about summary refs log tree commit diff
path: root/include/xxh3.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/xxh3.h')
-rw-r--r--include/xxh3.h3187
1 files changed, 0 insertions, 3187 deletions
diff --git a/include/xxh3.h b/include/xxh3.h
deleted file mode 100644
index 2354bde9..00000000
--- a/include/xxh3.h
+++ /dev/null
@@ -1,3187 +0,0 @@
-/*
- * xxHash - Extremely Fast Hash algorithm
- * Development source file for `xxh3`
- * Copyright (C) 2019-2020 Yann Collet
- *
- * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- *    * Redistributions of source code must retain the above copyright
- *      notice, this list of conditions and the following disclaimer.
- *    * Redistributions in binary form must reproduce the above
- *      copyright notice, this list of conditions and the following disclaimer
- *      in the documentation and/or other materials provided with the
- *      distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * You can contact the author at:
- *   - xxHash homepage: https://www.xxhash.com
- *   - xxHash source repository: https://github.com/Cyan4973/xxHash
- */
-
-/*
- * Note: This file is separated for development purposes.
- * It will be integrated into `xxhash.h` when development stage is completed.
- *
- * Credit: most of the work on vectorial and asm variants comes from
- * @easyaspi314
- */
-
-#ifndef XXH3_H_1397135465
-#define XXH3_H_1397135465
-
-/* ===   Dependencies   === */
-#ifndef XXHASH_H_5627135585666179
-  /* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */
-  #undef XXH_INLINE_ALL                               /* avoid redefinition */
-  #define XXH_INLINE_ALL
-#endif
-#include "xxhash.h"
-
-/* ===   Compiler specifics   === */
-
-#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L      /* >= C99 */
-  #define XXH_RESTRICT restrict
-#else
-  /* Note: it might be useful to define __restrict or __restrict__ for some C++
-   * compilers */
-  #define XXH_RESTRICT                                           /* disable */
-#endif
-
-#if (defined(__GNUC__) && (__GNUC__ >= 3)) ||                   \
-    (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) || \
-    defined(__clang__)
-  #define XXH_likely(x) __builtin_expect(x, 1)
-  #define XXH_unlikely(x) __builtin_expect(x, 0)
-#else
-  #define XXH_likely(x) (x)
-  #define XXH_unlikely(x) (x)
-#endif
-
-#if defined(__GNUC__)
-  #if defined(__AVX2__)
-    #include <immintrin.h>
-  #elif defined(__SSE2__)
-    #include <emmintrin.h>
-  #elif defined(__ARM_NEON__) || defined(__ARM_NEON)
-    #define inline __inline__                                  /* clang bug */
-    #include <arm_neon.h>
-    #undef inline
-  #endif
-#elif defined(_MSC_VER)
-  #include <intrin.h>
-#endif
-
-/*
- * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
- * remaining a true 64-bit/128-bit hash function.
- *
- * This is done by prioritizing a subset of 64-bit operations that can be
- * emulated without too many steps on the average 32-bit machine.
- *
- * For example, these two lines seem similar, and run equally fast on 64-bit:
- *
- *   xxh_u64 x;
- *   x ^= (x >> 47); // good
- *   x ^= (x >> 13); // bad
- *
- * However, to a 32-bit machine, there is a major difference.
- *
- * x ^= (x >> 47) looks like this:
- *
- *   x.lo ^= (x.hi >> (47 - 32));
- *
- * while x ^= (x >> 13) looks like this:
- *
- *   // note: funnel shifts are not usually cheap.
- *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
- *   x.hi ^= (x.hi >> 13);
- *
- * The first one is significantly faster than the second, simply because the
- * shift is larger than 32. This means:
- *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
- *    32 bits in the shift.
- *  - The shift result will always fit in the lower 32 bits, and therefore,
- *    we can ignore the upper 32 bits in the xor.
- *
- * Thanks to this optimization, XXH3 only requires these features to be
- * efficient:
- *
- *  - Usable unaligned access
- *  - A 32-bit or 64-bit ALU
- *      - If 32-bit, a decent ADC instruction
- *  - A 32 or 64-bit multiply with a 64-bit result
- *  - For the 128-bit variant, a decent byteswap helps short inputs.
- *
- * The first two are already required by XXH32, and almost all 32-bit and 64-bit
- * platforms which can run XXH32 can run XXH3 efficiently.
- *
- * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
- * notable exception.
- *
- * First of all, Thumb-1 lacks support for the UMULL instruction which
- * performs the important long multiply. This means numerous __aeabi_lmul
- * calls.
- *
- * Second of all, the 8 functional registers are just not enough.
- * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
- * Lo registers, and this shuffling results in thousands more MOVs than A32.
- *
- * A32 and T32 don't have this limitation. They can access all 14 registers,
- * do a 32->64 multiply with UMULL, and the flexible operand allowing free
- * shifts is helpful, too.
- *
- * Therefore, we do a quick sanity check.
- *
- * If compiling Thumb-1 for a target which supports ARM instructions, we will
- * emit a warning, as it is not a "sane" platform to compile for.
- *
- * Usually, if this happens, it is because of an accident and you probably need
- * to specify -march, as you likely meant to compile for a newer architecture.
- */
-#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
-  #warning "XXH3 is highly inefficient without ARM or Thumb-2."
-#endif
-
-/* ==========================================
- * Vectorization detection
- * ========================================== */
-#define XXH_SCALAR 0                             /* Portable scalar version */
-#define XXH_SSE2 1                     /* SSE2 for Pentium 4 and all x86_64 */
-#define XXH_AVX2 2                        /* AVX2 for Haswell and Bulldozer */
-#define XXH_AVX512 3                      /* AVX512 for Skylake and Icelake */
-#define XXH_NEON 4                 /* NEON for most ARMv7-A and all AArch64 */
-#define XXH_VSX 5                         /* VSX and ZVector for POWER8/z13 */
-
-#ifndef XXH_VECTOR                        /* can be defined on command line */
-  #if defined(__AVX512F__)
-    #define XXH_VECTOR XXH_AVX512
-  #elif defined(__AVX2__)
-    #define XXH_VECTOR XXH_AVX2
-  #elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || \
-      (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
-    #define XXH_VECTOR XXH_SSE2
-  #elif defined(__GNUC__) /* msvc support maybe later */                   \
-      && (defined(__ARM_NEON__) || defined(__ARM_NEON)) &&                 \
-      (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
-       ||                                                                  \
-       (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
-    #define XXH_VECTOR XXH_NEON
-  #elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) || \
-      (defined(__s390x__) && defined(__VEC__)) &&             \
-          defined(__GNUC__)                                 /* TODO: IBM XL */
-    #define XXH_VECTOR XXH_VSX
-  #else
-    #define XXH_VECTOR XXH_SCALAR
-  #endif
-#endif
-
-/*
- * Controls the alignment of the accumulator,
- * for compatibility with aligned vector loads, which are usually faster.
- */
-#ifndef XXH_ACC_ALIGN
-  #if defined(XXH_X86DISPATCH)
-    #define XXH_ACC_ALIGN 64               /* for compatibility with avx512 */
-  #elif XXH_VECTOR == XXH_SCALAR                                  /* scalar */
-    #define XXH_ACC_ALIGN 8
-  #elif XXH_VECTOR == XXH_SSE2                                      /* sse2 */
-    #define XXH_ACC_ALIGN 16
-  #elif XXH_VECTOR == XXH_AVX2                                      /* avx2 */
-    #define XXH_ACC_ALIGN 32
-  #elif XXH_VECTOR == XXH_NEON                                      /* neon */
-    #define XXH_ACC_ALIGN 16
-  #elif XXH_VECTOR == XXH_VSX                                        /* vsx */
-    #define XXH_ACC_ALIGN 16
-  #elif XXH_VECTOR == XXH_AVX512                                  /* avx512 */
-    #define XXH_ACC_ALIGN 64
-  #endif
-#endif
-
-#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 || \
-    XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
-  #define XXH_SEC_ALIGN XXH_ACC_ALIGN
-#else
-  #define XXH_SEC_ALIGN 8
-#endif
-
-/*
- * UGLY HACK:
- * GCC usually generates the best code with -O3 for xxHash.
- *
- * However, when targeting AVX2, it is overzealous in its unrolling resulting
- * in code roughly 3/4 the speed of Clang.
- *
- * There are other issues, such as GCC splitting _mm256_loadu_si256 into
- * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
- * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
- *
- * That is why when compiling the AVX2 version, it is recommended to use either
- *   -O2 -mavx2 -march=haswell
- * or
- *   -O2 -mavx2 -mno-avx256-split-unaligned-load
- * for decent performance, or to use Clang instead.
- *
- * Fortunately, we can control the first one with a pragma that forces GCC into
- * -O2, but the other one we can't control without "failed to inline always
- * inline function due to target mismatch" warnings.
- */
-#if XXH_VECTOR == XXH_AVX2                      /* AVX2 */           \
-    && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
-    && defined(__OPTIMIZE__) &&                                      \
-    !defined(__OPTIMIZE_SIZE__)                      /* respect -O0 and -Os */
-  #pragma GCC push_options
-  #pragma GCC optimize("-O2")
-#endif
-
-#if XXH_VECTOR == XXH_NEON
-  /*
-   * NEON's setup for vmlal_u32 is a little more complicated than it is on
-   * SSE2, AVX2, and VSX.
-   *
-   * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an
-   * upcast.
-   *
-   * To do the same operation, the 128-bit 'Q' register needs to be split into
-   * two 64-bit 'D' registers, performing this operation::
-   *
-   *   [                a                 |                 b                ]
-   *            |              '---------. .--------'                |
-   *            |                         x                          |
-   *            |              .---------' '--------.                |
-   *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ]
-   *
-   * Due to significant changes in aarch64, the fastest method for aarch64 is
-   * completely different than the fastest method for ARMv7-A.
-   *
-   * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
-   * D11 will modify the high half of Q5. This is similar to how modifying AH
-   * will only affect bits 8-15 of AX on x86.
-   *
-   * VZIP takes two registers, and puts even lanes in one register and odd lanes
-   * in the other.
-   *
-   * On ARMv7-A, this strangely modifies both parameters in place instead of
-   * taking the usual 3-operand form.
-   *
-   * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
-   * lower and upper halves of the Q register to end up with the high and low
-   * halves where we want - all in one instruction.
-   *
-   *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1],
-   * d11[1] }
-   *
-   * Unfortunately we need inline assembly for this: Instructions modifying two
-   * registers at once is not possible in GCC or Clang's IR, and they have to
-   * create a copy.
-   *
-   * aarch64 requires a different approach.
-   *
-   * In order to make it easier to write a decent compiler for aarch64, many
-   * quirks were removed, such as conditional execution.
-   *
-   * NEON was also affected by this.
-   *
-   * aarch64 cannot access the high bits of a Q-form register, and writes to a
-   * D-form register zero the high bits, similar to how writes to W-form scalar
-   * registers (or DWORD registers on x86_64) work.
-   *
-   * The formerly free vget_high intrinsics now require a vext (with a few
-   * exceptions)
-   *
-   * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
-   * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
-   * operand.
-   *
-   * The equivalent of the VZIP.32 on the lower and upper halves would be this
-   * mess:
-   *
-   *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
-   *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] }
-   *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] }
-   *
-   * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64
-   * (SHRN):
-   *
-   *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32);
-   *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
-   *
-   * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
-   */
-
-  /*
-   * Function-like macro:
-   * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t
-   * &outHi)
-   * {
-
-   *     outLo = (uint32x2_t)(in & 0xFFFFFFFF);
-   *     outHi = (uint32x2_t)(in >> 32);
-   *     in = UNDEFINED;
-   * }
-   */
-  #if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
-      && defined(__GNUC__) && !defined(__aarch64__) && !defined(__arm64__)
-    #define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                                   \
-      do {                                                                                         \
-                                                                                                   \
-        /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 =                      \
-         * upper D half */                                                                         \
-        /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486             \
-         */                                                                                        \
-        /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 \
-         */                                                                                        \
-        __asm__("vzip.32  %e0, %f0" : "+w"(in));                                                   \
-        (outLo) = vget_low_u32(vreinterpretq_u32_u64(in));                                         \
-        (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                        \
-                                                                                                   \
-      } while (0)
-
-  #else
-    #define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
-      do {                                       \
-                                                 \
-        (outLo) = vmovn_u64(in);                 \
-        (outHi) = vshrn_n_u64((in), 32);         \
-                                                 \
-      } while (0)
-
-  #endif
-#endif                                            /* XXH_VECTOR == XXH_NEON */
-
-/*
- * VSX and Z Vector helpers.
