aboutsummaryrefslogtreecommitdiff
path: root/src/afl-fuzz-queue.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/afl-fuzz-queue.c')
-rw-r--r--src/afl-fuzz-queue.c456
1 files changed, 456 insertions, 0 deletions
diff --git a/src/afl-fuzz-queue.c b/src/afl-fuzz-queue.c
new file mode 100644
index 00000000..905fd931
--- /dev/null
+++ b/src/afl-fuzz-queue.c
@@ -0,0 +1,456 @@
+/*
+ american fuzzy lop++ - queue relates routines
+ ---------------------------------------------
+
+ Originally written by Michal Zalewski <lcamtuf@google.com>
+
+ Now maintained by by Marc Heuse <mh@mh-sec.de>,
+ Heiko Eißfeldt <heiko.eissfeldt@hexco.de> and
+ Andrea Fioraldi <andreafioraldi@gmail.com>
+
+ Copyright 2016, 2017 Google Inc. All rights reserved.
+ Copyright 2019 AFLplusplus Project. All rights reserved.
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at:
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ This is the real deal: the program takes an instrumented binary and
+ attempts a variety of basic fuzzing tricks, paying close attention to
+ how they affect the execution path.
+
+ */
+
+#include "afl-fuzz.h"
+
+/* Mark deterministic checks as done for a particular queue entry. We use the
+ .state file to avoid repeating deterministic fuzzing when resuming aborted
+ scans. */
+
+void mark_as_det_done(struct queue_entry* q) {
+
+ u8* fn = strrchr(q->fname, '/');
+ s32 fd;
+
+ fn = alloc_printf("%s/queue/.state/deterministic_done/%s", out_dir, fn + 1);
+
+ fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
+ if (fd < 0) PFATAL("Unable to create '%s'", fn);
+ close(fd);
+
+ ck_free(fn);
+
+ q->passed_det = 1;
+
+}
+
+/* Mark as variable. Create symlinks if possible to make it easier to examine
+ the files. */
+
+void mark_as_variable(struct queue_entry* q) {
+
+ u8 *fn = strrchr(q->fname, '/') + 1, *ldest;
+
+ ldest = alloc_printf("../../%s", fn);
+ fn = alloc_printf("%s/queue/.state/variable_behavior/%s", out_dir, fn);
+
+ if (symlink(ldest, fn)) {
+
+ s32 fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
+ if (fd < 0) PFATAL("Unable to create '%s'", fn);
+ close(fd);
+
+ }
+
+ ck_free(ldest);
+ ck_free(fn);
+
+ q->var_behavior = 1;
+
+}
+
+/* Mark / unmark as redundant (edge-only). This is not used for restoring state,
+ but may be useful for post-processing datasets. */
+
+void mark_as_redundant(struct queue_entry* q, u8 state) {
+
+ u8* fn;
+
+ if (state == q->fs_redundant) return;
+
+ q->fs_redundant = state;
+
+ fn = strrchr(q->fname, '/');
+ fn = alloc_printf("%s/queue/.state/redundant_edges/%s", out_dir, fn + 1);
+
+ if (state) {
+
+ s32 fd;
+
+ fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
+ if (fd < 0) PFATAL("Unable to create '%s'", fn);
+ close(fd);
+
+ } else {
+
+ if (unlink(fn)) PFATAL("Unable to remove '%s'", fn);
+
+ }
+
+ ck_free(fn);
+
+}
+
+/* Append new test case to the queue. */
+
+void add_to_queue(u8* fname, u32 len, u8 passed_det) {
+
+ struct queue_entry* q = ck_alloc(sizeof(struct queue_entry));
+
+ q->fname = fname;
+ q->len = len;
+ q->depth = cur_depth + 1;
+ q->passed_det = passed_det;
+ q->n_fuzz = 1;
+
+ if (q->depth > max_depth) max_depth = q->depth;
+
+ if (queue_top) {
+
+ queue_top->next = q;
+ queue_top = q;
+
+ } else
+
+ q_prev100 = queue = queue_top = q;
+
+ ++queued_paths;
+ ++pending_not_fuzzed;
+
+ cycles_wo_finds = 0;
+
+ if (!(queued_paths % 100)) {
+
+ q_prev100->next_100 = q;
+ q_prev100 = q;
+
+ }
+
+ last_path_time = get_cur_time();
+
+}
+
+/* Destroy the entire queue. */
+
+void destroy_queue(void) {
+
+ struct queue_entry *q = queue, *n;
+
+ while (q) {
+
+ n = q->next;
+ ck_free(q->fname);
+ ck_free(q->trace_mini);
+ ck_free(q);
+ q = n;
+
+ }
+
+}
+
+/* When we bump into a new path, we call this to see if the path appears
+ more "favorable" than any of the existing ones. The purpose of the
+ "favorables" is to have a minimal set of paths that trigger all the bits
+ seen in the bitmap so far, and focus on fuzzing them at the expense of
+ the rest.
