX=afl-c++ meson` + +##### other build systems or if configure/cmake didn't work + +Sometimes cmake and configure do not pick up the AFL++ compiler, or the +ranlib/ar that is needed - because this was just not foreseen by the developer +of the target. Or they have non-standard options. Figure out if there is a +non-standard way to set this, otherwise set up the build normally and edit the +generated build environment afterwards manually to point it to the right compiler +(and/or ranlib and ar). + +#### f) Better instrumentation + +If you just fuzz a target program as-is you are wasting a great opportunity for +much more fuzzing speed. + +This variant requires the usage of afl-clang-lto, afl-clang-fast or afl-gcc-fast. + +It is the so-called `persistent mode`, which is much, much faster but +requires that you code a source file that is specifically calling the target +functions that you want to fuzz, plus a few specific AFL++ functions around +it. See [instrumentation/README.persistent_mode.md](../instrumentation/README.persistent_mode.md) for details. + +Basically if you do not fuzz a target in persistent mode then you are just +doing it for a hobby and not professionally :-). + +#### g) libfuzzer fuzzer harnesses with LLVMFuzzerTestOneInput() + +libfuzzer `LLVMFuzzerTestOneInput()` harnesses are the defacto standard +for fuzzing, and they can be used with AFL++ (and honggfuzz) as well! +Compiling them is as simple as: +``` +afl-clang-fast++ -fsanitize=fuzzer -o harness harness.cpp targetlib.a +``` +You can even use advanced libfuzzer features like `FuzzedDataProvider`, +`LLVMFuzzerMutate()` etc. and they will work! + +The generated binary is fuzzed with afl-fuzz like any other fuzz target. + +Bonus: the target is already optimized for fuzzing due to persistent mode and +shared-memory testcases and hence gives you the fastest speed possible. + +For more information see [utils/aflpp_driver/README.md](../utils/aflpp_driver/README.md) + +### 2. Preparing the fuzzing campaign + +As you fuzz the target with mutated input, having as diverse inputs for the +target as possible improves the efficiency a lot. + +#### a) Collect inputs + +Try to gather valid inputs for the target from wherever you can. E.g. if it is +the PNG picture format try to find as many png files as possible, e.g. from +reported bugs, test suites, random downloads from the internet, unit test +case data - from all kind of PNG software. + +If the input format is not known, you can also modify a target program to write +normal data it receives and processes to a file and use these. + +#### b) Making the input corpus unique + +Use the AFL++ tool `afl-cmin` to remove inputs from the corpus that do not +produce a new path in the target. + +Put all files from step a) into one directory, e.g. INPUTS. + +If the target program is to be called by fuzzing as `bin/target -d INPUTFILE` +the run afl-cmin like this: +`afl-cmin -i INPUTS -o INPUTS_UNIQUE -- bin/target -d @@` +Note that the INPUTFILE argument that the target program would read from has to be set as `@@`. + +If the target reads from stdin instead, just omit the `@@` as this is the +default. + +This step is highly recommended! + +#### c) Minimizing all corpus files + +The shorter the input files that still traverse the same path +within the target, the better the fuzzing will be. This minimization +is done with `afl-tmin` however it is a long process as this has to +be done for every file: + +``` +mkdir input +cd INPUTS_UNIQUE +for i in *; do + afl-tmin -i "$i" -o "../input/$i" -- bin/target -d @@ +done +``` + +This step can also be parallelized, e.g. with `parallel`. +Note that this step is rather optional though. + +#### Done! + +The INPUTS_UNIQUE/ directory from step b) - or even better the directory input/ +if you minimized the corpus in step c) - is the resulting input corpus directory +to be used in fuzzing! :-) + +### 3. Fuzzing the target + +In this final step we fuzz the target. +There are not that many important options to run the target - unless you want +to use many CPU cores/threads for the fuzzing, which will make the fuzzing much +more useful. + +If you just use one CPU for fuzzing, then you are fuzzing just for fun and not +seriously :-) + +#### a) Running afl-fuzz + +Before you do even a test run of afl-fuzz execute `sudo afl-system-config` (on +the host if you execute afl-fuzz in a docker container). This reconfigures the +system for optimal speed - which afl-fuzz checks and bails otherwise. +Set `export AFL_SKIP_CPUFREQ=1` for afl-fuzz to skip this check if you cannot +run afl-system-config with root privileges on the host for