- *
- * This is very messy, and any pull requests to clean this up are welcome.
- *
- * There are a lot of problems with supporting VSX and s390x, due to
- * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
- */
-#if XXH_VECTOR == XXH_VSX
-  #if defined(__s390x__)
-    #include <s390intrin.h>
-  #else
-    #include <altivec.h>
-  #endif
-
-  #undef vector                                       /* Undo the pollution */
-
-typedef __vector unsigned long long xxh_u64x2;
-typedef __vector unsigned char      xxh_u8x16;
-typedef __vector unsigned           xxh_u32x4;
-
-  #ifndef XXH_VSX_BE
-    #if defined(__BIG_ENDIAN__) || \
-        (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
-      #define XXH_VSX_BE 1
-    #elif defined(__VEC_ELEMENT_REG_ORDER__) && \
-        __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
-      #warning "-maltivec=be is not recommended. Please use native endianness."
-      #define XXH_VSX_BE 1
-    #else
-      #define XXH_VSX_BE 0
-    #endif
-  #endif                                            /* !defined(XXH_VSX_BE) */
-
-  #if XXH_VSX_BE
-    /* A wrapper for POWER9's vec_revb. */
-    #if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
-      #define XXH_vec_revb vec_revb
-    #else
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) {
-
-  xxh_u8x16 const vByteSwap = {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
-                               0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08};
-  return vec_perm(val, val, vByteSwap);
-
-}
-
-    #endif
-  #endif                                                      /* XXH_VSX_BE */
-
-/*
- * Performs an unaligned load and byte swaps it on big endian.
- */
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) {
-
-  xxh_u64x2 ret;
-  memcpy(&ret, ptr, sizeof(xxh_u64x2));
-  #if XXH_VSX_BE
-  ret = XXH_vec_revb(ret);
-  #endif
-  return ret;
-
-}
-
-  /*
-   * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
-   *
-   * These intrinsics weren't added until GCC 8, despite existing for a while,
-   * and they are endian dependent. Also, their meaning swap depending on
-   * version.
-   * */
-  #if defined(__s390x__)
-    /* s390x is always big endian, no issue on this platform */
-    #define XXH_vec_mulo vec_mulo
-    #define XXH_vec_mule vec_mule
-  #elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
-    /* Clang has a better way to control this, we can just use the builtin which
-     * doesn't swap. */
-    #define XXH_vec_mulo __builtin_altivec_vmulouw
-    #define XXH_vec_mule __builtin_altivec_vmuleuw
-  #else
-/* gcc needs inline assembly */
-/* Adapted from
- * https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) {
-
-  xxh_u64x2 result;
-  __asm__("vmulouw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
-  return result;
-
-}
-
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) {
-
-  xxh_u64x2 result;
-  __asm__("vmuleuw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
-  return result;
-
-}
-
-  #endif                                      /* XXH_vec_mulo, XXH_vec_mule */
-#endif                                             /* XXH_VECTOR == XXH_VSX */
-
-/* prefetch
- * can be disabled, by declaring XXH_NO_PREFETCH build macro */
-#if defined(XXH_NO_PREFETCH)
-  #define XXH_PREFETCH(ptr) (void)(ptr)                         /* disabled */
-#else
-  #if defined(_MSC_VER) && \
-      (defined(_M_X64) ||  \
-       defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
-    #include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
-    #define XXH_PREFETCH(ptr) _mm_prefetch((const char *)(ptr), _MM_HINT_T0)
-  #elif defined(__GNUC__) && \
-      ((__GNUC__ >= 4) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1)))
-    #define XXH_PREFETCH(ptr) \
-      __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
-  #else
-    #define XXH_PREFETCH(ptr) (void)(ptr)                       /* disabled */
-  #endif
-#endif                                                   /* XXH_NO_PREFETCH */
-
-/* ==========================================
- * XXH3 default settings
- * ========================================== */
-
-#define XXH_SECRET_DEFAULT_SIZE 192         /* minimum XXH3_SECRET_SIZE_MIN */
-
-#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
-  #error "default keyset is not large enough"
-#endif
-
-/* Pseudorandom secret taken directly from FARSH */
-XXH_ALIGN(64)
-static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
-
-    0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c,
-    0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb,
-    0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e,
-    0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
-    0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6,
-    0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb,
-    0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97,
-    0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
-    0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7,
-    0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31,
-    0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
-
-    0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff,
-    0xfa, 0x13, 0x63, 0xeb, 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49,
-    0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58,
-    0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
-    0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca,
-    0xbb, 0x4b, 0x40, 0x7e,
-
-};
-
-#ifdef XXH_OLD_NAMES
-  #define kSecret XXH3_kSecret
-#endif
-
-/*
- * Calculates a 32-bit to 64-bit long multiply.
- *
- * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't
- * need to (but it shouldn't need to anyways, it is about 7 instructions to do
- * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we
- * use that instead of the normal method.
- *
- * If you are compiling for platforms like Thumb-1 and don't have a better
- * option, you may also want to write your own long multiply routine here.
- *
- * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
- * {
-
- *    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
- * }
- */
-#if defined(_MSC_VER) && defined(_M_IX86)
-  #include <intrin.h>
-  #define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
-#else
-  /*
-   * Downcast + upcast is usually better than masking on older compilers like
-   * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
-   *
-   * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both
-   * operands and perform a full 64x64 multiply -- entirely redundant on 32-bit.
-   */
-  #define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
-#endif
-
-/*
- * Calculates a 64->128-bit long multiply.
- *
- * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
- */
-static XXH128_hash_t XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) {
-
-  /*
-   * GCC/Clang __uint128_t method.
-   *
-   * On most 64-bit targets, GCC and Clang define a __uint128_t type.
-   * This is usually the best way as it usually uses a native long 64-bit
-   * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
-   *
-   * Usually.
-   *
-   * Despite being a 32-bit platform, Clang (and emscripten) define this type
-   * despite not having the arithmetic for it. This results in a laggy
-   * compiler builtin call which calculates a full 128-bit multiply.
-   * In that case it is best to use the portable one.
-   * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
-   */
-#if defined(__GNUC__) && !defined(__wasm__) && defined(__SIZEOF_INT128__) || \
-    (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
-
-  __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
-  XXH128_hash_t     r128;
-  r128.low64 = (xxh_u64)(product);
-  r128.high64 = (xxh_u64)(product >> 64);
-  return r128;
-
-    /*
-     * MSVC for x64's _umul128 method.
-     *
-     * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64
-     * *HighProduct);
-     *
-     * This compiles to single operand MUL on x64.
-     */
-#elif defined(_M_X64) || defined(_M_IA64)
-
-  #ifndef _MSC_VER
-    #pragma intrinsic(_umul128)
-  #endif
-  xxh_u64       product_high;
-  xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
-  XXH128_hash_t r128;
-  r128.low64 = product_low;
-  r128.high64 = product_high;
-  return r128;
-
-#else
-  /*
-   * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
-   *
-   * This is a fast and simple grade school multiply, which is shown below
-   * with base 10 arithmetic instead of base 0x100000000.
-   *
-   *           9 3 // D2 lhs = 93
-   *         x 7 5 // D2 rhs = 75
-   *     ----------
-   *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
-   *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
-   *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
-   *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
-   *     ---------
-   *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
-   *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
-   *     ---------
-   *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
-   *
-   * The reasons for adding the products like this are:
-   *  1. It avoids manual carry tracking. Just like how
-   *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
-   *     This avoids a lot of complexity.
-   *
-   *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
-   *     instruction available in ARM's Digital Signal Processing extension
-   *     in 32-bit ARMv6 and later, which is shown below:
-   *
-   *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
-   *         {
-
-   *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
-   *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
-   *             *RdHi = (xxh_u32)(product >> 32);
-   *         }
-   *
-   *     This instruction was designed for efficient long multiplication, and
-   *     allows this to be calculated in only 4 instructions at speeds
-   *     comparable to some 64-bit ALUs.
-   *
-   *  3. It isn't terrible on other platforms. Usually this will be a couple
-   *     of 32-bit ADD/ADCs.
-   */
-
-  /* First calculate all of the cross products. */
-  xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
-  xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
-  xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
-  xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
-
-  /* Now add the products together. These will never overflow. */
-  xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
-  xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
-  xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
-
-  XXH128_hash_t r128;
-  r128.low64 = lower;
-  r128.high64 = upper;
-  return r128;
-#endif
-
-}
-
-/*
- * Does a 64-bit to 128-bit multiply, then XOR folds it.
- *
- * The reason for the separate function is to prevent passing too many structs
- * around by value. This will hopefully inline the multiply, but we don't force
- * it.
- */
-static xxh_u64 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) {
-
-  XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
-  return product.low64 ^ product.high64;
-
-}
-
-/* Seems to produce slightly better code on GCC for some reason. */
-XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) {
-
-  XXH_ASSERT(0 <= shift && shift < 64);
-  return v64 ^ (v64 >> shift);
-
-}
-
-/*
- * We don't need to (or want to) mix as much as XXH64.
- *
- * Short hashes are more evenly distributed, so it isn't necessary.
- */
-static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) {
-
-  h64 = XXH_xorshift64(h64, 37);
-  h64 *= 0x165667919E3779F9ULL;
-  h64 = XXH_xorshift64(h64, 32);
-  return h64;
-
-}
-
-/* ==========================================
- * Short keys
- * ==========================================
- * One of the shortcomings of XXH32 and XXH64 was that their performance was
- * sub-optimal on short lengths. It used an iterative algorithm which strongly
- * favored lengths that were a multiple of 4 or 8.
- *
- * Instead of iterating over individual inputs, we use a set of single shot
- * functions which piece together a range of lengths and operate in constant
- * time.
- *
- * Additionally, the number of multiplies has been significantly reduced. This
- * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
- *
- * Depending on the platform, this may or may not be faster than XXH32, but it
- * is almost guaranteed to be faster than XXH64.
- */
-
-/*
- * At very short lengths, there isn't enough input to fully hide secrets, or use
- * the entire secret.
- *
- * There is also only a limited amount of mixing we can do before significantly
- * impacting performance.
- *
- * Therefore, we use different sections of the secret and always mix two secret
- * samples with an XOR. This should have no effect on performance on the
- * seedless or withSeed variants because everything _should_ be constant folded
- * by modern compilers.
- *
- * The XOR mixing hides individual parts of the secret and increases entropy.
- *
- * This adds an extra layer of strength for custom secrets.