+
+ The first step of the process is to maintain a list of top_rated[] entries
+ for every byte in the bitmap. We win that slot if there is no previous
+ contender, or if the contender has a more favorable speed x size factor. */
+
+void update_bitmap_score(struct queue_entry* q) {
+
+ u32 i;
+ u64 fav_factor = q->exec_us * q->len;
+ u64 fuzz_p2 = next_p2(q->n_fuzz);
+
+ /* For every byte set in trace_bits[], see if there is a previous winner,
+ and how it compares to us. */
+
+ for (i = 0; i < MAP_SIZE; ++i)
+
+ if (trace_bits[i]) {
+
+ if (top_rated[i]) {
+
+ /* Faster-executing or smaller test cases are favored. */
+ u64 top_rated_fuzz_p2 = next_p2(top_rated[i]->n_fuzz);
+ u64 top_rated_fav_factor = top_rated[i]->exec_us * top_rated[i]->len;
+
+ if (fuzz_p2 > top_rated_fuzz_p2) {
+
+ continue;
+
+ } else if (fuzz_p2 == top_rated_fuzz_p2) {
+
+ if (fav_factor > top_rated_fav_factor) continue;
+
+ }
+
+ if (fav_factor > top_rated[i]->exec_us * top_rated[i]->len) continue;
+
+ /* Looks like we're going to win. Decrease ref count for the
+ previous winner, discard its trace_bits[] if necessary. */
+
+ if (!--top_rated[i]->tc_ref) {
+
+ ck_free(top_rated[i]->trace_mini);
+ top_rated[i]->trace_mini = 0;
+
+ }
+
+ }
+
+ /* Insert ourselves as the new winner. */
+
+ top_rated[i] = q;
+ ++q->tc_ref;
+
+ if (!q->trace_mini) {
+
+ q->trace_mini = ck_alloc(MAP_SIZE >> 3);
+ minimize_bits(q->trace_mini, trace_bits);
+
+ }
+
+ score_changed = 1;
+
+ }
+
+}
+
+/* The second part of the mechanism discussed above is a routine that
+ goes over top_rated[] entries, and then sequentially grabs winners for
+ previously-unseen bytes (temp_v) and marks them as favored, at least
+ until the next run. The favored entries are given more air time during
+ all fuzzing steps. */
+
+void cull_queue(void) {
+
+ struct queue_entry* q;
+ static u8 temp_v[MAP_SIZE >> 3];
+ u32 i;
+
+ if (dumb_mode || !score_changed) return;
+
+ score_changed = 0;
+
+ memset(temp_v, 255, MAP_SIZE >> 3);
+
+ queued_favored = 0;
+ pending_favored = 0;
+
+ q = queue;
+
+ while (q) {
+
+ q->favored = 0;
+ q = q->next;
+
+ }
+
+ /* Let's see if anything in the bitmap isn't captured in temp_v.
+ If yes, and if it has a top_rated[] contender, let's use it. */
+
+ for (i = 0; i < MAP_SIZE; ++i)
+ if (top_rated[i] && (temp_v[i >> 3] & (1 << (i & 7)))) {
+
+ u32 j = MAP_SIZE >> 3;
+
+ /* Remove all bits belonging to the current entry from temp_v. */
+
+ while (j--)
+ if (top_rated[i]->trace_mini[j])
+ temp_v[j] &= ~top_rated[i]->trace_mini[j];
+
+ top_rated[i]->favored = 1;
+ ++queued_favored;
+
+ if (top_rated[i]->fuzz_level == 0 || !top_rated[i]->was_fuzzed)
+ ++pending_favored;
+
+ }
+
+ q = queue;
+
+ while (q) {
+
+ mark_as_redundant(q, !q->favored);
+ q = q->next;
+
+ }
+
+}
+
+/* Calculate case desirability score to adjust the length of havoc fuzzing.
+ A helper function for fuzz_one(). Maybe some of these constants should
+ go into config.h. */
+
+u32 calculate_score(struct queue_entry* q) {
+
+ u32 avg_exec_us = total_cal_us / total_cal_cycles;
+ u32 avg_bitmap_size = total_bitmap_size / total_bitmap_entries;
+ u32 perf_score = 100;
+
+ /* Adjust score based on execution speed of this path, compared to the
+ global average. Multiplier ranges from 0.1x to 3x. Fast inputs are
+ less expensive to fuzz, so we're giving them more air time. */
+
+ // TODO BUG FIXME: is this really a good idea?
+ // This sounds like looking for lost keys under a street light just because
+ // the light is better there.
