diff options
Diffstat (limited to 'docs')
-rw-r--r-- | docs/Changelog.md | 2 | ||||
-rw-r--r-- | docs/INSTALL.md | 2 | ||||
-rw-r--r-- | docs/best_practices.md | 2 | ||||
-rw-r--r-- | docs/interpreting_output.md | 2 | ||||
-rw-r--r-- | docs/known_limitations.md | 2 | ||||
-rw-r--r-- | docs/sister_projects.md | 12 | ||||
-rw-r--r-- | docs/technical_details.md | 12 |
7 files changed, 17 insertions, 17 deletions
diff --git a/docs/Changelog.md b/docs/Changelog.md index cfeb8cc1..7c77a6bf 100644 --- a/docs/Changelog.md +++ b/docs/Changelog.md @@ -2760,7 +2760,7 @@ sending a mail to <afl-users+subscribe@googlegroups.com>. - Updated the documentation and added notes_for_asan.txt. Based on feedback from Hanno Boeck, Ben Laurie, and others. - - Moved the project to http://lcamtuf.coredump.cx/afl/. + - Moved the project to https://lcamtuf.coredump.cx/afl/. ### Version 0.46b: diff --git a/docs/INSTALL.md b/docs/INSTALL.md index 960de1af..cfa20dea 100644 --- a/docs/INSTALL.md +++ b/docs/INSTALL.md @@ -150,4 +150,4 @@ sysctl kern.sysv.shmseg=48 sysctl kern.sysv.shmall=98304 ``` -See [http://www.spy-hill.com/help/apple/SharedMemory.html](http://www.spy-hill.com/help/apple/SharedMemory.html) for documentation for these settings and how to make them permanent. \ No newline at end of file +See [https://www.spy-hill.com/help/apple/SharedMemory.html](https://www.spy-hill.com/help/apple/SharedMemory.html) for documentation for these settings and how to make them permanent. \ No newline at end of file diff --git a/docs/best_practices.md b/docs/best_practices.md index 0708d49d..5d07dd14 100644 --- a/docs/best_practices.md +++ b/docs/best_practices.md @@ -108,7 +108,7 @@ Four steps are required to do this and it also requires quite some knowledge of Follow this document on how to do this: [instrumentation/README.instrument_list.md](../instrumentation/README.instrument_list.md). If `PCGUARD` is used, then you need to follow this guide (needs llvm 12+!): - [http://clang.llvm.org/docs/SanitizerCoverage.html#partially-disabling-instrumentation](http://clang.llvm.org/docs/SanitizerCoverage.html#partially-disabling-instrumentation) + [https://clang.llvm.org/docs/SanitizerCoverage.html#partially-disabling-instrumentation](https://clang.llvm.org/docs/SanitizerCoverage.html#partially-disabling-instrumentation) Only exclude those functions from instrumentation that provide no value for coverage - that is if it does not process any fuzz data directly or indirectly (e.g. hash maps, thread management etc.). If however a function directly or indirectly handles fuzz data, then you should not put the function in a deny instrumentation list and rather live with the instability it comes with. diff --git a/docs/interpreting_output.md b/docs/interpreting_output.md index 327a0ac0..4bd705f2 100644 --- a/docs/interpreting_output.md +++ b/docs/interpreting_output.md @@ -56,7 +56,7 @@ Any existing output directory can be also used to resume aborted jobs; try: If you have gnuplot installed, you can also generate some pretty graphs for any active fuzzing task using afl-plot. For an example of how this looks like, -see [http://lcamtuf.coredump.cx/afl/plot/](http://lcamtuf.coredump.cx/afl/plot/). +see [https://lcamtuf.coredump.cx/afl/plot/](https://lcamtuf.coredump.cx/afl/plot/). You can also manually build and install afl-plot-ui, which is a helper utility for showing the graphs generated by afl-plot in a graphical window using GTK. diff --git a/docs/known_limitations.md b/docs/known_limitations.md index 2d8f84a5..a68c0a85 100644 --- a/docs/known_limitations.md +++ b/docs/known_limitations.md @@ -31,6 +31,6 @@ Here are some of the most important caveats for AFL: [https://www.fastly.com/blog/how-to-fuzz-server-american-fuzzy-lop](https://www.fastly.com/blog/how-to-fuzz-server-american-fuzzy-lop) - Occasionally, sentient machines rise against their creators. If this - happens to you, please consult [http://lcamtuf.coredump.cx/prep/](http://lcamtuf.coredump.cx/prep/). + happens to you, please consult [https://lcamtuf.coredump.cx/prep/](https://lcamtuf.coredump.cx/prep/). Beyond this, see [INSTALL.md](INSTALL.md) for platform-specific tips. diff --git a/docs/sister_projects.md b/docs/sister_projects.md index 5cb3a102..613bc778 100644 --- a/docs/sister_projects.md +++ b/docs/sister_projects.md @@ -15,7 +15,7 @@ instruction manual. Allows fuzz-testing of Python programs. Uses