- */
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_1to3_64b(const xxh_u8 *input, size_t len,
-                                                const xxh_u8 *secret,
-                                                XXH64_hash_t  seed) {
-
-  XXH_ASSERT(input != NULL);
-  XXH_ASSERT(1 <= len && len <= 3);
-  XXH_ASSERT(secret != NULL);
-  /*
-   * len = 1: combined = { input[0], 0x01, input[0], input[0] }
-   * len = 2: combined = { input[1], 0x02, input[0], input[1] }
-   * len = 3: combined = { input[2], 0x03, input[0], input[1] }
-   */
-  {
-
-    xxh_u8 const  c1 = input[0];
-    xxh_u8 const  c2 = input[len >> 1];
-    xxh_u8 const  c3 = input[len - 1];
-    xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
-                             ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
-    xxh_u64 const bitflip =
-        (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed;
-    xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
-    xxh_u64 const mixed = keyed * XXH_PRIME64_1;
-    return XXH3_avalanche(mixed);
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_4to8_64b(const xxh_u8 *input, size_t len,
-                                                const xxh_u8 *secret,
-                                                XXH64_hash_t  seed) {
-
-  XXH_ASSERT(input != NULL);
-  XXH_ASSERT(secret != NULL);
-  XXH_ASSERT(4 <= len && len < 8);
-  seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
-  {
-
-    xxh_u32 const input1 = XXH_readLE32(input);
-    xxh_u32 const input2 = XXH_readLE32(input + len - 4);
-    xxh_u64 const bitflip =
-        (XXH_readLE64(secret + 8) ^ XXH_readLE64(secret + 16)) - seed;
-    xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
-    xxh_u64       x = input64 ^ bitflip;
-    /* this mix is inspired by Pelle Evensen's rrmxmx */
-    x ^= XXH_rotl64(x, 49) ^ XXH_rotl64(x, 24);
-    x *= 0x9FB21C651E98DF25ULL;
-    x ^= (x >> 35) + len;
-    x *= 0x9FB21C651E98DF25ULL;
-    return XXH_xorshift64(x, 28);
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_9to16_64b(const xxh_u8 *input,
-                                                 size_t        len,
-                                                 const xxh_u8 *secret,
-                                                 XXH64_hash_t  seed) {
-
-  XXH_ASSERT(input != NULL);
-  XXH_ASSERT(secret != NULL);
-  XXH_ASSERT(8 <= len && len <= 16);
-  {
-
-    xxh_u64 const bitflip1 =
-        (XXH_readLE64(secret + 24) ^ XXH_readLE64(secret + 32)) + seed;
-    xxh_u64 const bitflip2 =
-        (XXH_readLE64(secret + 40) ^ XXH_readLE64(secret + 48)) - seed;
-    xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
-    xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
-    xxh_u64 const acc = len + XXH_swap64(input_lo) + input_hi +
-                        XXH3_mul128_fold64(input_lo, input_hi);
-    return XXH3_avalanche(acc);
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_0to16_64b(const xxh_u8 *input,
-                                                 size_t        len,
-                                                 const xxh_u8 *secret,
-                                                 XXH64_hash_t  seed) {
-
-  XXH_ASSERT(len <= 16);
-  {
-
-    if (XXH_likely(len > 8))
-      return XXH3_len_9to16_64b(input, len, secret, seed);
-    if (XXH_likely(len >= 4))
-      return XXH3_len_4to8_64b(input, len, secret, seed);
-    if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
-    return XXH3_avalanche((XXH_PRIME64_1 + seed) ^ (XXH_readLE64(secret + 56) ^
-                                                    XXH_readLE64(secret + 64)));
-
-  }
-
-}
-
-/*
- * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
- * multiplication by zero, affecting hashes of lengths 17 to 240.
- *
- * However, they are very unlikely.
- *
- * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
- * unseeded non-cryptographic hashes, it does not attempt to defend itself
- * against specially crafted inputs, only random inputs.
- *
- * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
- * cancelling out the secret is taken an arbitrary number of times (addressed
- * in XXH3_accumulate_512), this collision is very unlikely with random inputs
- * and/or proper seeding:
- *
- * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
- * function that is only called up to 16 times per hash with up to 240 bytes of
- * input.
- *
- * This is not too bad for a non-cryptographic hash function, especially with
- * only 64 bit outputs.
- *
- * The 128-bit variant (which trades some speed for strength) is NOT affected
- * by this, although it is always a good idea to use a proper seed if you care
- * about strength.
- */
-XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8 *XXH_RESTRICT input,
-                                     const xxh_u8 *XXH_RESTRICT secret,
-                                     xxh_u64                    seed64) {
-
-#if defined(__GNUC__) && !defined(__clang__)  /* GCC, not Clang */ \
-    && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */     \
-    &&                                                             \
-    !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
-  /*
-   * UGLY HACK:
-   * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
-   * slower code.
-   *
-   * By forcing seed64 into a register, we disrupt the cost model and
-   * cause it to scalarize. See `XXH32_round()`
-   *
-   * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
-   * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
-   * GCC 9.2, despite both emitting scalar code.
-   *
-   * GCC generates much better scalar code than Clang for the rest of XXH3,
-   * which is why finding a more optimal codepath is an interest.
-   */
-  __asm__("" : "+r"(seed64));
-#endif
-  {
-
-    xxh_u64 const input_lo = XXH_readLE64(input);
-    xxh_u64 const input_hi = XXH_readLE64(input + 8);
-    return XXH3_mul128_fold64(input_lo ^ (XXH_readLE64(secret) + seed64),
-                              input_hi ^ (XXH_readLE64(secret + 8) - seed64));
-
-  }
-
-}
-
-/* For mid range keys, XXH3 uses a Mum-hash variant. */
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_17to128_64b(
-    const xxh_u8 *XXH_RESTRICT input, size_t len,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
-
-  XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-  (void)secretSize;
-  XXH_ASSERT(16 < len && len <= 128);
-
-  {
-
-    xxh_u64 acc = len * XXH_PRIME64_1;
-    if (len > 32) {
-
-      if (len > 64) {
-
-        if (len > 96) {
-
-          acc += XXH3_mix16B(input + 48, secret + 96, seed);
-          acc += XXH3_mix16B(input + len - 64, secret + 112, seed);
-
-        }
-
-        acc += XXH3_mix16B(input + 32, secret + 64, seed);
-        acc += XXH3_mix16B(input + len - 48, secret + 80, seed);
-
-      }
-
-      acc += XXH3_mix16B(input + 16, secret + 32, seed);
-      acc += XXH3_mix16B(input + len - 32, secret + 48, seed);
-
-    }
-
-    acc += XXH3_mix16B(input + 0, secret + 0, seed);
-    acc += XXH3_mix16B(input + len - 16, secret + 16, seed);
-
-    return XXH3_avalanche(acc);
-
-  }
-
-}
-
-#define XXH3_MIDSIZE_MAX 240
-
-XXH_NO_INLINE XXH64_hash_t XXH3_len_129to240_64b(
-    const xxh_u8 *XXH_RESTRICT input, size_t len,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
-
-  XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-  (void)secretSize;
-  XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
-
-#define XXH3_MIDSIZE_STARTOFFSET 3
-#define XXH3_MIDSIZE_LASTOFFSET 17
-
-  {
-
-    xxh_u64   acc = len * XXH_PRIME64_1;
-    int const nbRounds = (int)len / 16;
-    int       i;
-    for (i = 0; i < 8; i++) {
-
-      acc += XXH3_mix16B(input + (16 * i), secret + (16 * i), seed);
-
-    }
-
-    acc = XXH3_avalanche(acc);
-    XXH_ASSERT(nbRounds >= 8);
-#if defined(__clang__)                                /* Clang */ \
-    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
-    && !defined(XXH_ENABLE_AUTOVECTORIZE)              /* Define to disable */
-  /*
-   * UGLY HACK:
-   * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
-   * In everywhere else, it uses scalar code.
-   *
-   * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
-   * would still be slower than UMAAL (see XXH_mult64to128).
-   *
-   * Unfortunately, Clang doesn't handle the long multiplies properly and
-   * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
-   * scalarized into an ugly mess of VMOV.32 instructions.
-   *
-   * This mess is difficult to avoid without turning autovectorization
-   * off completely, but they are usually relatively minor and/or not
-   * worth it to fix.
-   *
-   * This loop is the easiest to fix, as unlike XXH32, this pragma
-   * _actually works_ because it is a loop vectorization instead of an
-   * SLP vectorization.
-   */
-  #pragma clang loop vectorize(disable)
-#endif
-    for (i = 8; i < nbRounds; i++) {
-
-      acc +=
-          XXH3_mix16B(input + (16 * i),
-                      secret + (16 * (i - 8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
-
-    }
-
-    /* last bytes */
-    acc += XXH3_mix16B(input + len - 16,
-                       secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET,
-                       seed);
-    return XXH3_avalanche(acc);
-
-  }
-
-}
-
-/* =======     Long Keys     ======= */
-
-#define XXH_STRIPE_LEN 64
-#define XXH_SECRET_CONSUME_RATE \
-  8                     /* nb of secret bytes consumed at each accumulation */
-#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
-
-#ifdef XXH_OLD_NAMES
-  #define STRIPE_LEN XXH_STRIPE_LEN
-  #define ACC_NB XXH_ACC_NB
-#endif
-
-typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e;
-
-XXH_FORCE_INLINE void XXH_writeLE64(void *dst, xxh_u64 v64) {
-
-  if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
-  memcpy(dst, &v64, sizeof(v64));
-
-}
-
-/* Several intrinsic functions below are supposed to accept __int64 as argument,
- * as documented in
- * https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . However,
- * several environments do not define __int64 type, requiring a workaround.
- */
-#if !defined(__VMS) &&       \
-    (defined(__cplusplus) || \
-     (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */))
-typedef int64_t xxh_i64;
-#else
-/* the following type must have a width of 64-bit */
-typedef long long xxh_i64;
-#endif
-
-/*
- * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most
- * optimized.
- *
- * It is a hardened version of UMAC, based off of FARSH's implementation.
- *
- * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
- * implementations, and it is ridiculously fast.
- *
- * We harden it by mixing the original input to the accumulators as well as the
- * product.
- *
- * This means that in the (relatively likely) case of a multiply by zero, the
- * original input is preserved.
- *
- * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
- * cross-pollination, as otherwise the upper and lower halves would be
- * essentially independent.
- *
- * This doesn't matter on 64-bit hashes since they all get merged together in
- * the end, so we skip the extra step.
- *
- * Both XXH3_64bits and XXH3_128bits use this subroutine.
- */
-
-#if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH)
-
-  #ifndef XXH_TARGET_AVX512
-    #define XXH_TARGET_AVX512                   /* disable attribute target */
-  #endif
-
-XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_accumulate_512_avx512(
-    void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
-    const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) {
-
-  XXH_ALIGN(64) __m512i *const xacc = (__m512i *)acc;
-  XXH_ASSERT((((size_t)acc) & 63) == 0);
-  XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
-
-  {
-
-    /* data_vec    = input[0]; */
-    __m512i const data_vec = _mm512_loadu_si512(input);
-    /* key_vec     = secret[0]; */
-    __m512i const key_vec = _mm512_loadu_si512(secret);
-    /* data_key    = data_vec ^ key_vec; */
-    __m512i const data_key = _mm512_xor_si512(data_vec, key_vec);
-    /* data_key_lo = data_key >> 32; */
-    __m512i const data_key_lo =
-        _mm512_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
-    /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
-    __m512i const product = _mm512_mul_epu32(data_key, data_key_lo);
-    if (accWidth == XXH3_acc_128bits) {
-
-      /* xacc[0] += swap(data_vec); */
-      __m512i const data_swap =
-          _mm512_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
-      __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
-      /* xacc[0] += product; */
-      *xacc = _mm512_add_epi64(product, sum);
-
-    } else {                                             /* XXH3_acc_64bits */
-
-      /* xacc[0] += data_vec; */
-      __m512i const sum = _mm512_add_epi64(*xacc, data_vec);
-      /* xacc[0] += product; */
-      *xacc = _mm512_add_epi64(product, sum);
-
-    }
-
-  }
-
-}
-
-/*
- * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
- *
- * Multiplication isn't perfect, as explained by Google in HighwayHash:
- *
- *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
- *  // varying degrees. In descending order of goodness, bytes
- *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
- *  // As expected, the upper and lower bytes are much worse.
- *
- * Source:
- * https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
- *
- * Since our algorithm uses a pseudorandom secret to add some variance into the
- * mix, we don't need to (or want to) mix as often or as much as HighwayHash
- * does.
- *
- * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
- * extraction.
- *
- * Both XXH3_64bits and XXH3_128bits use this subroutine.
- */
-
-XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_scrambleAcc_avx512(
-    void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) {
-
-  XXH_ASSERT((((size_t)acc) & 63) == 0);
-  XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
-  {
-
-    XXH_ALIGN(64) __m512i *const xacc = (__m512i *)acc;
-    const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
-
-    /* xacc[0] ^= (xacc[0] >> 47) */
-    __m512i const acc_vec = *xacc;
-    __m512i const shifted = _mm512_srli_epi64(acc_vec, 47);
-    __m512i const data_vec = _mm512_xor_si512(acc_vec, shifted);
-    /* xacc[0] ^= secret; */
-    __m512i const key_vec = _mm512_loadu_si512(secret);
-    __m512i const data_key = _mm512_xor_si512(data_vec, key_vec);
-
-    /* xacc[0] *= XXH_PRIME32_1; */
-    __m512i const data_key_hi =
-        _mm512_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
-    __m512i const prod_lo = _mm512_mul_epu32(data_key, prime32);
-    __m512i const prod_hi = _mm512_mul_epu32(data_key_hi, prime32);
-    *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_initCustomSecret_avx512(
-    void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
-
-  XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
-  XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
-  XXH_ASSERT(((size_t)customSecret & 63) == 0);
-  (void)(&XXH_writeLE64);
-  {
-
-    int const     nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
-    __m512i const seed = _mm512_mask_set1_epi64(
-        _mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64);
-
-    XXH_ALIGN(64) const __m512i *const src = (const __m512i *)XXH3_kSecret;
-    XXH_ALIGN(64) __m512i *const       dest = (__m512i *)customSecret;
-    int                                i;
-    for (i = 0; i < nbRounds; ++i) {
-
-      // GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void
-      // const*', this will warn "discards ‘const’ qualifier".