whatever reason. + +Note there is also `sudo afl-persistent-config` which sets additional permanent +boot options for a much better fuzzing performance. + +Note that both scripts improve your fuzzing performance but also decrease your +system protection against attacks! So set strong firewall rules and only +expose SSH as a network service if you use these (which is highly recommended). + +If you have an input corpus from step 2 then specify this directory with the `-i` +option. Otherwise create a new directory and create a file with any content +as test data in there. + +If you do not want anything special, the defaults are already usually best, +hence all you need is to specify the seed input directory with the result of +step [2a. Collect inputs](#a-collect-inputs): +`afl-fuzz -i input -o output -- bin/target -d @@` +Note that the directory specified with -o will be created if it does not exist. + +It can be valuable to run afl-fuzz in a screen or tmux shell so you can log off, +or afl-fuzz is not aborted if you are running it in a remote ssh session where +the connection fails in between. +Only do that though once you have verified that your fuzzing setup works! +Simply run it like `screen -dmS afl-main -- afl-fuzz -M main-$HOSTNAME -i ...` +and it will start away in a screen session. To enter this session simply type +`screen -r afl-main`. You see - it makes sense to name the screen session +same as the afl-fuzz -M/-S naming :-) +For more information on screen or tmux please check their documentation. + +If you need to stop and re-start the fuzzing, use the same command line options +(or even change them by selecting a different power schedule or another +mutation mode!) and switch the input directory with a dash (`-`): +`afl-fuzz -i - -o output -- bin/target -d @@` + +Memory limits are not enforced by afl-fuzz by default and the system may run +out of memory. You can decrease the memory with the `-m` option, the value is +in MB. If this is too small for the target, you can usually see this by +afl-fuzz bailing with the message that it could not connect to the forkserver. + +Adding a dictionary is helpful. See the directory [dictionaries/](../dictionaries/) if +something is already included for your data format, and tell afl-fuzz to load +that dictionary by adding `-x dictionaries/FORMAT.dict`. With afl-clang-lto +you have an autodictionary generation for which you need to do nothing except +to use afl-clang-lto as the compiler. You also have the option to generate +a dictionary yourself, see [utils/libtokencap/README.md](../utils/libtokencap/README.md). + +afl-fuzz has a variety of options that help to workaround target quirks like +specific locations for the input file (`-f`), performing deterministic +fuzzing (`-D`) and many more. Check out `afl-fuzz -h`. + +We highly recommend that you set a memory limit for running the target with `-m` +which defines the maximum memory in MB. This prevents a potential +out-of-memory problem for your system plus helps you detect missing `malloc()` +failure handling in the target. +Play around with various -m values until you find one that safely works for all +your input seeds (if you have good ones and then double or quadrouple that. + +By default afl-fuzz never stops fuzzing. To terminate AFL++ simply press Control-C +or send a signal SIGINT. You can limit the number of executions or approximate runtime +in seconds with options also. + +When you start afl-fuzz you will see a user interface that shows what the status +is: + + +All labels are explained in [status_screen.md](status_screen.md). + +#### b) Using multiple cores + +If you want to seriously fuzz then use as many cores/threads as possible to +fuzz your target. + +On the same machine - due to the design of how AFL++ works - there is a maximum +number of CPU cores/threads that are useful, use more and the overall performance +degrades instead. This value depends on the target, and the limit is between 32 +and 64 cores per machine. + +If you have the RAM, it is highly recommended run the instances with a caching +of the testcases. Depending on the average testcase size (and those found +during fuzzing) and their number, a value between 50-500MB is recommended. +You can set the cache size (in MB) by setting the environment variable `AFL_TESTCACHE_SIZE`. + +There should be one main fuzzer (`-M main-$HOSTNAME` option) and as many secondary +fuzzers (eg `-S variant1`) as you have cores that you use. +Every -M/-S entry needs a unique name (that can be whatever), however the same +-o output directory location has to be used for all instances. + +For every secondary fuzzer