From d9e39be4e8dd0242877412d1a17589acc825292e Mon Sep 17 00:00:00 2001 From: llzmb <46303940+llzmb@users.noreply.github.com> Date: Thu, 2 Dec 2021 16:49:16 +0100 Subject: Remove the word "simply" --- qemu_mode/libcompcov/README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'qemu_mode') diff --git a/qemu_mode/libcompcov/README.md b/qemu_mode/libcompcov/README.md index fca20a69..6a72f5ff 100644 --- a/qemu_mode/libcompcov/README.md +++ b/qemu_mode/libcompcov/README.md @@ -23,7 +23,7 @@ To use this library make sure to preload it with AFL_PRELOAD. ``` export AFL_PRELOAD=/path/to/libcompcov.so export AFL_COMPCOV_LEVEL=1 - + afl-fuzz -Q -i input -o output -- ``` @@ -33,5 +33,5 @@ logs all the comparisons. The library make use of https://github.com/ouadev/proc_maps_parser and so it is Linux specific. However this is not a strict dependency, other UNIX operating -systems can be supported simply replacing the code related to the -/proc/self/maps parsing. +systems can be supported by replacing the code related to the +/proc/self/maps parsing. \ No newline at end of file -- cgit 1.4.1 From 7a8e4018a59fdabef395ca730d6e73f95e8daaed Mon Sep 17 00:00:00 2001 From: llzmb <46303940+llzmb@users.noreply.github.com> Date: Thu, 2 Dec 2021 17:13:12 +0100 Subject: Change the word "env var" to "environment variable" --- docs/env_variables.md | 2 +- docs/features.md | 4 ++-- docs/important_changes.md | 5 +++-- qemu_mode/README.md | 5 +++-- utils/qbdi_mode/README.md | 6 ++++-- 5 files changed, 13 insertions(+), 9 deletions(-) (limited to 'qemu_mode') diff --git a/docs/env_variables.md b/docs/env_variables.md index ec9b2b01..6c90e84c 100644 --- a/docs/env_variables.md +++ b/docs/env_variables.md @@ -564,7 +564,7 @@ The QEMU wrapper used to instrument binary-only code supports several settings: general purpose registers and restore them in each persistent cycle. - Another modality to execute the persistent loop is to specify also the - `AFL_QEMU_PERSISTENT_RET=end addr` env variable. With this variable + `AFL_QEMU_PERSISTENT_RET=end addr` environment variable. With this variable assigned, instead of patching the return address, the specified instruction is transformed to a jump towards `start addr`. diff --git a/docs/features.md b/docs/features.md index 35a869a9..fb688a64 100644 --- a/docs/features.md +++ b/docs/features.md @@ -19,8 +19,8 @@ QEMU 5.1 with laf-intel and redqueen, frida mode, unicorn mode, gcc plugin, full | Snapshot LKM Support | | (x)(8) | (x)(8) | | (x)(5) | | | | Shared Memory Test cases | | x | x | x86[_64]/arm64 | x | x | | -1. default for LLVM >= 9.0, env var for older version due an efficiency bug in - previous llvm versions +1. default for LLVM >= 9.0, environment variable for older version due an + efficiency bug in previous llvm versions 2. GCC creates non-performant code, hence it is disabled in gcc_plugin 3. with `AFL_LLVM_THREADSAFE_INST`, disables NeverZero 4. with pcguard mode and LTO mode for LLVM 11 and newer diff --git a/docs/important_changes.md b/docs/important_changes.md index 9d6bbbbe..726de64d 100644 --- a/docs/important_changes.md +++ b/docs/important_changes.md @@ -48,8 +48,9 @@ behaviors and defaults: * deterministic fuzzing is now disabled by default (unless using -M) and can be enabled with -D * a caching of test cases can now be performed and can be modified by - editing config.h for TESTCASE_CACHE or by specifying the env variable - `AFL_TESTCACHE_SIZE` (in MB). Good values are between 50-500 (default: 50). + editing config.h for TESTCASE_CACHE or by specifying the environment + variable `AFL_TESTCACHE_SIZE` (in MB). Good values are between 50-500 + (default: 50). * -M mains do not perform trimming * examples/ got renamed to utils/ * libtokencap/ libdislocator/ and qdbi_mode/ were moved to utils/ diff --git a/qemu_mode/README.md b/qemu_mode/README.md index b4b5e7bf..8e04cbf9 100644 --- a/qemu_mode/README.md +++ b/qemu_mode/README.md @@ -83,8 +83,9 @@ For more information, see [README.persistent.md](README.persistent.md). As an extension to persistent mode, qemuafl can snapshot and restore the memory state and brk(). For details, see [README.persistent.md](README.persistent.md). -The env var that enables the ready to use snapshot mode is `AFL_QEMU_SNAPSHOT` -and takes a hex address as a value that is the snapshot entry point. +The environment variable that enables the ready to use snapshot mode is +`AFL_QEMU_SNAPSHOT` and takes a hex address as a value that is the snapshot +entry point. Snapshot mode can work restoring all the writeable pages, that is typically slower than fork() mode but, on the other hand, it can scale better with diff --git a/utils/qbdi_mode/README.md b/utils/qbdi_mode/README.md index 8b768906..2e8b01d4 100755 --- a/utils/qbdi_mode/README.md +++ b/utils/qbdi_mode/README.md @@ -34,7 +34,9 @@ For x86 standalone-toolchain ./build/tools/make_standalone_toolchain.py --arch x86 --api 21 --install-dir ../android-standalone-toolchain-x86 ``` -In alternative you can also use the prebuilt