-      union {
-
-        XXH_ALIGN(64) const __m512i *const cp;
-        XXH_ALIGN(64) void *const p;
-
-      } const remote_const_void = {.cp = src + i};
-
-      dest[i] =
-          _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
-
-    }
-
-  }
-
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH)
-
-  #ifndef XXH_TARGET_AVX2
-    #define XXH_TARGET_AVX2                     /* disable attribute target */
-  #endif
-
-XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_accumulate_512_avx2(
-    void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
-    const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) {
-
-  XXH_ASSERT((((size_t)acc) & 31) == 0);
-  {
-
-    XXH_ALIGN(32) __m256i *const xacc = (__m256i *)acc;
-    /* Unaligned. This is mainly for pointer arithmetic, and because
-     * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason.
-     */
-    const __m256i *const xinput = (const __m256i *)input;
-    /* Unaligned. This is mainly for pointer arithmetic, and because
-     * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
-    const __m256i *const xsecret = (const __m256i *)secret;
-
-    size_t i;
-    for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) {
-
-      /* data_vec    = xinput[i]; */
-      __m256i const data_vec = _mm256_loadu_si256(xinput + i);
-      /* key_vec     = xsecret[i]; */
-      __m256i const key_vec = _mm256_loadu_si256(xsecret + i);
-      /* data_key    = data_vec ^ key_vec; */
-      __m256i const data_key = _mm256_xor_si256(data_vec, key_vec);
-      /* data_key_lo = data_key >> 32; */
-      __m256i const data_key_lo =
-          _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
-      /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
-      __m256i const product = _mm256_mul_epu32(data_key, data_key_lo);
-      if (accWidth == XXH3_acc_128bits) {
-
-        /* xacc[i] += swap(data_vec); */
-        __m256i const data_swap =
-            _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
-        __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
-        /* xacc[i] += product; */
-        xacc[i] = _mm256_add_epi64(product, sum);
-
-      } else {                                           /* XXH3_acc_64bits */
-
-        /* xacc[i] += data_vec; */
-        __m256i const sum = _mm256_add_epi64(xacc[i], data_vec);
-        /* xacc[i] += product; */
-        xacc[i] = _mm256_add_epi64(product, sum);
-
-      }
-
-    }
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_scrambleAcc_avx2(
-    void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) {
-
-  XXH_ASSERT((((size_t)acc) & 31) == 0);
-  {
-
-    XXH_ALIGN(32) __m256i *const xacc = (__m256i *)acc;
-    /* Unaligned. This is mainly for pointer arithmetic, and because
-     * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
-    const __m256i *const xsecret = (const __m256i *)secret;
-    const __m256i        prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
-
-    size_t i;
-    for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) {
-
-      /* xacc[i] ^= (xacc[i] >> 47) */
-      __m256i const acc_vec = xacc[i];
-      __m256i const shifted = _mm256_srli_epi64(acc_vec, 47);
-      __m256i const data_vec = _mm256_xor_si256(acc_vec, shifted);
-      /* xacc[i] ^= xsecret; */
-      __m256i const key_vec = _mm256_loadu_si256(xsecret + i);
-      __m256i const data_key = _mm256_xor_si256(data_vec, key_vec);
-
-      /* xacc[i] *= XXH_PRIME32_1; */
-      __m256i const data_key_hi =
-          _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
-      __m256i const prod_lo = _mm256_mul_epu32(data_key, prime32);
-      __m256i const prod_hi = _mm256_mul_epu32(data_key_hi, prime32);
-      xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
-
-    }
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(
-    void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
-
-  XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
-  XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
-  XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
-  (void)(&XXH_writeLE64);
-  XXH_PREFETCH(customSecret);
-  {
-
-    __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64,
-                                           -(xxh_i64)seed64, (xxh_i64)seed64);
-
-    XXH_ALIGN(64) const __m256i *const src = (const __m256i *)XXH3_kSecret;
-    XXH_ALIGN(64) __m256i *            dest = (__m256i *)customSecret;
-
-  #if defined(__GNUC__) || defined(__clang__)
-    /*
-     * On GCC & Clang, marking 'dest' as modified will cause the compiler:
-     *   - do not extract the secret from sse registers in the internal loop
-     *   - use less common registers, and avoid pushing these reg into stack
-     * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with
-     * customSecret, and on aarch64, this prevented LDP from merging two
-     * loads together for free. Putting the loads together before the stores
-     * properly generates LDP.
-     */
-    __asm__("" : "+r"(dest));
-  #endif
-
-    /* GCC -O2 need unroll loop manually */
-    dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src + 0), seed);
-    dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src + 1), seed);
-    dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src + 2), seed);
-    dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src + 3), seed);
-    dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src + 4), seed);
-    dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src + 5), seed);
-
-  }
-
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
-
-  #ifndef XXH_TARGET_SSE2
-    #define XXH_TARGET_SSE2                     /* disable attribute target */
-  #endif
-
-XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_accumulate_512_sse2(
-    void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
-    const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) {
-
-  /* SSE2 is just a half-scale version of the AVX2 version. */
-  XXH_ASSERT((((size_t)acc) & 15) == 0);
-  {
-
-    XXH_ALIGN(16) __m128i *const xacc = (__m128i *)acc;
-    /* Unaligned. This is mainly for pointer arithmetic, and because
-     * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
-    const __m128i *const xinput = (const __m128i *)input;
-    /* Unaligned. This is mainly for pointer arithmetic, and because
-     * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
-    const __m128i *const xsecret = (const __m128i *)secret;
-
-    size_t i;
-    for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
-
-      /* data_vec    = xinput[i]; */
-      __m128i const data_vec = _mm_loadu_si128(xinput + i);
-      /* key_vec     = xsecret[i]; */
-      __m128i const key_vec = _mm_loadu_si128(xsecret + i);
-      /* data_key    = data_vec ^ key_vec; */
-      __m128i const data_key = _mm_xor_si128(data_vec, key_vec);
-      /* data_key_lo = data_key >> 32; */
-      __m128i const data_key_lo =
-          _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
-      /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
-      __m128i const product = _mm_mul_epu32(data_key, data_key_lo);
-      if (accWidth == XXH3_acc_128bits) {
-
-        /* xacc[i] += swap(data_vec); */
-        __m128i const data_swap =
-            _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
-        __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
-        /* xacc[i] += product; */
-        xacc[i] = _mm_add_epi64(product, sum);
-
-      } else {                                           /* XXH3_acc_64bits */
-
-        /* xacc[i] += data_vec; */
-        __m128i const sum = _mm_add_epi64(xacc[i], data_vec);
-        /* xacc[i] += product; */
-        xacc[i] = _mm_add_epi64(product, sum);
-
-      }
-
-    }
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_scrambleAcc_sse2(
-    void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) {
-
-  XXH_ASSERT((((size_t)acc) & 15) == 0);
-  {
-
-    XXH_ALIGN(16) __m128i *const xacc = (__m128i *)acc;
-    /* Unaligned. This is mainly for pointer arithmetic, and because
-     * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
-    const __m128i *const xsecret = (const __m128i *)secret;
-    const __m128i        prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
-
-    size_t i;
-    for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
-
-      /* xacc[i] ^= (xacc[i] >> 47) */
-      __m128i const acc_vec = xacc[i];
-      __m128i const shifted = _mm_srli_epi64(acc_vec, 47);
-      __m128i const data_vec = _mm_xor_si128(acc_vec, shifted);
-      /* xacc[i] ^= xsecret[i]; */
-      __m128i const key_vec = _mm_loadu_si128(xsecret + i);
-      __m128i const data_key = _mm_xor_si128(data_vec, key_vec);
-
-      /* xacc[i] *= XXH_PRIME32_1; */
-      __m128i const data_key_hi =
-          _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
-      __m128i const prod_lo = _mm_mul_epu32(data_key, prime32);
-      __m128i const prod_hi = _mm_mul_epu32(data_key_hi, prime32);
-      xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
-
-    }
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(
-    void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
-
-  XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
-  (void)(&XXH_writeLE64);
-  {
-
-    int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
-
-  #if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
-    // MSVC 32bit mode does not support _mm_set_epi64x before 2015
-    XXH_ALIGN(16)
-    const xxh_i64 seed64x2[2] = {(xxh_i64)seed64, -(xxh_i64)seed64};
-    __m128i const seed = _mm_load_si128((__m128i const *)seed64x2);
-  #else
-    __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64);
-  #endif
-    int i;
-
-    XXH_ALIGN(64) const float *const  src = (float const *)XXH3_kSecret;
-    XXH_ALIGN(XXH_SEC_ALIGN) __m128i *dest = (__m128i *)customSecret;
-  #if defined(__GNUC__) || defined(__clang__)
-    /*
-     * On GCC & Clang, marking 'dest' as modified will cause the compiler:
-     *   - do not extract the secret from sse registers in the internal loop
-     *   - use less common registers, and avoid pushing these reg into stack
-     */
-    __asm__("" : "+r"(dest));
-  #endif
-
-    for (i = 0; i < nbRounds; ++i) {
-
-      dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src + i * 4)), seed);
-
-    }
-
-  }
-
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_NEON)
-
-XXH_FORCE_INLINE void XXH3_accumulate_512_neon(void *XXH_RESTRICT       acc,
-                                               const void *XXH_RESTRICT input,
-                                               const void *XXH_RESTRICT secret,
-                                               XXH3_accWidth_e accWidth) {
-
-  XXH_ASSERT((((size_t)acc) & 15) == 0);
-  {
-
-    XXH_ALIGN(16) uint64x2_t *const xacc = (uint64x2_t *)acc;
-    /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7.
-     */
-    uint8_t const *const xinput = (const uint8_t *)input;
-    uint8_t const *const xsecret = (const uint8_t *)secret;
-
-    size_t i;
-    for (i = 0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
-
-      /* data_vec = xinput[i]; */
-      uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
-      /* key_vec  = xsecret[i];  */
-      uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
-      uint64x2_t data_key;
-      uint32x2_t data_key_lo, data_key_hi;
-      if (accWidth == XXH3_acc_64bits) {
-
-        /* xacc[i] += data_vec; */
-        xacc[i] = vaddq_u64(xacc[i], vreinterpretq_u64_u8(data_vec));
-
-      } else {                                          /* XXH3_acc_128bits */
-
-        /* xacc[i] += swap(data_vec); */
-        uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
-        uint64x2_t const swapped = vextq_u64(data64, data64, 1);
-        xacc[i] = vaddq_u64(xacc[i], swapped);
-
-      }
-
-      /* data_key = data_vec ^ key_vec; */
-      data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
-      /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
-       * data_key_hi = (uint32x2_t) (data_key >> 32);
-       * data_key = UNDEFINED; */
-      XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
-      /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
-      xacc[i] = vmlal_u32(xacc[i], data_key_lo, data_key_hi);
-
-    }
-
-  }
-
-}
-
-XXH_FORCE_INLINE void XXH3_scrambleAcc_neon(void *XXH_RESTRICT       acc,
-                                            const void *XXH_RESTRICT secret) {
-
-  XXH_ASSERT((((size_t)acc) & 15) == 0);
-
-  {
-
-    uint64x2_t *   xacc = (uint64x2_t *)acc;
-    uint8_t const *xsecret = (uint8_t const *)secret;
-    uint32x2_t     prime = vdup_n_u32(XXH_PRIME32_1);
-
-    size_t i;
-    for (i = 0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
-
-      /* xacc[i] ^= (xacc[i] >> 47); */
-      uint64x2_t acc_vec = xacc[i];
-      uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
-      uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
-
-      /* xacc[i] ^= xsecret[i]; */
-      uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
-      uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
-
-      /* xacc[i] *= XXH_PRIME32_1 */
-      uint32x2_t data_key_lo, data_key_hi;
-      /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
-       * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
-       * xacc[i] = UNDEFINED; */
-      XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
-      { /*
-         * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
-         *
-         * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
-         * incorrectly "optimize" this:
-         *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b));
-         *   shifted = vshll_n_u32(tmp, 32);
-         * to this:
-         *   tmp     = "vmulq_u64"(a, b); // no such thing!