there should be a variation, e.g.: + * one should fuzz the target that was compiled differently: with sanitizers + activated (`export AFL_USE_ASAN=1 ; export AFL_USE_UBSAN=1 ; + export AFL_USE_CFISAN=1`) + * one or two should fuzz the target with CMPLOG/redqueen (see above), at + least one cmplog instance should follow transformations (`-l AT`) + * one to three fuzzers should fuzz a target compiled with laf-intel/COMPCOV + (see above). Important note: If you run more than one laf-intel/COMPCOV + fuzzer and you want them to share their intermediate results, the main + fuzzer (`-M`) must be one of the them! (Although this is not really + recommended.) + +All other secondaries should be used like this: + * A quarter to a third with the MOpt mutator enabled: `-L 0` + * run with a different power schedule, recommended are: + `fast (default), explore, coe, lin, quad, exploit and rare` + which you can set with e.g. `-p explore` + * a few instances should use the old queue cycling with `-Z` + +Also it is recommended to set `export AFL_IMPORT_FIRST=1` to load testcases +from other fuzzers in the campaign first. + +If you have a large corpus, a corpus from a previous run or are fuzzing in +a CI, then also set `export AFL_CMPLOG_ONLY_NEW=1` and `export AFL_FAST_CAL=1`. + +You can also use different fuzzers. +If you are using AFL spinoffs or AFL conforming fuzzers, then just use the +same -o directory and give it a unique `-S` name. +Examples are: + * [Fuzzolic](https://github.com/season-lab/fuzzolic) + * [symcc](https://github.com/eurecom-s3/symcc/) + * [Eclipser](https://github.com/SoftSec-KAIST/Eclipser/) + * [AFLsmart](https://github.com/aflsmart/aflsmart) + * [FairFuzz](https://github.com/carolemieux/afl-rb) + * [Neuzz](https://github.com/Dongdongshe/neuzz) + * [Angora](https://github.com/AngoraFuzzer/Angora) + +A long list can be found at [https://github.com/Microsvuln/Awesome-AFL](https://github.com/Microsvuln/Awesome-AFL) + +However you can also sync AFL++ with honggfuzz, libfuzzer with `-entropic=1`, etc. +Just show the main fuzzer (-M) with the `-F` option where the queue/work +directory of a different fuzzer is, e.g. `-F /src/target/honggfuzz`. +Using honggfuzz (with `-n 1` or `-n 2`) and libfuzzer in parallel is highly +recommended! + +#### c) Using multiple machines for fuzzing + +Maybe you have more than one machine you want to fuzz the same target on. +Simply start the `afl-fuzz` (and perhaps libfuzzer, honggfuzz, ...) +orchestra as you like, just ensure that your have one and only one `-M` +instance per server, and that its name is unique, hence the recommendation +for `-M main-$HOSTNAME`. + +Now there are three strategies on how you can sync between the servers: + * never: sounds weird, but this makes every server an island and has the + chance the each follow different paths into the target. You can make + this even more interesting by even giving different seeds to each server. + * regularly (~4h): this ensures that all fuzzing campaigns on the servers + "see" the same thing. It is like fuzzing on a huge server. + * in intervals of 1/10th of the overall expected runtime of the fuzzing you + sync. This tries a bit to combine both. have some individuality of the + paths each campaign on a server explores, on the other hand if one + gets stuck where another found progress this is handed over making it + unstuck. + +The syncing process itself is very simple. +As the `-M main-$HOSTNAME` instance syncs to all `-S` secondaries as well +as to other fuzzers, you have to copy only this directory to the other +machines. + +Lets say all servers have the `-o out` directory in /target/foo/out, and +you created a file `servers.txt` which contains the hostnames of all +participating servers, plus you have an ssh key deployed to all of them, +then run: +```bash +for FROM in `cat servers.txt`; do + for TO in `cat servers.txt`; do + rsync -rlpogtz --rsh=ssh $FROM:/target/foo/out/main-$FROM $TO:target/foo/out/ + done +done +``` +You can run this manually, per cron job - as you need it. +There is a more complex and configurable script in `utils/distributed_fuzzing`. + +#### d) The status of the fuzz campaign + +AFL++ comes with the `afl-whatsup` script to show the status of the fuzzing +campaign. + +Just supply the directory that afl-fuzz is given with the -o option and +you will see a detailed status of every fuzzer in that campaign plus +a summary. + +To have only the summary use the `-s` switch e.g.: `afl-whatsup -s out/` + +If you have multiple servers then use the command after a sync, or you have +to execute this script per server. + +Another tool to inspect the