toolchain, in that case make sure to set the proper CC and CXX env variables because there are many different compilers for each API version in the prebuilt toolchain. +In alternative you can also use the prebuilt toolchain, in that case make sure +to set the proper CC and CXX environment variables because there are many +different compilers for each API version in the prebuilt toolchain. For example: @@ -64,7 +66,7 @@ cd android-qbdi-sdk-x86_64/ tar xvf QBDI-0.7.0-android-X86_64.tar.gz ``` -Now set the `STANDALONE_TOOLCHAIN_PATH` to the path of standalone-toolchain +Now set the `STANDALONE_TOOLCHAIN_PATH` to the path of standalone-toolchain ``` export STANDALONE_TOOLCHAIN_PATH=/home/hac425/workspace/android-standalone-toolchain-x86_64 -- cgit 1.4.1 From a7694e299a331bd8c4826b2402ee68cd6f83d8f9 Mon Sep 17 00:00:00 2001 From: llzmb <46303940+llzmb@users.noreply.github.com> Date: Thu, 2 Dec 2021 20:45:48 +0100 Subject: Fix punctuation in connection with "however" --- docs/FAQ.md | 10 +++++++--- docs/best_practices.md | 27 ++++++++++++++++++--------- docs/custom_mutators.md | 10 +++++----- docs/fuzzing_in_depth.md | 10 +++++----- docs/important_changes.md | 4 ++-- instrumentation/README.llvm.md | 11 ++++++----- qemu_mode/README.persistent.md | 8 ++++---- qemu_mode/libcompcov/README.md | 8 ++++---- utils/afl_network_proxy/README.md | 13 +++++++------ utils/afl_untracer/README.md | 6 +++--- 10 files changed, 61 insertions(+), 46 deletions(-) (limited to 'qemu_mode') diff --git a/docs/FAQ.md b/docs/FAQ.md index ae4a77dc..49444999 100644 --- a/docs/FAQ.md +++ b/docs/FAQ.md @@ -12,7 +12,9 @@ If you find an interesting or important question missing, submit it via American Fuzzy Lop (AFL) was developed by MichaƂ "lcamtuf" Zalewski starting in 2013/2014, and when he left Google end of 2017 he stopped developing it. - At the end of 2019, the Google fuzzing team took over maintenance of AFL, however it is only accepting PRs from the community and is not developing enhancements anymore. + At the end of 2019, the Google fuzzing team took over maintenance of AFL, + however, it is only accepting PRs from the community and is not developing + enhancements anymore. In the second quarter of 2019, 1 1/2 years later, when no further development of AFL had happened and it became clear there would none be coming, AFL++ was born, where initially community patches were collected and applied for bug fixes and enhancements. Then from various AFL spin-offs - mostly academic research - features were integrated. @@ -121,8 +123,10 @@ If you find an interesting or important question missing, submit it via Sending the same input again and again should take the exact same path through the target every time. If that is the case, the stability is 100%. - If however randomness happens, e.g. a thread reading other external data, reaction to timing, etc., then in some of the re-executions with the same data the edge coverage result will be different accross runs. - Those edges that change are then flagged "unstable". + If, however, randomness happens, e.g. a thread reading other external data, + reaction to timing, etc., then in some of the re-executions with the same data + the edge coverage result will be different accross runs. Those edges that + change are then flagged "unstable". The more "unstable" edges, the more difficult for AFL++ to identify valid new paths. diff --git a/docs/best_practices.md b/docs/best_practices.md index 979849f4..15f8870c 100644 --- a/docs/best_practices.md +++ b/docs/best_practices.md @@ -54,9 +54,11 @@ to emulate the network. This is also much faster than the real network would be. See [utils/socket_fuzzing/](../utils/socket_fuzzing/). There is an outdated AFL++ branch that implements networking if you are -desperate though: [https://github.com/AFLplusplus/AFLplusplus/tree/networking](https://github.com/AFLplusplus/AFLplusplus/tree/networking) - -however a better option is AFLnet ([https://github.com/aflnet/aflnet](https://github.com/aflnet/aflnet)) -which allows you to define network state with different type of data packets. +desperate though: +[https://github.com/AFLplusplus/AFLplusplus/tree/networking](https://github.com/AFLplusplus/AFLplusplus/tree/networking) +- however, a better option is AFLnet +([https://github.com/aflnet/aflnet](https://github.com/aflnet/aflnet)) which +allows you to define network state with different type of data packets. ## Improvements @@ -72,13 +74,16 @@ which allows you to define network state with different type of data packets. ### Improving stability -For fuzzing a 100% stable target that covers all edges is the best case. -A 90% stable target that covers all edges is however better than a 100% stable target that ignores 10% of the edges. +For fuzzing a 100% stable target that covers all edges is the best case. A 90% +stable target that covers all edges is, however, better than a 100% stable +target that ignores 10% of the edges. With instability, you basically have a partial coverage loss on an