-         *   shifted = vshlq_n_u64(tmp, 32);
-         *
-         * However, unlike SSE, Clang lacks a 64-bit multiply routine
-         * for NEON, and it scalarizes two 64-bit multiplies instead.
-         *
-         * vmull_u32 has the same timing as vmul_u32, and it avoids
-         * this bug completely.
-         * See https://bugs.llvm.org/show_bug.cgi?id=39967
-         */
-        uint64x2_t prod_hi = vmull_u32(data_key_hi, prime);
-        /* xacc[i] = prod_hi << 32; */
-        xacc[i] = vshlq_n_u64(prod_hi, 32);
-        /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
-        xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
-
-      }
-
-    }
-
-  }
-
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_VSX)
-
-XXH_FORCE_INLINE void XXH3_accumulate_512_vsx(void *XXH_RESTRICT       acc,
-                                              const void *XXH_RESTRICT input,
-                                              const void *XXH_RESTRICT secret,
-                                              XXH3_accWidth_e accWidth) {
-
-  xxh_u64x2 *const       xacc = (xxh_u64x2 *)acc;       /* presumed aligned */
-  xxh_u64x2 const *const xinput =
-      (xxh_u64x2 const *)input;                 /* no alignment restriction */
-  xxh_u64x2 const *const xsecret =
-      (xxh_u64x2 const *)secret;                /* no alignment restriction */
-  xxh_u64x2 const v32 = {32, 32};
-  size_t          i;
-  for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
-
-    /* data_vec = xinput[i]; */
-    xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
-    /* key_vec = xsecret[i]; */
-    xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
-    xxh_u64x2 const data_key = data_vec ^ key_vec;
-    /* shuffled = (data_key << 32) | (data_key >> 32); */
-    xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
-    /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled &
-     * 0xFFFFFFFF); */
-    xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
-    xacc[i] += product;
-
-    if (accWidth == XXH3_acc_64bits) {
-
-      xacc[i] += data_vec;
-
-    } else {                                            /* XXH3_acc_128bits */
-
-        /* swap high and low halves */
-  #ifdef __s390x__
-      xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2);
-  #else
-      xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
-  #endif
-      xacc[i] += data_swapped;
-
-    }
-
-  }
-
-}
-
-XXH_FORCE_INLINE void XXH3_scrambleAcc_vsx(void *XXH_RESTRICT       acc,
-                                           const void *XXH_RESTRICT secret) {
-
-  XXH_ASSERT((((size_t)acc) & 15) == 0);
-
-  {
-
-    xxh_u64x2 *const       xacc = (xxh_u64x2 *)acc;
-    const xxh_u64x2 *const xsecret = (const xxh_u64x2 *)secret;
-    /* constants */
-    xxh_u64x2 const v32 = {32, 32};
-    xxh_u64x2 const v47 = {47, 47};
-    xxh_u32x4 const prime = {XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1,
-                             XXH_PRIME32_1};
-    size_t          i;
-    for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
-
-      /* xacc[i] ^= (xacc[i] >> 47); */
-      xxh_u64x2 const acc_vec = xacc[i];
-      xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
-
-      /* xacc[i] ^= xsecret[i]; */
-      xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
-      xxh_u64x2 const data_key = data_vec ^ key_vec;
-
-      /* xacc[i] *= XXH_PRIME32_1 */
-      /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime &
-       * 0xFFFFFFFF);  */
-      xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
-      /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
-      xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
-      xacc[i] = prod_odd + (prod_even << v32);
-
-    }
-
-  }
-
-}
-
-#endif
-
-/* scalar variants - universal */
-
-XXH_FORCE_INLINE void XXH3_accumulate_512_scalar(
-    void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
-    const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) {
-
-  XXH_ALIGN(XXH_ACC_ALIGN)
-  xxh_u64 *const      xacc = (xxh_u64 *)acc;            /* presumed aligned */
-  const xxh_u8 *const xinput =
-      (const xxh_u8 *)input;                    /* no alignment restriction */
-  const xxh_u8 *const xsecret =
-      (const xxh_u8 *)secret;                   /* no alignment restriction */
-  size_t i;
-  XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN - 1)) == 0);
-  for (i = 0; i < XXH_ACC_NB; i++) {
-
-    xxh_u64 const data_val = XXH_readLE64(xinput + 8 * i);
-    xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i * 8);
-
-    if (accWidth == XXH3_acc_64bits) {
-
-      xacc[i] += data_val;
-
-    } else {
-
-      xacc[i ^ 1] += data_val;                       /* swap adjacent lanes */
-
-    }
-
-    xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
-
-  }
-
-}
-
-XXH_FORCE_INLINE void XXH3_scrambleAcc_scalar(void *XXH_RESTRICT       acc,
-                                              const void *XXH_RESTRICT secret) {
-
-  XXH_ALIGN(XXH_ACC_ALIGN)
-  xxh_u64 *const      xacc = (xxh_u64 *)acc;            /* presumed aligned */
-  const xxh_u8 *const xsecret =
-      (const xxh_u8 *)secret;                   /* no alignment restriction */
-  size_t i;
-  XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN - 1)) == 0);
-  for (i = 0; i < XXH_ACC_NB; i++) {
-
-    xxh_u64 const key64 = XXH_readLE64(xsecret + 8 * i);
-    xxh_u64       acc64 = xacc[i];
-    acc64 = XXH_xorshift64(acc64, 47);
-    acc64 ^= key64;
-    acc64 *= XXH_PRIME32_1;
-    xacc[i] = acc64;
-
-  }
-
-}
-
-XXH_FORCE_INLINE void XXH3_initCustomSecret_scalar(
-    void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
-
-  /*
-   * We need a separate pointer for the hack below,
-   * which requires a non-const pointer.
-   * Any decent compiler will optimize this out otherwise.
-   */
-  const xxh_u8 *kSecretPtr = XXH3_kSecret;
-  XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
-
-#if defined(__clang__) && defined(__aarch64__)
-  /*
-   * UGLY HACK:
-   * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
-   * placed sequentially, in order, at the top of the unrolled loop.
-   *
-   * While MOVK is great for generating constants (2 cycles for a 64-bit
-   * constant compared to 4 cycles for LDR), long MOVK chains stall the
-   * integer pipelines:
-   *   I   L   S
-   * MOVK
-   * MOVK
-   * MOVK
-   * MOVK
-   * ADD
-   * SUB      STR
-   *          STR
-   * By forcing loads from memory (as the asm line causes Clang to assume
-   * that XXH3_kSecretPtr has been changed), the pipelines are used more
-   * efficiently:
-   *   I   L   S
-   *      LDR
-   *  ADD LDR
-   *  SUB     STR
-   *          STR
-   * XXH3_64bits_withSeed, len == 256, Snapdragon 835
-   *   without hack: 2654.4 MB/s
-   *   with hack:    3202.9 MB/s
-   */
-  __asm__("" : "+r"(kSecretPtr));
-#endif
-  /*
-   * Note: in debug mode, this overrides the asm optimization
-   * and Clang will emit MOVK chains again.
-   */
-  XXH_ASSERT(kSecretPtr == XXH3_kSecret);
-
-  {
-
-    int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
-    int       i;
-    for (i = 0; i < nbRounds; i++) {
-
-      /*
-       * The asm hack causes Clang to assume that kSecretPtr aliases with
-       * customSecret, and on aarch64, this prevented LDP from merging two
-       * loads together for free. Putting the loads together before the stores
-       * properly generates LDP.
-       */
-      xxh_u64 lo = XXH_readLE64(kSecretPtr + 16 * i) + seed64;
-      xxh_u64 hi = XXH_readLE64(kSecretPtr + 16 * i + 8) - seed64;
-      XXH_writeLE64((xxh_u8 *)customSecret + 16 * i, lo);
-      XXH_writeLE64((xxh_u8 *)customSecret + 16 * i + 8, hi);
-
-    }
-
-  }
-
-}
-
-typedef void (*XXH3_f_accumulate_512)(void *XXH_RESTRICT, const void *,
-                                      const void *, XXH3_accWidth_e);
-typedef void (*XXH3_f_scrambleAcc)(void *XXH_RESTRICT, const void *);
-typedef void (*XXH3_f_initCustomSecret)(void *XXH_RESTRICT, xxh_u64);
-
-#if (XXH_VECTOR == XXH_AVX512)
-
-  #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
-  #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
-  #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
-
-#elif (XXH_VECTOR == XXH_AVX2)
-
-  #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
-  #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
-  #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
-
-#elif (XXH_VECTOR == XXH_SSE2)
-
-  #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
-  #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
-  #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
-
-#elif (XXH_VECTOR == XXH_NEON)
-
-  #define XXH3_accumulate_512 XXH3_accumulate_512_neon
-  #define XXH3_scrambleAcc XXH3_scrambleAcc_neon
-  #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
-
-#elif (XXH_VECTOR == XXH_VSX)
-
-  #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
-  #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
-  #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
-
-#else                                                             /* scalar */
-
-  #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
-  #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
-  #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
-
-#endif
-
-#ifndef XXH_PREFETCH_DIST
-  #ifdef __clang__
-    #define XXH_PREFETCH_DIST 320
-  #else
-    #if (XXH_VECTOR == XXH_AVX512)
-      #define XXH_PREFETCH_DIST 512
-    #else
-      #define XXH_PREFETCH_DIST 384
-    #endif
-  #endif                                                       /* __clang__ */
-#endif                                                 /* XXH_PREFETCH_DIST */
-
-/*
- * XXH3_accumulate()
- * Loops over XXH3_accumulate_512().
- * Assumption: nbStripes will not overflow the secret size
- */
-XXH_FORCE_INLINE void XXH3_accumulate(xxh_u64 *XXH_RESTRICT      acc,
-                                      const xxh_u8 *XXH_RESTRICT input,
-                                      const xxh_u8 *XXH_RESTRICT secret,
-                                      size_t                     nbStripes,
-                                      XXH3_accWidth_e            accWidth,
-                                      XXH3_f_accumulate_512      f_acc512) {
-
-  size_t n;
-  for (n = 0; n < nbStripes; n++) {
-
-    const xxh_u8 *const in = input + n * XXH_STRIPE_LEN;
-    XXH_PREFETCH(in + XXH_PREFETCH_DIST);
-    f_acc512(acc, in, secret + n * XXH_SECRET_CONSUME_RATE, accWidth);
-
-  }
-
-}
-
-XXH_FORCE_INLINE void XXH3_hashLong_internal_loop(
-    xxh_u64 *XXH_RESTRICT acc, const xxh_u8 *XXH_RESTRICT input, size_t len,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretSize,
-    XXH3_accWidth_e accWidth, XXH3_f_accumulate_512 f_acc512,
-    XXH3_f_scrambleAcc f_scramble) {
-
-  size_t const nb_rounds =
-      (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
-  size_t const block_len = XXH_STRIPE_LEN * nb_rounds;
-  size_t const nb_blocks = len / block_len;
-
-  size_t n;
-
-  XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-
-  for (n = 0; n < nb_blocks; n++) {
-
-    XXH3_accumulate(acc, input + n * block_len, secret, nb_rounds, accWidth,
-                    f_acc512);
-    f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
-
-  }
-
-  /* last partial block */
-  XXH_ASSERT(len > XXH_STRIPE_LEN);
-  {
-
-    size_t const nbStripes = (len - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
-    XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
-    XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes,
-                    accWidth, f_acc512);
-
-    /* last stripe */
-    if (len & (XXH_STRIPE_LEN - 1)) {
-
-      const xxh_u8 *const p = input + len - XXH_STRIPE_LEN;
-      /* Do not align on 8, so that the secret is different from the scrambler
-       */
-#define XXH_SECRET_LASTACC_START 7
-      f_acc512(acc, p,
-               secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START,
-               accWidth);
-
-    }
-
-  }
-
-}
-
-XXH_FORCE_INLINE xxh_u64 XXH3_mix2Accs(const xxh_u64 *XXH_RESTRICT acc,
-                                       const xxh_u8 *XXH_RESTRICT  secret) {
-
-  return XXH3_mul128_fold64(acc[0] ^ XXH_readLE64(secret),
-                            acc[1] ^ XXH_readLE64(secret + 8));
-
-}
-
-static XXH64_hash_t XXH3_mergeAccs(const xxh_u64 *XXH_RESTRICT acc,
-                                   const xxh_u8 *XXH_RESTRICT  secret,
-                                   xxh_u64                     start) {
-
-  xxh_u64 result64 = start;
-  size_t  i = 0;
-
-  for (i = 0; i < 4; i++) {
-
-    result64 += XXH3_mix2Accs(acc + 2 * i, secret + 16 * i);
-#if defined(__clang__)                                /* Clang */ \
-    && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
-    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
-    && !defined(XXH_ENABLE_AUTOVECTORIZE)              /* Define to disable */
-    /*
-     * UGLY HACK:
-     * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
-     * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
-     * XXH3_64bits, len == 256, Snapdragon 835:
-     *   without hack: 2063.7 MB/s
-     *   with hack:    2560.7 MB/s
-     */
-    __asm__("" : "+r"(result64));
-#endif
-
-  }
-
-  return XXH3_avalanche(result64);
-
-}
-
-#define XXH3_INIT_ACC                                                          \
-  {                                                                            \
-                                                                               \
-    XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, XXH_PRIME64_4, \
-        XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1                            \
-                                                                               \
-  }
-
-XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_internal(
-    const xxh_u8 *XXH_RESTRICT input, size_t len,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretSize,
-    XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble) {
-
-  XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
-
-  XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize,
-                              XXH3_acc_64bits, f_acc512, f_scramble);
-
-  /* converge into final hash */
-  XXH_STATIC_ASSERT(sizeof(acc) == 64);
-  /* do not align on 8, so that the secret is different from the accumulator */
-#define XXH_SECRET_MERGEACCS_START 11
-  XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
-  return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
-                        (xxh_u64)len * XXH_PRIME64_1);
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSecret(
-    const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
-
-  (void)seed64;
-  return XXH3_hashLong_64b_internal(input, len, secret, secretLen,
-                                    XXH3_accumulate_512, XXH3_scrambleAcc);
-
-}
-
-/*
- * XXH3_hashLong_64b_withSeed():
- * Generate a custom key based on alteration of default XXH3_kSecret with the
- * seed, and then use this key for long mode hashing.