current state and history of a specific instance +is afl-plot, which generates an index.html file and a graphs that show how +the fuzzing instance is performing. +The syntax is `afl-plot instance_dir web_dir`, e.g. `afl-plot out/default /srv/www/htdocs/plot` + +#### e) Stopping fuzzing, restarting fuzzing, adding new seeds + +To stop an afl-fuzz run, simply press Control-C. + +To restart an afl-fuzz run, just reuse the same command line but replace the +`-i directory` with `-i -` or set `AFL_AUTORESUME=1`. + +If you want to add new seeds to a fuzzing campaign you can run a temporary +fuzzing instance, e.g. when your main fuzzer is using `-o out` and the new +seeds are in `newseeds/` directory: +``` +AFL_BENCH_JUST_ONE=1 AFL_FAST_CAL=1 afl-fuzz -i newseeds -o out -S newseeds -- ./target +``` + +#### f) Checking the coverage of the fuzzing + +The `paths found` value is a bad indicator for checking how good the coverage is. + +A better indicator - if you use default llvm instrumentation with at least +version 9 - is to use `afl-showmap` with the collect coverage option `-C` on +the output directory: +``` +$ afl-showmap -C -i out -o /dev/null -- ./target -params @@ +... +[*] Using SHARED MEMORY FUZZING feature. +[*] Target map size: 9960 +[+] Processed 7849 input files. +[+] Captured 4331 tuples (highest value 255, total values 67130596) in '/dev/nul +l'. +[+] A coverage of 4331 edges were achieved out of 9960 existing (43.48%) with 7849 input files. +``` +It is even better to check out the exact lines of code that have been reached - +and which have not been found so far. + +An "easy" helper script for this is [https://github.com/vanhauser-thc/afl-cov](https://github.com/vanhauser-thc/afl-cov), +just follow the README of that separate project. + +If you see that an important area or a feature has not been covered so far then +try to find an input that is able to reach that and start a new secondary in +that fuzzing campaign with that seed as input, let it run for a few minutes, +then terminate it. The main node will pick it up and make it available to the +other secondary nodes over time. Set `export AFL_NO_AFFINITY=1` or +`export AFL_TRY_AFFINITY=1` if you have no free core. + +Note that in nearly all cases you can never reach full coverage. A lot of +functionality is usually dependent on exclusive options that would need individual +fuzzing campaigns each with one of these options set. E.g. if you fuzz a library to +convert image formats and your target is the png to tiff API then you will not +touch any of the other library APIs and features. + +#### g) How long to fuzz a target? + +This is a difficult question. +Basically if no new path is found for a long time (e.g. for a day or a week) +then you can expect that your fuzzing won't be fruitful anymore. +However often this just means that you should switch out secondaries for +others, e.g. custom mutator modules, sync to very different fuzzers, etc. + +Keep the queue/ directory (for future fuzzings of the same or similar targets) +and use them to seed other good fuzzers like libfuzzer with the -entropic +switch or honggfuzz. + +#### h) Improve the speed! + + * Use [persistent mode](../instrumentation/README.persistent_mode.md) (x2-x20 speed increase) + * If you do not use shmem persistent mode, use `AFL_TMPDIR` to point the input file on a tempfs location, see [env_variables.md](env_variables.md) + * Linux: Improve kernel performance: modify `/etc/default/grub`, set `GRUB_CMDLINE_LINUX_DEFAULT="ibpb=off ibrs=off kpti=off l1tf=off mds=off mitigations=off no_stf_barrier noibpb noibrs nopcid nopti nospec_store_bypass_disable nospectre_v1 nospectre_v2 pcid=off pti=off spec_store_bypass_disable=off spectre_v2=off stf_barrier=off"`; then `update-grub` and `reboot` (warning: makes the system more insecure) - you can also just run `sudo afl-persistent-config` + * Linux: Running on an `ext2` filesystem with `noatime` mount option will be a bit faster than on any other journaling filesystem + * Use your cores! [3.b) Using multiple cores/threads](#b-using-multiple-coresthreads) + * Run `sudo afl-system-config` before starting the first afl-fuzz instance after a reboot + +### The End + +Check out the [FAQ](FAQ.md) if it maybe answers your question (that +you might not even have known you had ;-) ). + +This is basically all you need to know to professionally run fuzzing campaigns. +If you want to know more, the tons of texts in [docs/](./) will have you covered. + +Note that there are also a lot of tools out there that help fuzzing with AFL++ +(some might be deprecated or unsupported), see [links_tools.md](links_tools.md). |