edge, with ignored functions you have a full loss on that edges. -There are functions that are unstable, but also provide value to coverage, e.g., init functions that use fuzz data as input. -If however a function that has nothing to do with the input data is the source of instability, e.g., checking jitter, or is a hash map function etc., then it should not be instrumented. +There are functions that are unstable, but also provide value to coverage, e.g., +init functions that use fuzz data as input. If, however, a function that has +nothing to do with the input data is the source of instability, e.g., checking +jitter, or is a hash map function etc., then it should not be instrumented. To be able to exclude these functions (based on AFL++'s measured stability), the following process will allow to identify functions with variable edges. @@ -116,8 +121,12 @@ Four steps are required to do this and it also requires quite some knowledge of If `PCGUARD` is used, then you need to follow this guide (needs llvm 12+!): [https://clang.llvm.org/docs/SanitizerCoverage.html#partially-disabling-instrumentation](https://clang.llvm.org/docs/SanitizerCoverage.html#partially-disabling-instrumentation) - Only exclude those functions from instrumentation that provide no value for coverage - that is if it does not process any fuzz data directly or indirectly (e.g. hash maps, thread management etc.). - If however a function directly or indirectly handles fuzz data, then you should not put the function in a deny instrumentation list and rather live with the instability it comes with. + Only exclude those functions from instrumentation that provide no value for + coverage - that is if it does not process any fuzz data directly or + indirectly (e.g. hash maps, thread management etc.). If, however, a + function directly or indirectly handles fuzz data, then you should not put + the function in a deny instrumentation list and rather live with the + instability it comes with. 4. Recompile the target diff --git a/docs/custom_mutators.md b/docs/custom_mutators.md index 4018d633..fc5ecbf9 100644 --- a/docs/custom_mutators.md +++ b/docs/custom_mutators.md @@ -112,11 +112,11 @@ def deinit(): # optional for Python - `fuzz_count` (optional): - When a queue entry is selected to be fuzzed, afl-fuzz selects the number - of fuzzing attempts with this input based on a few factors. - If however the custom mutator wants to set this number instead on how often - it is called for a specific queue entry, use this function. - This function is most useful if `AFL_CUSTOM_MUTATOR_ONLY` is **not** used. + When a queue entry is selected to be fuzzed, afl-fuzz selects the number of + fuzzing attempts with this input based on a few factors. If, however, the + custom mutator wants to set this number instead on how often it is called + for a specific queue entry, use this function. This function is most useful + if `AFL_CUSTOM_MUTATOR_ONLY` is **not** used. - `fuzz` (optional): diff --git a/docs/fuzzing_in_depth.md b/docs/fuzzing_in_depth.md index 92b3cf86..96e709ab 100644 --- a/docs/fuzzing_in_depth.md +++ b/docs/fuzzing_in_depth.md @@ -131,8 +131,8 @@ The following options are available when you instrument with LTO mode have to compile the target twice, once specifically with/for this mode by setting `AFL_LLVM_CMPLOG=1`, and pass this binary to afl-fuzz via the `-c` parameter. Note that you can compile also just a cmplog binary and use that - for both however there will be a performance penality. You can read more about - this in + for both, however, there will be a performance penality. You can read more + about this in [instrumentation/README.cmplog.md](../instrumentation/README.cmplog.md). If you use LTO, LLVM or GCC_PLUGIN mode @@ -151,7 +151,7 @@ only instrument parts of the target that you are interested in: inlined and then would not match! See [instrumentation/README.instrument_list.md](../instrumentation/README.instrument_list.md) -There are many more options and modes available however these are most of the +There are many more options and modes available, however, these are most of the time less effective. See: * [instrumentation/README.ctx.md](../instrumentation/README.ctx.md) * [instrumentation/README.ngram.md](../instrumentation/README.ngram.md) @@ -369,8 +369,8 @@ This step is highly recommended! ### c) Minimizing all corpus files The shorter the input files that still traverse the same path within the target, -the better the fuzzing will be. This minimization is done with `afl-tmin` -however it is a long process as this has to be done for every file: +the better the fuzzing will be. This minimization is done with `afl-tmin`, +however, it is a long process as this has to be done for every file: ``` mkdir input diff --git a/docs/important_changes.md b/docs/important_changes.md index 726de64d..6cd00791 100644 --- a/docs/important_changes.md +++ b/docs/important_changes.md @@ -15,8 +15,8 @@ With AFL++ 3.15 we introduced the following changes from previous behaviors: With AFL++ 3.14 we introduced the following changes from previous behaviors: * afl-fuzz: deterministic fuzzing it not a default for -M main anymore - * afl-cmin/afl-showmap -i now descends into subdirectories (afl-cmin.bash - however does not) + * afl-cmin/afl-showmap -i now descends into subdirectories (afl-cmin.bash, + however, does not) With AFL++ 3.10 we introduced the following changes from previous behaviors: * The '+' feature of the '-t' option now means to auto-calculate the timeout diff --git a/instrumentation/README.llvm.md b/instrumentation/README.llvm.md index 8133cbe4..d16049fa 100644 --- a/instrumentation/README.llvm.md +++ b/instrumentation/README.llvm.md @@ -106,9 +106,10 @@ either setting `AFL_CC_COMPILER=LLVM` or pass the parameter `--afl-llvm` via CFLAGS/CXXFLAGS/CPPFLAGS. The tool honors roughly the same environmental variables as afl-gcc (see -[docs/env_variables.md](../docs/env_variables.md)). This includes AFL_USE_ASAN, -AFL_HARDEN, and AFL_DONT_OPTIMIZE. However AFL_INST_RATIO is not honored as it -does not serve a good purpose with the more effective PCGUARD analysis. +[docs/env_variables.md](../docs/env_variables.md)). This includes +`AFL_USE_ASAN`, `AFL_HARDEN`, and `AFL_DONT_OPTIMIZE`. However, `AFL_INST_RATIO` +is not honored as it does not serve a good purpose with the more effective +PCGUARD analysis. ## 3) Options @@ -125,8 +126,8 @@ For splitting memcmp, strncmp, etc., see Then there are different ways of instrumenting the target: 1. An better instrumentation strategy uses LTO and link time instrumentation. - Note that not all targets can compile in this mode, however if it works it is - the best option you can use. To go with this option, use + Note that not all targets can compile in this mode, however, if it works it + is the best option you can use. To go with this option, use afl-clang-lto/afl-clang-lto++. See [README.lto.md](README.lto.md). 2. Alternatively you can choose a completely different coverage method: diff --git a/qemu_mode/README.persistent.md b/qemu_mode/README.persistent.md index 7210a8cc..ab45860d 100644 --- a/qemu_mode/README.persistent.md +++ b/qemu_mode/README.persistent.md @@ -17,10 +17,10 @@ The start of the persistent loop has to be set with environment variable `AFL_QEMU_PERSISTENT_ADDR`. This address can be the address of whatever instruction. Setting this address to -the start of a function makes the usage simple. If the address is however within -a function, either RET, OFFSET, or EXITS (see below in 2.2, 2.3, 2.6) have to be -set. This address (as well as the RET address, see below) has to be defined in -hexadecimal with the 0x prefix or as a decimal value. +the start of a function makes the usage simple. If the address is, however, +within a function, either RET, OFFSET, or EXITS (see below in 2.2, 2.3, 2.6) +have to be set. This address (as well as the RET address, see below) has to be +defined in hexadecimal with the 0x prefix or as a decimal value. If both RET and EXITS are not set, QEMU will assume that START points to a function and will patch the return address (on stack or in the link register) to diff --git a/qemu_mode/libcompcov/README.md b/qemu_mode/libcompcov/README.md index 6a72f5ff..50f0d802 100644 --- a/qemu_mode/libcompcov/README.md +++ b/qemu_mode/libcompcov/README.md @@ -18,7 +18,7 @@ and this module is not capable to log the coverage in this case. If you have the source code of the fuzzing target you should nto use this library and QEMU but build it with afl-clang-fast and the laf-intel options. -To use this library make sure to preload it with AFL_PRELOAD. +To use this library, make sure to preload it with AFL_PRELOAD. ``` export AFL_PRELOAD=/path/to/libcompcov.so @@ -32,6 +32,6 @@ Level 1 logs just comparison with immediates / read-only memory and level 2 logs all the comparisons. The library make use of https://github.com/ouadev/proc_maps_parser and so it is -Linux specific. However this is not a strict dependency, other UNIX operating -systems can be supported by replacing the code related to the -/proc/self/maps parsing. \ No newline at end of file +Linux specific. However, this is not a strict dependency, other UNIX operating +systems can be supported by replacing the code related to the /proc/self/maps +parsing. \ No newline at end of file diff --git a/utils/afl_network_proxy/README.md b/utils/afl_network_proxy/README.md index 05659c45..d2c00be2 100644 --- a/utils/afl_network_proxy/README.md +++ b/utils/afl_network_proxy/README.md @@ -34,16 +34,17 @@ afl-network-server -i 1111 -m 25M -t 1000 -- /bin/target -f @@ ### on the (afl-fuzz) main node -Just run afl-fuzz with your normal options, however the target should be +Just run afl-fuzz with your normal options, however, the target should be `afl-network-client` with the IP and PORT of the `afl-network-server` and increase the -t value: + ``` afl-fuzz -i in -o out -t 2000+ -- afl-network-client TARGET-IP 1111 ``` -Note the '+' on the -t parameter value. The afl-network-server will