- *
- * This operation is decently fast but nonetheless costs a little bit of time.
- * Try to avoid it whenever possible (typically when seed==0).
- *
- * It's important for performance that XXH3_hashLong is not inlined. Not sure
- * why (uop cache maybe?), but the difference is large and easily measurable.
- */
-XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed_internal(
-    const xxh_u8 *input, size_t len, XXH64_hash_t seed,
-    XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble,
-    XXH3_f_initCustomSecret f_initSec) {
-
-  if (seed == 0)
-    return XXH3_hashLong_64b_internal(
-        input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc512, f_scramble);
-  {
-
-    XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
-    f_initSec(secret, seed);
-    return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
-                                      f_acc512, f_scramble);
-
-  }
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed(const xxh_u8 *input,
-                                                      size_t        len,
-                                                      XXH64_hash_t  seed,
-                                                      const xxh_u8 *secret,
-                                                      size_t        secretLen) {
-
-  (void)secret;
-  (void)secretLen;
-  return XXH3_hashLong_64b_withSeed_internal(
-      input, len, seed, XXH3_accumulate_512, XXH3_scrambleAcc,
-      XXH3_initCustomSecret);
-
-}
-
-typedef XXH64_hash_t (*XXH3_hashLong64_f)(const xxh_u8 *XXH_RESTRICT, size_t,
-                                          XXH64_hash_t,
-                                          const xxh_u8 *XXH_RESTRICT, size_t);
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_64bits_internal(const void *XXH_RESTRICT input, size_t len,
-                     XXH64_hash_t seed64, const void *XXH_RESTRICT secret,
-                     size_t secretLen, XXH3_hashLong64_f f_hashLong) {
-
-  XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
-  /*
-   * If an action is to be taken if `secretLen` condition is not respected,
-   * it should be done here.
-   * For now, it's a contract pre-condition.
-   * Adding a check and a branch here would cost performance at every hash.
-   * Also, note that function signature doesn't offer room to return an error.
-   */
-  if (len <= 16)
-    return XXH3_len_0to16_64b((const xxh_u8 *)input, len,
-                              (const xxh_u8 *)secret, seed64);
-  if (len <= 128)
-    return XXH3_len_17to128_64b((const xxh_u8 *)input, len,
-                                (const xxh_u8 *)secret, secretLen, seed64);
-  if (len <= XXH3_MIDSIZE_MAX)
-    return XXH3_len_129to240_64b((const xxh_u8 *)input, len,
-                                 (const xxh_u8 *)secret, secretLen, seed64);
-  return f_hashLong((const xxh_u8 *)input, len, seed64, (const xxh_u8 *)secret,
-                    secretLen);
-
-}
-
-/* ===   Public entry point   === */
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void *input, size_t len) {
-
-  return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret),
-                              XXH3_hashLong_64b_withSecret);
-
-}
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void *input,
-                                                   size_t      len,
-                                                   const void *secret,
-                                                   size_t      secretSize) {
-
-  return XXH3_64bits_internal(input, len, 0, secret, secretSize,
-                              XXH3_hashLong_64b_withSecret);
-
-}
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void *input, size_t len,
-                                                 XXH64_hash_t seed) {
-
-  return XXH3_64bits_internal(input, len, seed, XXH3_kSecret,
-                              sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
-
-}
-
-/* ===   XXH3 streaming   === */
-
-/*
- * Malloc's a pointer that is always aligned to align.
- *
- * This must be freed with `XXH_alignedFree()`.
- *
- * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
- * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
- * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
- *
- * This underalignment previously caused a rather obvious crash which went
- * completely unnoticed due to XXH3_createState() not actually being tested.
- * Credit to RedSpah for noticing this bug.
- *
- * The alignment is done manually: Functions like posix_memalign or _mm_malloc
- * are avoided: To maintain portability, we would have to write a fallback
- * like this anyways, and besides, testing for the existence of library
- * functions without relying on external build tools is impossible.
- *
- * The method is simple: Overallocate, manually align, and store the offset
- * to the original behind the returned pointer.
- *
- * Align must be a power of 2 and 8 <= align <= 128.
- */
-static void *XXH_alignedMalloc(size_t s, size_t align) {
-
-  XXH_ASSERT(align <= 128 && align >= 8);                    /* range check */
-  XXH_ASSERT((align & (align - 1)) == 0);                     /* power of 2 */
-  XXH_ASSERT(s != 0 && s < (s + align));                  /* empty/overflow */
-  {  /* Overallocate to make room for manual realignment and an offset byte */
-    xxh_u8 *base = (xxh_u8 *)XXH_malloc(s + align);
-    if (base != NULL) {
-
-      /*
-       * Get the offset needed to align this pointer.
-       *
-       * Even if the returned pointer is aligned, there will always be
-       * at least one byte to store the offset to the original pointer.
-       */
-      size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
-      /* Add the offset for the now-aligned pointer */
-      xxh_u8 *ptr = base + offset;
-
-      XXH_ASSERT((size_t)ptr % align == 0);
-
-      /* Store the offset immediately before the returned pointer. */
-      ptr[-1] = (xxh_u8)offset;
-      return ptr;
-
-    }
-
-    return NULL;
-
-  }
-
-}
-
-/*
- * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
- * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
- */
-static void XXH_alignedFree(void *p) {
-
-  if (p != NULL) {
-
-    xxh_u8 *ptr = (xxh_u8 *)p;
-    /* Get the offset byte we added in XXH_malloc. */
-    xxh_u8 offset = ptr[-1];
-    /* Free the original malloc'd pointer */
-    xxh_u8 *base = ptr - offset;
-    XXH_free(base);
-
-  }
-
-}
-
-XXH_PUBLIC_API XXH3_state_t *XXH3_createState(void) {
-
-  return (XXH3_state_t *)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t *statePtr) {
-
-  XXH_alignedFree(statePtr);
-  return XXH_OK;
-
-}
-
-XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t *      dst_state,
-                                   const XXH3_state_t *src_state) {
-
-  memcpy(dst_state, src_state, sizeof(*dst_state));
-
-}
-
-static void XXH3_64bits_reset_internal(XXH3_state_t *statePtr,
-                                       XXH64_hash_t seed, const xxh_u8 *secret,
-                                       size_t secretSize) {
-
-  XXH_ASSERT(statePtr != NULL);
-  memset(statePtr, 0, sizeof(*statePtr));
-  statePtr->acc[0] = XXH_PRIME32_3;
-  statePtr->acc[1] = XXH_PRIME64_1;
-  statePtr->acc[2] = XXH_PRIME64_2;
-  statePtr->acc[3] = XXH_PRIME64_3;
-  statePtr->acc[4] = XXH_PRIME64_4;
-  statePtr->acc[5] = XXH_PRIME32_2;
-  statePtr->acc[6] = XXH_PRIME64_5;
-  statePtr->acc[7] = XXH_PRIME32_1;
-  statePtr->seed = seed;
-  XXH_ASSERT(secret != NULL);
-  statePtr->extSecret = secret;
-  XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-  statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
-  statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t *statePtr) {
-
-  if (statePtr == NULL) return XXH_ERROR;
-  XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret,
-                             XXH_SECRET_DEFAULT_SIZE);
-  return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(
-    XXH3_state_t *statePtr, const void *secret, size_t secretSize) {
-
-  if (statePtr == NULL) return XXH_ERROR;
-  XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8 *)secret, secretSize);
-  if (secret == NULL) return XXH_ERROR;
-  if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
-  return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t *statePtr,
-                                                        XXH64_hash_t  seed) {
-
-  if (statePtr == NULL) return XXH_ERROR;
-  XXH3_64bits_reset_internal(statePtr, seed, XXH3_kSecret,
-                             XXH_SECRET_DEFAULT_SIZE);
-  XXH3_initCustomSecret(statePtr->customSecret, seed);
-  statePtr->extSecret = NULL;
-  return XXH_OK;
-
-}
-
-XXH_FORCE_INLINE void XXH3_consumeStripes(
-    xxh_u64 *XXH_RESTRICT acc, size_t *XXH_RESTRICT nbStripesSoFarPtr,
-    size_t nbStripesPerBlock, const xxh_u8 *XXH_RESTRICT input,
-    size_t totalStripes, const xxh_u8 *XXH_RESTRICT secret, size_t secretLimit,
-    XXH3_accWidth_e accWidth, XXH3_f_accumulate_512 f_acc512,
-    XXH3_f_scrambleAcc f_scramble) {
-
-  XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
-  if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) {
-
-    /* need a scrambling operation */
-    size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr;
-    XXH3_accumulate(acc, input,
-                    secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE,
-                    nbStripes, accWidth, f_acc512);
-    f_scramble(acc, secret + secretLimit);
-    XXH3_accumulate(acc, input + nbStripes * XXH_STRIPE_LEN, secret,
-                    totalStripes - nbStripes, accWidth, f_acc512);
-    *nbStripesSoFarPtr = totalStripes - nbStripes;
-
-  } else {
-
-    XXH3_accumulate(acc, input,
-                    secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE,
-                    totalStripes, accWidth, f_acc512);
-    *nbStripesSoFarPtr += totalStripes;
-
-  }
-
-}
-
-/*
- * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
- */
-XXH_FORCE_INLINE XXH_errorcode XXH3_update(XXH3_state_t *state,
-                                           const xxh_u8 *input, size_t len,
-                                           XXH3_accWidth_e       accWidth,
-                                           XXH3_f_accumulate_512 f_acc512,
-                                           XXH3_f_scrambleAcc    f_scramble) {
-
-  if (input == NULL)
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \
-    (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
-    return XXH_OK;
-#else
-    return XXH_ERROR;
-#endif
-
-  {
-
-    const xxh_u8 *const        bEnd = input + len;
-    const unsigned char *const secret =
-        (state->extSecret == NULL) ? state->customSecret : state->extSecret;
-
-    state->totalLen += len;
-
-    if (state->bufferedSize + len <=
-        XXH3_INTERNALBUFFER_SIZE) {                   /* fill in tmp buffer */
-      XXH_memcpy(state->buffer + state->bufferedSize, input, len);
-      state->bufferedSize += (XXH32_hash_t)len;
-      return XXH_OK;
-
-    }
-
-    /* input is now > XXH3_INTERNALBUFFER_SIZE */
-
-#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
-    XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN ==
-                      0);                                 /* clean multiple */
-
-    /*
-     * There is some input left inside the internal buffer.