custom instrumentation and its own forkserver. -http://jwilk.net/software/python-afl +https://jwilk.net/software/python-afl ### Go-fuzz (Dmitry Vyukov) @@ -34,7 +34,7 @@ https://github.com/kmcallister/afl.rs Adds AFL-compatible instrumentation to OCaml programs. https://github.com/ocamllabs/opam-repo-dev/pull/23 -http://canopy.mirage.io/Posts/Fuzzing +https://canopy.mirage.io/Posts/Fuzzing ### AFL for GCJ Java and other GCC frontends (-) @@ -54,7 +54,7 @@ some programs to be fuzzed without the fork / execve overhead. (Similar functionality is now available as the "persistent" feature described in [the llvm_mode readme](../instrumentation/README.llvm.md)) -http://llvm.org/docs/LibFuzzer.html +https://llvm.org/docs/LibFuzzer.html ## TriforceAFL (Tim Newsham and Jesse Hertz) @@ -189,7 +189,7 @@ https://github.com/bshastry/afl-sancov Makes it easy to estimate memory usage limits when fuzzing with ASAN or MSAN. -http://jwilk.net/software/recidivm +https://jwilk.net/software/recidivm ### aflize (Jacek Wielemborek) @@ -274,7 +274,7 @@ https://goo.gl/j9EgFf A simple SQL shell designed specifically for fuzzing the underlying library. -http://www.sqlite.org/src/artifact/9e7e273da2030371 +https://www.sqlite.org/src/artifact/9e7e273da2030371 ### Support for Python mutation modules (Christian Holler) @@ -292,7 +292,7 @@ A similar guided approach as applied to fuzzing syscalls: https://github.com/google/syzkaller/wiki/Found-Bugs https://github.com/dvyukov/linux/commit/33787098ffaaa83b8a7ccf519913ac5fd6125931 -http://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing%2C%20Vault%202016_0.pdf +https://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing%2C%20Vault%202016_0.pdf ### Kernel Snapshot Fuzzing using Unicornafl (Security in Telecommunications) diff --git a/docs/technical_details.md b/docs/technical_details.md index b0ca493e..b9d271d9 100644 --- a/docs/technical_details.md +++ b/docs/technical_details.md @@ -161,8 +161,8 @@ features of the underlying data format, as shown in this image: Several practical examples of the results of this algorithm are discussed here: - http://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html - http://lcamtuf.blogspot.com/2014/11/afl-fuzz-nobody-expects-cdata-sections.html + https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html + https://lcamtuf.blogspot.com/2014/11/afl-fuzz-nobody-expects-cdata-sections.html The synthetic corpus produced by this process is essentially a compact collection of "hmm, this does something new!" input files, and can be used to @@ -323,7 +323,7 @@ value of various fuzzing strategies and optimize their parameters so that they work equally well across a wide range of file types. The strategies used by afl-fuzz are generally format-agnostic and are discussed in more detail here: - http://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html + https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html It is somewhat notable that especially early on, most of the work done by `afl-fuzz` is actually highly deterministic, and progresses to random stacked @@ -376,7 +376,7 @@ valid grammar for the tested parser. A discussion of how these features are implemented within afl-fuzz can be found here: - http://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html + https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html In essence, when basic, typically easily-obtained syntax tokens are combined together in a purely random manner, the instrumentation and the evolutionary @@ -429,7 +429,7 @@ thrown away. A detailed discussion of the value of this approach can be found here: - http://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html + https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html The method uses instrumentation feedback to explore the state of the crashing program to get past the ambiguous faulting condition and then isolate the @@ -447,7 +447,7 @@ goes through `execve()`, linking, and libc initialization only once, and is then cloned from a stopped process image by leveraging copy-on-write. The implementation is described in more detail here: - http://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html + https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html The fork server is an integral aspect of the injected instrumentation and simply stops at the first instrumented function to await commands from |