take -care of proper timeouts hence afl-fuzz should not. The '+' increases the -timeout and the value itself should be 500-1000 higher than the one on -afl-network-server. + +Note the '+' on the -t parameter value. The afl-network-server will take care of +proper timeouts hence afl-fuzz should not. The '+' increases the timeout and the +value itself should be 500-1000 higher than the one on afl-network-server. ### networking @@ -53,7 +54,7 @@ either. Note that also the outgoing interface can be specified with a '%' for Also make sure your default TCP window size is larger than your MAP_SIZE (130kb is a good value). -On Linux that is the middle value of `/proc/sys/net/ipv4/tcp_rmem` +On Linux that is the middle value of `/proc/sys/net/ipv4/tcp_rmem` ## how to compile and install diff --git a/utils/afl_untracer/README.md b/utils/afl_untracer/README.md index ada0c916..9f41618f 100644 --- a/utils/afl_untracer/README.md +++ b/utils/afl_untracer/README.md @@ -5,9 +5,9 @@ afl-untracer is an example skeleton file which can easily be used to fuzz a closed source library. -It requires less memory and is x3-5 faster than qemu_mode however it is way -more course grained and does not provide interesting features like compcov -or cmplog. +It requires less memory and is x3-5 faster than qemu_mode, however, it is way +more course grained and does not provide interesting features like compcov or +cmplog. Supported is so far Intel (i386/x86_64) and AARCH64. -- cgit 1.4.1 From aa6586a761c47da1f202221c9a449b692cacbcae Mon Sep 17 00:00:00 2001 From: llzmb <46303940+llzmb@users.noreply.github.com> Date: Thu, 2 Dec 2021 21:23:22 +0100 Subject: Fix typos - 1st run --- custom_mutators/gramatron/README.md | 6 +++--- docs/FAQ.md | 2 +- docs/fuzzing_in_depth.md | 2 +- instrumentation/README.llvm.md | 2 +- qemu_mode/libcompcov/README.md | 2 +- utils/optimin/README.md | 2 +- 6 files changed, 8 insertions(+), 8 deletions(-) (limited to 'qemu_mode') diff --git a/custom_mutators/gramatron/README.md b/custom_mutators/gramatron/README.md index 0167f620..2ed014cd 100644 --- a/custom_mutators/gramatron/README.md +++ b/custom_mutators/gramatron/README.md @@ -1,6 +1,6 @@ # GramaTron -Gramatron is a coverage-guided fuzzer that uses grammar automatons to perform +GramaTron is a coverage-guided fuzzer that uses grammar automatons to perform grammar-aware fuzzing. Technical details about our framework are available in the [ISSTA'21 paper](https://nebelwelt.net/files/21ISSTA.pdf). The artifact to reproduce the experiments presented in the paper are present @@ -9,11 +9,11 @@ grammars is presented below: # Compiling -Execute `./build_gramatron_mutator.sh` +Execute `./build_gramatron_mutator.sh`. # Running -You have to set the grammar file to use with `GRAMMATRON_AUTOMATION`: +You have to set the grammar file to use with `GRAMATRON_AUTOMATION`: ``` export AFL_DISABLE_TRIM=1 diff --git a/docs/FAQ.md b/docs/FAQ.md index 27250415..671957ef 100644 --- a/docs/FAQ.md +++ b/docs/FAQ.md @@ -125,7 +125,7 @@ If you find an interesting or important question missing, submit it via If, however, randomness happens, e.g., a thread reading other external data, reaction to timing, etc., then in some of the re-executions with the same data - the edge coverage result will be different accross runs. Those edges that + the edge coverage result will be different across runs. Those edges that change are then flagged "unstable". The more "unstable" edges, the more difficult for AFL++ to identify valid new paths. diff --git a/docs/fuzzing_in_depth.md b/docs/fuzzing_in_depth.md index 7c464d81..011ba783 100644 --- a/docs/fuzzing_in_depth.md +++ b/docs/fuzzing_in_depth.md @@ -131,7 +131,7 @@ The following options are available when you instrument with LTO mode have to compile the target twice, once specifically with/for this mode by setting `AFL_LLVM_CMPLOG=1`, and pass this binary to afl-fuzz via the `-c` parameter. Note that you can compile also just a cmplog binary and use that - for both, however, there will be a performance penality. You can read more + for both, however, there will be a performance penalty. You can read more about this in [instrumentation/README.cmplog.md](../instrumentation/README.cmplog.md). diff --git a/instrumentation/README.llvm.md b/instrumentation/README.llvm.md index ac8f2f2a..c93cd312 100644 --- a/instrumentation/README.llvm.md +++ b/instrumentation/README.llvm.md @@ -125,7 +125,7 @@ For splitting memcmp, strncmp, etc., see Then there are different ways of instrumenting the target: -1. An better instrumentation strategy uses LTO and link time instrumentation. +1. A better instrumentation strategy uses LTO and link time instrumentation. Note that not all targets can compile in this mode, however, if it works it is the best option you can use. To go with this option, use afl-clang-lto/afl-clang-lto++. See [README.lto.md](README.lto.md). diff --git a/qemu_mode/libcompcov/README.md b/qemu_mode/libcompcov/README.md index 50f0d802..bb010d8f 100644 --- a/qemu_mode/libcompcov/README.md +++ b/qemu_mode/libcompcov/README.md @@ -31,7 +31,7 @@ The AFL_COMPCOV_LEVEL tells to QEMU and libcompcov how to log comaprisons. Level 1 logs just comparison with immediates / read-only memory and level 2 logs all the comparisons. -The library make use of https://github.com/ouadev/proc_maps_parser and so it is +The library makes use of https://github.com/ouadev/proc_maps_parser and so it is Linux specific. However, this is not a strict dependency, other UNIX operating systems can be supported by replacing the code related to the /proc/self/maps parsing. \ No newline at end of file diff --git a/utils/optimin/README.md b/utils/optimin/README.md index 507cb305..340022b8 100644 --- a/utils/optimin/README.md +++ b/utils/optimin/README.md @@ -77,7 +77,7 @@ For more details, see the paper [Seed Selection for Successful Fuzzing](https://dl.acm.org/doi/10.1145/3460319.3464795). If you use OptiMin in your research, please cite this paper. -Bibtex: +BibTeX: ```bibtex @inproceedings{Herrera:2021:FuzzSeedSelection, -- cgit 1.4.1 From 6eab6a55af74754cd0229012f1c9543c0c3cb2a7 Mon Sep 17 00:00:00 2001 From: llzmb <46303940+llzmb@users.noreply.github.com> Date: Sat, 4 Dec 2021 21:14:50 +0100 Subject: Fix spelling of "FRIDA mode" and "QEMU mode" --- TODO.md | 2 +- docs/INSTALL.md | 4 ++-- docs/features.md | 8 ++++---- docs/fuzzing_binary-only_targets.md | 35 ++++++++++++++++++----------------- docs/important_changes.md | 8 ++++---- instrumentation/README.llvm.md | 2 +- qemu_mode/libqasan/README.md | 2 +- utils/README.md | 2 +- utils/afl_untracer/README.md | 2 +- utils/aflpp_driver/README.md | 4 ++-- utils/qbdi_mode/README.md | 2 +- 11 files changed, 36 insertions(+), 35 deletions(-) (limited to 'qemu_mode') diff --git a/TODO.md b/TODO.md index 04f3abab..e6b095fc 100644 --- a/TODO.md +++ b/TODO.md @@ -16,7 +16,7 @@ ## Further down the road -qemu_mode/frida_mode: +QEMU mode/FRIDA mode: - non colliding instrumentation - rename qemu specific envs to AFL_QEMU (AFL_ENTRYPOINT, AFL_CODE_START/END, AFL_COMPCOV_LEVEL?) diff --git a/docs/INSTALL.md b/docs/INSTALL.md index 08d3283e..9d1309fe 100644 --- a/docs/INSTALL.md +++ b/docs/INSTALL.md @@ -23,7 +23,7 @@ sudo apt-get install -y build-essential python3-dev automake git flex bison libg # try to install llvm 11 and install the distro default if that fails sudo apt-get install -y lld-11 llvm-11 llvm-11-dev clang-11 || sudo apt-get install -y lld llvm llvm-dev clang sudo apt-get install -y gcc-$(gcc --version|head -n1|sed 's/.* //'|sed 's/\..*//')-plugin-dev libstdc++-$(gcc --version|head -n1|sed 's/.* //'|sed 's/\..*//')-dev -sudo apt-get install -y ninja-build # for qemu_mode +sudo apt-get install -y ninja-build # for QEMU mode git clone https://github.com/AFLplusplus/AFLplusplus cd AFLplusplus make distrib @@ -33,7 +33,7 @@ sudo make install It is recommended to install the newest available gcc, clang and llvm-dev possible in your distribution! -Note that "make distrib" also builds instrumentation, qemu_mode, unicorn_mode +Note that "make distrib" also builds instrumentation, QEMU mode, unicorn_mode and more. If you just want plain AFL++, then do "make all". However, compiling and using at least instrumentation is highly recommended for much better results - hence in this case choose: diff --git a/docs/features.md b/docs/features.md index fb688a64..06b1bcbe 100644 --- a/docs/features.md +++ b/docs/features.md @@ -4,7 +4,7 @@ AFL++ supports llvm from 3.8 up to version 12, very fast binary fuzzing with QEMU 5.1 with laf-intel and redqueen, frida mode, unicorn mode, gcc plugin, full *BSD, Mac OS, Solaris and Android support and much, much, much more. -| Feature/Instrumentation | afl-gcc | llvm | gcc_plugin | frida_mode(9) | qemu_mode(10) |unicorn_mode(10) |coresight_mode(11)| +| Feature/Instrumentation | afl-gcc | llvm | gcc_plugin | FRIDA mode(9) | QEMU mode(10) |unicorn_mode(10) |coresight_mode(11)| | -------------------------|:-------:|:---------:|:----------:|:----------------:|:----------------:|:----------------:|:----------------:| | Threadsafe counters | | x(3) | | | | | | | NeverZero | x86[_64]| x(1) | x | x | x | x | | @@ -37,9 +37,9 @@ QEMU 5.1 with laf-intel and redqueen, frida mode, unicorn mode, gcc plugin, full Among others, the following features and patches have been integrated: -* NeverZero patch for afl-gcc, instrumentation, qemu_mode and unicorn_mode which +* NeverZero patch for afl-gcc, instrumentation, QEMU mode and unicorn_mode which prevents a wrapping map value to zero, increases coverage -* Persistent mode, deferred forkserver and in-memory fuzzing for qemu_mode +* Persistent mode, deferred forkserver and in-memory fuzzing for QEMU mode * Unicorn mode which allows fuzzing of binaries from completely different platforms (integration provided by domenukk) * The new CmpLog instrumentation for LLVM and QEMU inspired by @@ -51,7 +51,7 @@ Among others, the following features and patches have been integrated: [https://github.com/puppet-meteor/MOpt-AFL](https://github.com/puppet-meteor/MOpt-AFL) * LLVM