-     * Fill it, then consume it.
-     */
-    if (state->bufferedSize) {
-
-      size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
-      XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
-      input += loadSize;
-      XXH3_consumeStripes(state->acc, &state->nbStripesSoFar,
-                          state->nbStripesPerBlock, state->buffer,
-                          XXH3_INTERNALBUFFER_STRIPES, secret,
-                          state->secretLimit, accWidth, f_acc512, f_scramble);
-      state->bufferedSize = 0;
-
-    }
-
-    /* Consume input by full buffer quantities */
-    if (input + XXH3_INTERNALBUFFER_SIZE <= bEnd) {
-
-      const xxh_u8 *const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
-      do {
-
-        XXH3_consumeStripes(state->acc, &state->nbStripesSoFar,
-                            state->nbStripesPerBlock, input,
-                            XXH3_INTERNALBUFFER_STRIPES, secret,
-                            state->secretLimit, accWidth, f_acc512, f_scramble);
-        input += XXH3_INTERNALBUFFER_SIZE;
-
-      } while (input <= limit);
-
-      /* for last partial stripe */
-      memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN,
-             input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
-
-    }
-
-    if (input < bEnd) {                  /* Some remaining input: buffer it */
-      XXH_memcpy(state->buffer, input, (size_t)(bEnd - input));
-      state->bufferedSize = (XXH32_hash_t)(bEnd - input);
-
-    }
-
-  }
-
-  return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t *state,
-                                                const void *input, size_t len) {
-
-  return XXH3_update(state, (const xxh_u8 *)input, len, XXH3_acc_64bits,
-                     XXH3_accumulate_512, XXH3_scrambleAcc);
-
-}
-
-XXH_FORCE_INLINE void XXH3_digest_long(XXH64_hash_t *       acc,
-                                       const XXH3_state_t * state,
-                                       const unsigned char *secret,
-                                       XXH3_accWidth_e      accWidth) {
-
-  /*
-   * Digest on a local copy. This way, the state remains unaltered, and it can
-   * continue ingesting more input afterwards.
-   */
-  memcpy(acc, state->acc, sizeof(state->acc));
-  if (state->bufferedSize >= XXH_STRIPE_LEN) {
-
-    size_t const nbStripes = state->bufferedSize / XXH_STRIPE_LEN;
-    size_t       nbStripesSoFar = state->nbStripesSoFar;
-    XXH3_consumeStripes(acc, &nbStripesSoFar, state->nbStripesPerBlock,
-                        state->buffer, nbStripes, secret, state->secretLimit,
-                        accWidth, XXH3_accumulate_512, XXH3_scrambleAcc);
-    if (state->bufferedSize % XXH_STRIPE_LEN) {  /* one last partial stripe */
-      XXH3_accumulate_512(
-          acc, state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
-          secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth);
-
-    }
-
-  } else {                                 /* bufferedSize < XXH_STRIPE_LEN */
-
-    if (state->bufferedSize) {                           /* one last stripe */
-      xxh_u8       lastStripe[XXH_STRIPE_LEN];
-      size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
-      memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize,
-             catchupSize);
-      memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
-      XXH3_accumulate_512(
-          acc, lastStripe,
-          secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth);
-
-    }
-
-  }
-
-}
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest(const XXH3_state_t *state) {
-
-  const unsigned char *const secret =
-      (state->extSecret == NULL) ? state->customSecret : state->extSecret;
-  if (state->totalLen > XXH3_MIDSIZE_MAX) {
-
-    XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
-    XXH3_digest_long(acc, state, secret, XXH3_acc_64bits);
-    return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
-                          (xxh_u64)state->totalLen * XXH_PRIME64_1);
-
-  }
-
-  /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
-  if (state->seed)
-    return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen,
-                                state->seed);
-  return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
-                                secret, state->secretLimit + XXH_STRIPE_LEN);
-
-}
-
-#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
-
-XXH_PUBLIC_API void XXH3_generateSecret(void *      secretBuffer,
-                                        const void *customSeed,
-                                        size_t      customSeedSize) {
-
-  XXH_ASSERT(secretBuffer != NULL);
-  if (customSeedSize == 0) {
-
-    memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
-    return;
-
-  }
-
-  XXH_ASSERT(customSeed != NULL);
-
-  {
-
-    size_t const       segmentSize = sizeof(XXH128_hash_t);
-    size_t const       nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize;
-    XXH128_canonical_t scrambler;
-    XXH64_hash_t       seeds[12];
-    size_t             segnb;
-    XXH_ASSERT(nbSegments == 12);
-    XXH_ASSERT(segmentSize * nbSegments ==
-               XXH_SECRET_DEFAULT_SIZE);                  /* exact multiple */
-    XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
-
-    /*
-     * Copy customSeed to seeds[], truncating or repeating as necessary.
-     */
-    {
-
-      size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds));
-      size_t filled = toFill;
-      memcpy(seeds, customSeed, toFill);
-      while (filled < sizeof(seeds)) {
-
-        toFill = XXH_MIN(filled, sizeof(seeds) - filled);
-        memcpy((char *)seeds + filled, seeds, toFill);
-        filled += toFill;
-
-      }
-
-    }
-
-    /* generate secret */
-    memcpy(secretBuffer, &scrambler, sizeof(scrambler));
-    for (segnb = 1; segnb < nbSegments; segnb++) {
-
-      size_t const       segmentStart = segnb * segmentSize;
-      XXH128_canonical_t segment;
-      XXH128_canonicalFromHash(&segment,
-                               XXH128(&scrambler, sizeof(scrambler),
-                                      XXH_readLE64(seeds + segnb) + segnb));
-      memcpy((char *)secretBuffer + segmentStart, &segment, sizeof(segment));
-
-    }
-
-  }
-
-}
-
-/* ==========================================
- * XXH3 128 bits (a.k.a XXH128)
- * ==========================================
- * XXH3's 128-bit variant has better mixing and strength than the 64-bit
- * variant, even without counting the significantly larger output size.
- *
- * For example, extra steps are taken to avoid the seed-dependent collisions
- * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
- *
- * This strength naturally comes at the cost of some speed, especially on short
- * lengths. Note that longer hashes are about as fast as the 64-bit version
- * due to it using only a slight modification of the 64-bit loop.
- *
- * XXH128 is also more oriented towards 64-bit machines. It is still extremely
- * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
- */
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_1to3_128b(const xxh_u8 *input,
-                                                  size_t        len,
-                                                  const xxh_u8 *secret,
-                                                  XXH64_hash_t  seed) {
-
-  /* A doubled version of 1to3_64b with different constants. */
-  XXH_ASSERT(input != NULL);
-  XXH_ASSERT(1 <= len && len <= 3);
-  XXH_ASSERT(secret != NULL);
-  /*
-   * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
-   * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
-   * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
-   */
-  {
-
-    xxh_u8 const  c1 = input[0];
-    xxh_u8 const  c2 = input[len >> 1];
-    xxh_u8 const  c3 = input[len - 1];
-    xxh_u32 const combinedl = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
-                              ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
-    xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
-    xxh_u64 const bitflipl =
-        (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed;
-    xxh_u64 const bitfliph =
-        (XXH_readLE32(secret + 8) ^ XXH_readLE32(secret + 12)) - seed;
-    xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
-    xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
-    xxh_u64 const mixedl = keyed_lo * XXH_PRIME64_1;
-    xxh_u64 const mixedh = keyed_hi * XXH_PRIME64_5;
-    XXH128_hash_t h128;
-    h128.low64 = XXH3_avalanche(mixedl);
-    h128.high64 = XXH3_avalanche(mixedh);
-    return h128;
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_4to8_128b(const xxh_u8 *input,
-                                                  size_t        len,
-                                                  const xxh_u8 *secret,
-                                                  XXH64_hash_t  seed) {
-
-  XXH_ASSERT(input != NULL);
-  XXH_ASSERT(secret != NULL);
-  XXH_ASSERT(4 <= len && len <= 8);
-  seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
-  {
-
-    xxh_u32 const input_lo = XXH_readLE32(input);
-    xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
-    xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
-    xxh_u64 const bitflip =
-        (XXH_readLE64(secret + 16) ^ XXH_readLE64(secret + 24)) + seed;
-    xxh_u64 const keyed = input_64 ^ bitflip;
-
-    /* Shift len to the left to ensure it is even, this avoids even multiplies.
-     */
-    XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
-
-    m128.high64 += (m128.low64 << 1);
-    m128.low64 ^= (m128.high64 >> 3);
-
-    m128.low64 = XXH_xorshift64(m128.low64, 35);
-    m128.low64 *= 0x9FB21C651E98DF25ULL;
-    m128.low64 = XXH_xorshift64(m128.low64, 28);
-    m128.high64 = XXH3_avalanche(m128.high64);
-    return m128;
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_9to16_128b(const xxh_u8 *input,
-                                                   size_t        len,
-                                                   const xxh_u8 *secret,
-                                                   XXH64_hash_t  seed) {
-
-  XXH_ASSERT(input != NULL);
-  XXH_ASSERT(secret != NULL);
-  XXH_ASSERT(9 <= len && len <= 16);
-  {
-
-    xxh_u64 const bitflipl =
-        (XXH_readLE64(secret + 32) ^ XXH_readLE64(secret + 40)) - seed;
-    xxh_u64 const bitfliph =
-        (XXH_readLE64(secret + 48) ^ XXH_readLE64(secret + 56)) + seed;
-    xxh_u64 const input_lo = XXH_readLE64(input);
-    xxh_u64       input_hi = XXH_readLE64(input + len - 8);
-    XXH128_hash_t m128 =
-        XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
-    /*
-     * Put len in the middle of m128 to ensure that the length gets mixed to
-     * both the low and high bits in the 128x64 multiply below.
-     */
-    m128.low64 += (xxh_u64)(len - 1) << 54;
-    input_hi ^= bitfliph;
-    /*
-     * Add the high 32 bits of input_hi to the high 32 bits of m128, then
-     * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
-     * the high 64 bits of m128.
-     *
-     * The best approach to this operation is different on 32-bit and 64-bit.
-     */
-    if (sizeof(void *) < sizeof(xxh_u64)) {                       /* 32-bit */
-      /*
-       * 32-bit optimized version, which is more readable.
-       *
-       * On 32-bit, it removes an ADC and delays a dependency between the two
-       * halves of m128.high64, but it generates an extra mask on 64-bit.
-       */
-      m128.high64 += (input_hi & 0xFFFFFFFF00000000) +
-                     XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
-
-    } else {
-
-      /*
-       * 64-bit optimized (albeit more confusing) version.
-       *
-       * Uses some properties of addition and multiplication to remove the mask:
-       *
-       * Let:
-       *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
-       *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
-       *    c = XXH_PRIME32_2
-       *
-       *    a + (b * c)
-       * Inverse Property: x + y - x == y
-       *    a + (b * (1 + c - 1))
-       * Distributive Property: x * (y + z) == (x * y) + (x * z)
-       *    a + (b * 1) + (b * (c - 1))
-       * Identity Property: x * 1 == x
-       *    a + b + (b * (c - 1))
-       *
-       * Substitute a, b, and c:
-       *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 -
-       * 1))
-       *
-       * Since input_hi.hi + input_hi.lo == input_hi, we get this:
-       *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
-       */
-      m128.high64 +=
-          input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
-
-    }
-
-    /* m128 ^= XXH_swap64(m128 >> 64); */
-    m128.low64 ^= XXH_swap64(m128.high64);
-
-    {                      /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
-      XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
-      h128.high64 += m128.high64 * XXH_PRIME64_2;
-
-      h128.low64 = XXH3_avalanche(h128.low64);
-      h128.high64 = XXH3_avalanche(h128.high64);
-      return h128;
-
-    }
-
-  }
-
-}
-
-/*
- * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
- */
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_0to16_128b(const xxh_u8 *input,
-                                                   size_t        len,
-                                                   const xxh_u8 *secret,
-                                                   XXH64_hash_t  seed) {
-
-  XXH_ASSERT(len <= 16);
-  {
-
-    if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
-    if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
-    if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
-    {
-
-      XXH128_hash_t h128;
-      xxh_u64 const bitflipl =
-          XXH_readLE64(secret + 64) ^ XXH_readLE64(secret + 72);
-      xxh_u64 const bitfliph =
-          XXH_readLE64(secret + 80) ^ XXH_readLE64(secret + 88);
-      h128.low64 = XXH3_avalanche((XXH_PRIME64_1 + seed) ^ bitflipl);
-      h128.high64 = XXH3_avalanche((XXH_PRIME64_2 - seed) ^ bitfliph);
-      return h128;
-
-    }
-
-  }
-
-}
-
-/*
- * A bit slower than XXH3_mix16B, but handles multiply by zero better.
