diff options
Diffstat (limited to 'llvm_mode/README.md')
-rw-r--r-- | llvm_mode/README.md | 108 |
1 files changed, 12 insertions, 96 deletions
diff --git a/llvm_mode/README.md b/llvm_mode/README.md index 0bff1ff1..c24aef49 100644 --- a/llvm_mode/README.md +++ b/llvm_mode/README.md @@ -6,7 +6,7 @@ ## 1) Introduction -! llvm_mode works with llvm versions 3.8.0 up to 11 ! +! llvm_mode works with llvm versions 3.4 up to 11 ! The code in this directory allows you to instrument programs for AFL using true compiler-level instrumentation, instead of the more crude @@ -35,7 +35,7 @@ Once this implementation is shown to be sufficiently robust and portable, it will probably replace afl-clang. For now, it can be built separately and co-exists with the original code. -The idea and much of the implementation comes from Laszlo Szekeres. +The idea and much of the intial implementation came from Laszlo Szekeres. ## 2a) How to use this - short @@ -56,6 +56,8 @@ LLVM_CONFIG=llvm-config-7 REAL_CC=gcc REAL_CXX=g++ make It is highly recommended to use the newest clang version you can put your hands on :) +Then look at [README.persistent_mode.md](README.persistent_mode.md). + ## 2b) How to use this - long In order to leverage this mechanism, you need to have clang installed on your @@ -159,96 +161,13 @@ See [README.snapshot](README.snapshot.md) This is an early-stage mechanism, so field reports are welcome. You can send bug reports to <afl-users@googlegroups.com>. -## 6) Bonus feature #1: deferred initialization - -AFL tries to optimize performance by executing the targeted binary just once, -stopping it just before main(), and then cloning this "master" process to get -a steady supply of targets to fuzz. - -Although this approach eliminates much of the OS-, linker- and libc-level -costs of executing the program, it does not always help with binaries that -perform other time-consuming initialization steps - say, parsing a large config -file before getting to the fuzzed data. - -In such cases, it's beneficial to initialize the forkserver a bit later, once -most of the initialization work is already done, but before the binary attempts -to read the fuzzed input and parse it; in some cases, this can offer a 10x+ -performance gain. You can implement delayed initialization in LLVM mode in a -fairly simple way. - -First, find a suitable location in the code where the delayed cloning can -take place. This needs to be done with *extreme* care to avoid breaking the -binary. In particular, the program will probably malfunction if you select -a location after: - - - The creation of any vital threads or child processes - since the forkserver - can't clone them easily. - - - The initialization of timers via setitimer() or equivalent calls. - - - The creation of temporary files, network sockets, offset-sensitive file - descriptors, and similar shared-state resources - but only provided that - their state meaningfully influences the behavior of the program later on. - - - Any access to the fuzzed input, including reading the metadata about its - size. - -With the location selected, add this code in the appropriate spot: - -```c -#ifdef __AFL_HAVE_MANUAL_CONTROL - __AFL_INIT(); -#endif -``` - -You don't need the #ifdef guards, but including them ensures that the program -will keep working normally when compiled with a tool other than afl-clang-fast. - -Finally, recompile the program with afl-clang-fast (afl-gcc or afl-clang will -*not* generate a deferred-initialization binary) - and you should be all set! - -## 7) Bonus feature #2: persistent mode - -Some libraries provide APIs that are stateless, or whose state can be reset in -between processing different input files. When such a reset is performed, a -single long-lived process can be reused to try out multiple test cases, -eliminating the need for repeated fork() calls and the associated OS overhead. - -The basic structure of the program that does this would be: - -```c - while (__AFL_LOOP(1000)) { - - /* Read input data. */ - /* Call library code to be fuzzed. */ - /* Reset state. */ - - } - - /* Exit normally */ -``` - -The numerical value specified within the loop controls the maximum number -of iterations before AFL will restart the process from scratch. This minimizes -the impact of memory leaks and similar glitches; 1000 is a good starting point, -and going much higher increases the likelihood of hiccups without giving you -any real performance benefits. - -A more detailed template is shown in ../examples/persistent_demo/. -Similarly to the previous mode, the feature works only with afl-clang-fast; #ifdef -guards can be used to suppress it when using other compilers. - -Note that as with the previous mode, the feature is easy to misuse; if you -do not fully reset the critical state, you may end up with false positives or -waste a whole lot of CPU power doing nothing useful at all. Be particularly -wary of memory leaks and of the state of file descriptors. +## 6) deferred initialization, persistent mode, shared memory fuzzing -PS. Because there are task switches still involved, the mode isn't as fast as -"pure" in-process fuzzing offered, say, by LLVM's LibFuzzer; but it is a lot -faster than the normal fork() model, and compared to in-process fuzzing, -should be a lot more robust. +This is the most powerful and effective fuzzing you can do. +Please see [README.persistent_mode.md](README.persistent_mode.md) for a +full explanation. -## 8) Bonus feature #3: 'trace-pc-guard' mode +## 7) Bonus feature: 'trace-pc-guard' mode LLVM is shipping with a built-in execution tracing feature that provides AFL with the necessary tracing data without the need to @@ -260,11 +179,8 @@ If you have not an outdated compiler and want to give it a try, build targets this way: ``` - libtarget-1.0 $ AFL_LLVM_USE_TRACE_PC=1 make +AFL_LLVM_INSTRUMENT=PCGUARD make ``` -Note that this mode is about 20% slower than "vanilla" afl-clang-fast, -and about 5-10% slower than afl-clang. This is likely because the -instrumentation is not inlined, and instead involves a function call. -On systems that support it, compiling your target with -flto can help -a bit. +Note that this us currently the default, as it is the best mode. +If you have llvm 11 and compiled afl-clang-lto - this is the only better mode. |