+ // Longer execution time means longer work on the input, the deeper in
+ // coverage, the better the fuzzing, right? -mh
+
+ if (q->exec_us * 0.1 > avg_exec_us)
+ perf_score = 10;
+ else if (q->exec_us * 0.25 > avg_exec_us)
+ perf_score = 25;
+ else if (q->exec_us * 0.5 > avg_exec_us)
+ perf_score = 50;
+ else if (q->exec_us * 0.75 > avg_exec_us)
+ perf_score = 75;
+ else if (q->exec_us * 4 < avg_exec_us)
+ perf_score = 300;
+ else if (q->exec_us * 3 < avg_exec_us)
+ perf_score = 200;
+ else if (q->exec_us * 2 < avg_exec_us)
+ perf_score = 150;
+
+ /* Adjust score based on bitmap size. The working theory is that better
+ coverage translates to better targets. Multiplier from 0.25x to 3x. */
+
+ if (q->bitmap_size * 0.3 > avg_bitmap_size)
+ perf_score *= 3;
+ else if (q->bitmap_size * 0.5 > avg_bitmap_size)
+ perf_score *= 2;
+ else if (q->bitmap_size * 0.75 > avg_bitmap_size)
+ perf_score *= 1.5;
+ else if (q->bitmap_size * 3 < avg_bitmap_size)
+ perf_score *= 0.25;
+ else if (q->bitmap_size * 2 < avg_bitmap_size)
+ perf_score *= 0.5;
+ else if (q->bitmap_size * 1.5 < avg_bitmap_size)
+ perf_score *= 0.75;
+
+ /* Adjust score based on handicap. Handicap is proportional to how late
+ in the game we learned about this path. Latecomers are allowed to run
+ for a bit longer until they catch up with the rest. */
+
+ if (q->handicap >= 4) {
+
+ perf_score *= 4;
+ q->handicap -= 4;
+
+ } else if (q->handicap) {
+
+ perf_score *= 2;
+ --q->handicap;
+
+ }
+
+ /* Final adjustment based on input depth, under the assumption that fuzzing
+ deeper test cases is more likely to reveal stuff that can't be
+ discovered with traditional fuzzers. */
+
+ switch (q->depth) {
+
+ case 0 ... 3: break;
+ case 4 ... 7: perf_score *= 2; break;
+ case 8 ... 13: perf_score *= 3; break;
+ case 14 ... 25: perf_score *= 4; break;
+ default: perf_score *= 5;
+
+ }
+
+ u64 fuzz = q->n_fuzz;
+ u64 fuzz_total;
+
+ u32 n_paths, fuzz_mu;
+ u32 factor = 1;
+
+ switch (schedule) {
+
+ case EXPLORE: break;
+
+ case EXPLOIT: factor = MAX_FACTOR; break;
+
+ case COE:
+ fuzz_total = 0;
+ n_paths = 0;
+
+ struct queue_entry* queue_it = queue;
+ while (queue_it) {
+
+ fuzz_total += queue_it->n_fuzz;
+ n_paths++;
+ queue_it = queue_it->next;
+
+ }
+
+ fuzz_mu = fuzz_total / n_paths;
+ if (fuzz <= fuzz_mu) {
+
+ if (q->fuzz_level < 16)
+ factor = ((u32)(1 << q->fuzz_level));
+ else
+ factor = MAX_FACTOR;
+
+ } else {
+
+ factor = 0;
+
+ }
+
+ break;
+
+ case FAST:
+ if (q->fuzz_level < 16) {
+
+ factor = ((u32)(1 << q->fuzz_level)) / (fuzz == 0 ? 1 : fuzz);
+
+ } else
+
+ factor = MAX_FACTOR / (fuzz == 0 ? 1 : next_p2(fuzz));
+ break;
+
+ case LIN: factor = q->fuzz_level / (fuzz == 0 ? 1 : fuzz); break;
+
+ case QUAD:
+ factor = q->fuzz_level * q->fuzz_level / (fuzz == 0 ? 1 : fuzz);
+ break;
+
+ default: PFATAL("Unknown Power Schedule");
+
+ }
+
+ if (factor > MAX_FACTOR) factor = MAX_FACTOR;
+
+ perf_score *= factor / POWER_BETA;
+
+ // MOpt mode
+ if (limit_time_sig != 0 && max_depth - q->depth < 3)
+ perf_score *= 2;
+ else if (perf_score < 1)
+ perf_score =
+ 1; // Add a lower bound to AFLFast's energy assignment strategies
+
+ /* Make sure that we don't go over limit. */
+
+ if (perf_score > havoc_max_mult * 100) perf_score = havoc_max_mult * 100;
+
+ return perf_score;
+
+}
+