- */
-XXH_FORCE_INLINE XXH128_hash_t XXH128_mix32B(XXH128_hash_t acc,
-                                             const xxh_u8 *input_1,
-                                             const xxh_u8 *input_2,
-                                             const xxh_u8 *secret,
-                                             XXH64_hash_t  seed) {
-
-  acc.low64 += XXH3_mix16B(input_1, secret + 0, seed);
-  acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
-  acc.high64 += XXH3_mix16B(input_2, secret + 16, seed);
-  acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
-  return acc;
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_17to128_128b(
-    const xxh_u8 *XXH_RESTRICT input, size_t len,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
-
-  XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-  (void)secretSize;
-  XXH_ASSERT(16 < len && len <= 128);
-
-  {
-
-    XXH128_hash_t acc;
-    acc.low64 = len * XXH_PRIME64_1;
-    acc.high64 = 0;
-    if (len > 32) {
-
-      if (len > 64) {
-
-        if (len > 96) {
-
-          acc = XXH128_mix32B(acc, input + 48, input + len - 64, secret + 96,
-                              seed);
-
-        }
-
-        acc =
-            XXH128_mix32B(acc, input + 32, input + len - 48, secret + 64, seed);
-
-      }
-
-      acc = XXH128_mix32B(acc, input + 16, input + len - 32, secret + 32, seed);
-
-    }
-
-    acc = XXH128_mix32B(acc, input, input + len - 16, secret, seed);
-    {
-
-      XXH128_hash_t h128;
-      h128.low64 = acc.low64 + acc.high64;
-      h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) +
-                    ((len - seed) * XXH_PRIME64_2);
-      h128.low64 = XXH3_avalanche(h128.low64);
-      h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
-      return h128;
-
-    }
-
-  }
-
-}
-
-XXH_NO_INLINE XXH128_hash_t XXH3_len_129to240_128b(
-    const xxh_u8 *XXH_RESTRICT input, size_t len,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
-
-  XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-  (void)secretSize;
-  XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
-
-  {
-
-    XXH128_hash_t acc;
-    int const     nbRounds = (int)len / 32;
-    int           i;
-    acc.low64 = len * XXH_PRIME64_1;
-    acc.high64 = 0;
-    for (i = 0; i < 4; i++) {
-
-      acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16,
-                          secret + (32 * i), seed);
-
-    }
-
-    acc.low64 = XXH3_avalanche(acc.low64);
-    acc.high64 = XXH3_avalanche(acc.high64);
-    XXH_ASSERT(nbRounds >= 4);
-    for (i = 4; i < nbRounds; i++) {
-
-      acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16,
-                          secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
-                          seed);
-
-    }
-
-    /* last bytes */
-    acc = XXH128_mix32B(
-        acc, input + len - 16, input + len - 32,
-        secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
-        0ULL - seed);
-
-    {
-
-      XXH128_hash_t h128;
-      h128.low64 = acc.low64 + acc.high64;
-      h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) +
-                    ((len - seed) * XXH_PRIME64_2);
-      h128.low64 = XXH3_avalanche(h128.low64);
-      h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
-      return h128;
-
-    }
-
-  }
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_internal(
-    const xxh_u8 *XXH_RESTRICT input, size_t len,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretSize,
-    XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble) {
-
-  XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
-
-  XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize,
-                              XXH3_acc_128bits, f_acc512, f_scramble);
-
-  /* converge into final hash */
-  XXH_STATIC_ASSERT(sizeof(acc) == 64);
-  XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
-  {
-
-    XXH128_hash_t h128;
-    h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
-                                (xxh_u64)len * XXH_PRIME64_1);
-    h128.high64 = XXH3_mergeAccs(
-        acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
-        ~((xxh_u64)len * XXH_PRIME64_2));
-    return h128;
-
-  }
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_defaultSecret(
-    const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
-
-  (void)seed64;
-  (void)secret;
-  (void)secretLen;
-  return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret,
-                                     sizeof(XXH3_kSecret), XXH3_accumulate_512,
-                                     XXH3_scrambleAcc);
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSecret(
-    const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
-
-  (void)seed64;
-  return XXH3_hashLong_128b_internal(input, len, secret, secretLen,
-                                     XXH3_accumulate_512, XXH3_scrambleAcc);
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed_internal(
-    const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
-    XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble,
-    XXH3_f_initCustomSecret f_initSec) {
-
-  if (seed64 == 0)
-    return XXH3_hashLong_128b_internal(
-        input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc512, f_scramble);
-  {
-
-    XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
-    f_initSec(secret, seed64);
-    return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret),
-                                       f_acc512, f_scramble);
-
-  }
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed(
-    const xxh_u8 *input, size_t len, XXH64_hash_t seed64,
-    const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
-
-  (void)secret;
-  (void)secretLen;
-  return XXH3_hashLong_128b_withSeed_internal(
-      input, len, seed64, XXH3_accumulate_512, XXH3_scrambleAcc,
-      XXH3_initCustomSecret);
-
-}
-
-typedef XXH128_hash_t (*XXH3_hashLong128_f)(const xxh_u8 *XXH_RESTRICT, size_t,
-                                            XXH64_hash_t,
-                                            const xxh_u8 *XXH_RESTRICT, size_t);
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_128bits_internal(const void *input, size_t len, XXH64_hash_t seed64,
-                      const xxh_u8 *XXH_RESTRICT secret, size_t secretLen,
-                      XXH3_hashLong128_f f_hl128) {
-
-  XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
-  /*
-   * If an action is to be taken if `secret` conditions are not respected,
-   * it should be done here.
-   * For now, it's a contract pre-condition.
-   * Adding a check and a branch here would cost performance at every hash.
-   */
-  if (len <= 16)
-    return XXH3_len_0to16_128b((const xxh_u8 *)input, len, secret, seed64);
-  if (len <= 128)
-    return XXH3_len_17to128_128b((const xxh_u8 *)input, len, secret, secretLen,
-                                 seed64);
-  if (len <= XXH3_MIDSIZE_MAX)
-    return XXH3_len_129to240_128b((const xxh_u8 *)input, len, secret, secretLen,
-                                  seed64);
-  return f_hl128((const xxh_u8 *)input, len, seed64, secret, secretLen);
-
-}
-
-/* ===   Public XXH128 API   === */
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void *input, size_t len) {
-
-  return XXH3_128bits_internal(input, len, 0, XXH3_kSecret,
-                               sizeof(XXH3_kSecret),
-                               XXH3_hashLong_128b_withSecret);
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void *input,
-                                                     size_t      len,
-                                                     const void *secret,
-                                                     size_t      secretSize) {
-
-  return XXH3_128bits_internal(input, len, 0, (const xxh_u8 *)secret,
-                               secretSize, XXH3_hashLong_128b_defaultSecret);
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void * input,
-                                                   size_t       len,
-                                                   XXH64_hash_t seed) {
-
-  return XXH3_128bits_internal(input, len, seed, XXH3_kSecret,
-                               sizeof(XXH3_kSecret),
-                               XXH3_hashLong_128b_withSeed);
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH128(const void *input, size_t len,
-                                    XXH64_hash_t seed) {
-
-  return XXH3_128bits_withSeed(input, len, seed);
-
-}
-
-/* ===   XXH3 128-bit streaming   === */
-
-/*
- * All the functions are actually the same as for 64-bit streaming variant.
- * The only difference is the finalizatiom routine.
- */
-
-static void XXH3_128bits_reset_internal(XXH3_state_t *statePtr,
-                                        XXH64_hash_t seed, const xxh_u8 *secret,
-                                        size_t secretSize) {
-
-  XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t *statePtr) {
-
-  if (statePtr == NULL) return XXH_ERROR;
-  XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret,
-                              XXH_SECRET_DEFAULT_SIZE);
-  return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(
-    XXH3_state_t *statePtr, const void *secret, size_t secretSize) {
-
-  if (statePtr == NULL) return XXH_ERROR;
-  XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8 *)secret, secretSize);
-  if (secret == NULL) return XXH_ERROR;
-  if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
-  return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t *statePtr,
-                                                         XXH64_hash_t  seed) {
-
-  if (statePtr == NULL) return XXH_ERROR;
-  XXH3_128bits_reset_internal(statePtr, seed, XXH3_kSecret,
-                              XXH_SECRET_DEFAULT_SIZE);
-  XXH3_initCustomSecret(statePtr->customSecret, seed);
-  statePtr->extSecret = NULL;
-  return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t *state,
-                                                 const void *  input,
-                                                 size_t        len) {
-
-  return XXH3_update(state, (const xxh_u8 *)input, len, XXH3_acc_128bits,
-                     XXH3_accumulate_512, XXH3_scrambleAcc);
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest(const XXH3_state_t *state) {
-
-  const unsigned char *const secret =
-      (state->extSecret == NULL) ? state->customSecret : state->extSecret;
-  if (state->totalLen > XXH3_MIDSIZE_MAX) {
-
-    XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
-    XXH3_digest_long(acc, state, secret, XXH3_acc_128bits);
-    XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >=
-               sizeof(acc) + XXH_SECRET_MERGEACCS_START);
-    {
-
-      XXH128_hash_t h128;
-      h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
-                                  (xxh_u64)state->totalLen * XXH_PRIME64_1);
-      h128.high64 =
-          XXH3_mergeAccs(acc,
-                         secret + state->secretLimit + XXH_STRIPE_LEN -
-                             sizeof(acc) - XXH_SECRET_MERGEACCS_START,
-                         ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
-      return h128;
-
-    }
-
-  }
-
-  /* len <= XXH3_MIDSIZE_MAX : short code */
-  if (state->seed)
-    return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen,
-                                 state->seed);
-  return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
-                                 secret, state->secretLimit + XXH_STRIPE_LEN);
-
-}
-
-/* 128-bit utility functions */
-
-#include <string.h>                                       /* memcmp, memcpy */
-
-/* return : 1 is equal, 0 if different */
-XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) {
-
-  /* note : XXH128_hash_t is compact, it has no padding byte */
-  return !(memcmp(&h1, &h2, sizeof(h1)));
-
-}
-
-/* This prototype is compatible with stdlib's qsort().
- * return : >0 if *h128_1  > *h128_2
- *          <0 if *h128_1  < *h128_2
- *          =0 if *h128_1 == *h128_2  */
-XXH_PUBLIC_API int XXH128_cmp(const void *h128_1, const void *h128_2) {
-
-  XXH128_hash_t const h1 = *(const XXH128_hash_t *)h128_1;
-  XXH128_hash_t const h2 = *(const XXH128_hash_t *)h128_2;
-  int const           hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
-  /* note : bets that, in most cases, hash values are different */
-  if (hcmp) return hcmp;
-  return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
-
-}
-
-/*======   Canonical representation   ======*/
-XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t *dst,
-                                             XXH128_hash_t       hash) {
-
-  XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
-  if (XXH_CPU_LITTLE_ENDIAN) {
-
-    hash.high64 = XXH_swap64(hash.high64);
-    hash.low64 = XXH_swap64(hash.low64);
-
-  }
-
-  memcpy(dst, &hash.high64, sizeof(hash.high64));
-  memcpy((char *)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH128_hashFromCanonical(const XXH128_canonical_t *src) {
-
-  XXH128_hash_t h;
-  h.high64 = XXH_readBE64(src);
-  h.low64 = XXH_readBE64(src->digest + 8);
-  return h;
-
-}
-
-/* Pop our optimization override from above */
-#if XXH_VECTOR == XXH_AVX2                      /* AVX2 */           \
-    && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
-    && defined(__OPTIMIZE__) &&                                      \
-    !defined(__OPTIMIZE_SIZE__)                      /* respect -O0 and -Os */
-  #pragma GCC pop_options
-#endif
-
-#endif                                                 /* XXH3_H_1397135465 */
-