mode Ngram coverage by Adrian Herrera [https://github.com/adrianherrera/afl-ngram-pass](https://github.com/adrianherrera/afl-ngram-pass) -* LAF-Intel/CompCov support for instrumentation, qemu_mode and unicorn_mode +* LAF-Intel/CompCov support for instrumentation, QEMU mode and unicorn_mode (with enhanced capabilities) * Radamsa and honggfuzz mutators (as custom mutators). * QBDI mode to fuzz android native libraries via Quarkslab's diff --git a/docs/fuzzing_binary-only_targets.md b/docs/fuzzing_binary-only_targets.md index b3d9ca02..15155111 100644 --- a/docs/fuzzing_binary-only_targets.md +++ b/docs/fuzzing_binary-only_targets.md @@ -12,18 +12,18 @@ fuzzed with AFL++. ## TL;DR: -Qemu_mode in persistent mode is the fastest - if the stability is high enough. +QEMU mode in persistent mode is the fastest - if the stability is high enough. Otherwise, try RetroWrite, Dyninst, and if these fail, too, then try standard -qemu_mode with AFL_ENTRYPOINT to where you need it. +QEMU mode with `AFL_ENTRYPOINT` to where you need it. -If your target is a library, then use frida_mode. +If your target is a library, then use FRIDA mode. If your target is non-linux, then use unicorn_mode. ## Fuzzing binary-only targets with AFL++ -### Qemu_mode +### QEMU mode -Qemu_mode is the "native" solution to the program. It is available in the +QEMU mode is the "native" solution to the program. It is available in the ./qemu_mode/ directory and, once compiled, it can be accessed by the afl-fuzz -Q command line option. It is the easiest to use alternative and even works for cross-platform binaries. @@ -37,11 +37,12 @@ cd qemu_mode ./build_qemu_support.sh ``` -The following setup to use qemu_mode is recommended: +The following setup to use QEMU mode is recommended: + * run 1 afl-fuzz -Q instance with CMPLOG (`-c 0` + `AFL_COMPCOV_LEVEL=2`) * run 1 afl-fuzz -Q instance with QASAN (`AFL_USE_QASAN=1`) * run 1 afl-fuzz -Q instance with LAF (`AFL_PRELOAD=libcmpcov.so` + - `AFL_COMPCOV_LEVEL=2`), alternatively you can use frida_mode, just switch `-Q` + `AFL_COMPCOV_LEVEL=2`), alternatively you can use FRIDA mode, just switch `-Q` with `-O` and remove the LAF instance Then run as many instances as you have cores left with either -Q mode or - even @@ -49,16 +50,16 @@ better - use a binary rewriter like Dyninst, RetroWrite, ZAFL, etc. If [afl-dyninst](https://github.com/vanhauser-thc/afl-dyninst) works for your binary, then you can use afl-fuzz normally and it will have twice the speed -compared to qemu_mode (but slower than qemu persistent mode). Note that several +compared to QEMU mode (but slower than QEMU persistent mode). Note that several other binary rewriters exist, all with their advantages and caveats. -The speed decrease of qemu_mode is at about 50%. However, various options exist +The speed decrease of QEMU mode is at about 50%. However, various options exist to increase the speed: - using AFL_ENTRYPOINT to move the forkserver entry to a later basic block in the binary (+5-10% speed) - using persistent mode [qemu_mode/README.persistent.md](../qemu_mode/README.persistent.md) this will - result in a 150-300% overall speed increase - so 3-8x the original qemu_mode + result in a 150-300% overall speed increase - so 3-8x the original QEMU mode speed! - using AFL_CODE_START/AFL_CODE_END to only instrument specific parts @@ -71,7 +72,7 @@ conducive to parallelization. Note that there is also honggfuzz: [https://github.com/google/honggfuzz](https://github.com/google/honggfuzz) which -now has a qemu_mode, but its performance is just 1.5% ... +now has a QEMU mode, but its performance is just 1.5% ... If you like to code a customized fuzzer without much work, we highly recommend to check out our sister project libafl which supports QEMU, too: @@ -87,14 +88,14 @@ It is included in AFL++. For more information, see [qemu_mode/README.wine.md](../qemu_mode/README.wine.md). -### Frida_mode +### FRIDA mode -In frida_mode, you can fuzz binary-only targets as easily as with QEMU. -Frida_mode is sometimes faster and sometimes slower than Qemu_mode. It is also +In FRIDA mode, you can fuzz binary-only targets as easily as with QEMU mode. +FRIDA mode is sometimes faster and sometimes slower than QEMU mode. It is also newer, lacks COMPCOV, and has the advantage that it works on MacOS (both intel and M1). -To build frida_mode: +To build FRIDA mode: ```shell cd frida_mode @@ -149,11 +150,11 @@ For further information, check out If the goal is to fuzz a dynamic library, then there are two options available. For both, you need to write a small harness that loads and calls the library. -Then you fuzz this with either frida_mode or qemu_mode and either use +Then you fuzz this with either FRIDA mode or QEMU mode and either use `AFL_INST_LIBS=1` or `AFL_QEMU/FRIDA_INST_RANGES`. Another, less precise and slower option is to fuzz it with utils/afl_untracer/ -and use afl-untracer.c as a template. It is slower than frida_mode. +and use afl-untracer.c as a template. It is slower than FRIDA mode. For more information, see [utils/afl_untracer/README.md](../utils/afl_untracer/README.md). diff --git a/docs/important_changes.md b/docs/important_changes.md index 203c5a66..d5e67f75 100644 --- a/docs/important_changes.md +++ b/docs/important_changes.md @@ -5,8 +5,8 @@ changes. ## From version 3.00 onwards -With AFL++ 3.13-3.20, we introduce frida_mode (-O) to have an alternative for -binary-only fuzzing. It is slower than Qemu mode but works on MacOS, Android, +With AFL++ 3.13-3.20, we introduce FRIDA mode (`-O`) to have an alternative for +binary-only fuzzing. It is slower than QEMU mode but works on MacOS, Android, iOS etc. With AFL++ 3.15, we introduced the following changes from previous behaviors: @@ -31,8 +31,8 @@ behaviors and defaults: All instrumentation source code is now in the `instrumentation/` folder. * The gcc_plugin was replaced with a new version submitted by AdaCore that supports more features. Thank you! - * qemu_mode got upgraded to QEMU 5.1, but to be able to build this a current - ninja build tool version and python3 setuptools are required. qemu_mode also + * QEMU mode got upgraded to QEMU 5.1, but to be able to build this a current + ninja build tool version and python3 setuptools are required. QEMU mode also got new options like snapshotting, instrumenting specific shared libraries, etc. Additionally QEMU 5.1 supports more CPU targets so this is really worth it. diff --git a/instrumentation/README.llvm.md b/instrumentation/README.llvm.md index c93cd312..fa025643 100644 --- a/instrumentation/README.llvm.md +++ b/instrumentation/README.llvm.md @@ -218,7 +218,7 @@ by Jinghan Wang, et. al. Note that the original implementation (available [here](https://github.com/bitsecurerlab/afl-sensitive)) is built on top of AFL's -qemu_mode. This is essentially a port that uses LLVM vectorized instructions +QEMU mode. This is essentially a port that uses LLVM vectorized instructions (available from llvm versions 4.0.1 and higher) to achieve the same results when compiling source code. diff --git a/qemu_mode/libqasan/README.md b/qemu_mode/libqasan/README.md index 6a65c12b..41195933 100644 --- a/qemu_mode/libqasan/README.md +++ b/qemu_mode/libqasan/README.md @@ -9,7 +9,7 @@ and this runtime is injected via LD_PRELOAD (so works just for dynamically linked binaries). The usage is super simple, just set the env var `AFL_USE_QASAN=1` when fuzzing -in qemu mode (-Q). afl-fuzz will automatically set AFL_PRELOAD to load this +in QEMU mode (-Q). afl-fuzz will automatically set AFL_PRELOAD to load this library and enable the QASan instrumentation in afl-qemu-trace. For debugging purposes, we still suggest to run the original QASan as the diff --git a/utils/README.md b/utils/README.md index b7eead8e..5f5745b9 100644 --- a/utils/README.md +++ b/utils/README.md @@ -16,7 +16,7 @@ Here's a quick overview of the stuff you can find in this directory: different means, e.g., hw debugger - afl_untracer - fuzz binary-only libraries much faster but with - less coverage than qemu_mode + less coverage than QEMU mode - analysis_scripts - random -o out analysis scripts diff --git a/utils/afl_untracer/README.md b/utils/afl_untracer/README.md index 9f41618f..3fff5f83 100644 --- a/utils/afl_untracer/README.md +++ b/utils/afl_untracer/README.md @@ -5,7 +5,7 @@ afl-untracer is an example skeleton file which can easily be used to fuzz a closed source library. -It requires less memory and is x3-5 faster than qemu_mode, however, it is way +It requires less memory and is x3-5 faster than QEMU mode, however, it is way more course grained and does not provide interesting features like compcov or cmplog. diff --git a/utils/aflpp_driver/README.md b/utils/aflpp_driver/README.md index d534cd7f..8b9fe15f 100644 --- a/utils/aflpp_driver/README.md +++ b/utils/aflpp_driver/README.md @@ -22,10 +22,10 @@ or `@@` as command line parameters. ## aflpp_qemu_driver -Note that you can use the driver too for frida_mode (`-O`). +Note that you can use the driver too for FRIDA mode (`-O`). aflpp_qemu_driver is used for libfuzzer `LLVMFuzzerTestOneInput()` targets that -are to be fuzzed in qemu_mode. So compile them with clang/clang++, without +are to be fuzzed in QEMU mode. So compile them with clang/clang++, without -fsantize=fuzzer or afl-clang-fast, and link in libAFLQemuDriver.a: `clang++ -o fuzz fuzzer_harness.cc libAFLQemuDriver.a [plus required linking]`. diff --git a/utils/qbdi_mode/README.md b/utils/qbdi_mode/README.md index c8d46fca..02dd3c74 100755 --- a/utils/qbdi_mode/README.md +++ b/utils/qbdi_mode/README.md @@ -2,7 +2,7 @@ NOTE: this code is outdated and first would need to be adapted to the current AFL++ versions. -Try frida_mode or fpicker [https://github.com/ttdennis/fpicker/](https://github.com/ttdennis/fpicker/) first, maybe they suite your need. +Try FRIDA mode or fpicker [https://github.com/ttdennis/fpicker/](https://github.com/ttdennis/fpicker/) first, maybe they suite your need. ## 1) Introduction -- cgit 1.4.1