/* Persistent test harness for AFL++'s unicornafl c mode. This loads the persistent_target.bin binary (precompiled as X86_64 code) into Unicorn's memory map for emulation, places the specified input into the argv buffer (handed in as first parameter), and executes 'main()'. Any crashes during emulation will automatically be handled by the afl-fuzz() function. Run under AFL as follows: $ cd /unicorn_mode/samples/persistent/ $ make $ ../../../afl-fuzz -m none -i sample_inputs -o out -- ./harness @@ (Re)run a simgle input with block tracing using: $ ./harness -t [inputfile] */ // This is not your everyday Unicorn. #define UNICORN_AFL #include #include #include #include #include #include #include #include #include #include // Path to the file containing the binary to emulate #define BINARY_FILE ("persistent_target_x86_64") // Memory map for the code to be tested // Arbitrary address where code to test will be loaded static const int64_t BASE_ADDRESS = 0x100000; static const int64_t CODE_ADDRESS = 0x101139; static const int64_t END_ADDRESS = 0x10120d; // Address of the stack (Some random address again) static const int64_t STACK_ADDRESS = (((int64_t) 0x01) << 58); // Size of the stack (arbitrarily chosen, just make it big enough) static const int64_t STACK_SIZE = 0x10000; // Location where the input will be placed (make sure the emulated program knows this somehow, too ;) ) static const int64_t INPUT_LOCATION = 0x10000; // Inside the location, we have an ofset in our special case static const int64_t INPUT_OFFSET = 0x16; // Maximum allowable size of mutated data from AFL static const int64_t INPUT_SIZE_MAX = 0x10000; // Alignment for unicorn mappings (seems to be needed) static const int64_t ALIGNMENT = 0x1000; // In our special case, we emulate main(), so argc is needed. static const uint64_t EMULATED_ARGC = 2; // The return from our fake strlen static size_t current_input_len = 0; static void hook_block(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) { printf(">>> Tracing basic block at 0x%"PRIx64 ", block size = 0x%x\n", address, size); } static void hook_code(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) { printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size); } /* The sample uses strlen, since we don't have a loader or libc, we'll fake it. We know the strlen will return the length of argv[1] that we just planted. It will be a lot faster than an actual strlen for this specific purpose. */ static void hook_strlen(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) { //Hook //116b: e8 c0 fe ff ff call 1030 // We place the return at RAX uc_reg_write(uc, UC_X86_REG_RAX, ¤t_input_len); // We skip the actual call by updating RIP //printf("Strlen hook at addr 0x%llx (size: 0x%x), result: %ld\n", address, size, current_input_len); uint64_t next_addr = address + size; uc_reg_write(uc, UC_X86_REG_RIP, &next_addr); } /* Unicorn page needs to be 0x1000 aligned, apparently */ static uint64_t pad(uint64_t size) { if (size % ALIGNMENT == 0) return size; return ((size / ALIGNMENT) + 1) * ALIGNMENT; } /* returns the filesize in bytes, -1 or error. */ static off_t afl_mmap_file(char *filename, char **buf_ptr) { off_t ret = -1; int fd = open(filename, O_RDONLY); struct stat st = {0}; if (fstat(fd, &st)) goto exit; off_t in_len = st.st_size; if (in_len == -1) { /* This can only ever happen on 32 bit if the file is exactly 4gb. */ fprintf(stderr, "Filesize of %s too large\n", filename); goto exit; } *buf_ptr = mmap(0, in_len, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); if (*buf_ptr != MAP_FAILED) ret = in_len; exit: close(fd); return ret; } /* Place the input at the right spot inside unicorn */ static bool place_input_callback( uc_engine *uc, char *input, size_t input_len, uint32_t persistent_round, void *data ){ // printf("Placing input with len %ld to %x\n", input_len, DATA_ADDRESS); if (input_len < 1 || input_len >= INPUT_SIZE_MAX - INPUT_OFFSET) { // Test input too short or too long, ignore this testcase return false; } #if defined(AFL_DEBUG) printf("[d] harness: input len=%ld, [ ", input_len); int i = 0; for (i = 0; i < input_len && i < 16; i++) { printf("0x%02x ", (unsigned char) input[i]); } if (input_len > 16) printf("... "); printf("]\n"); #endif // For persistent mode, we have to set up stack and memory each time. uc_reg_write(uc, UC_X86_REG_RIP, &CODE_ADDRESS); // Set the instruction pointer back // Set up the function parameters accordingly RSI, RDI (see calling convention/disassembly) uc_reg_write(uc, UC_X86_REG_RSI, &INPUT_LOCATION); // argv uc_reg_write(uc, UC_X86_REG_RDI, &EMULATED_ARGC); // argc == 2 // We need a valid c string, make sure it never goes out of bounds. input[input_len-1] = '\0'; // Write the testcase to unicorn. uc_mem_write(uc, INPUT_LOCATION + INPUT_OFFSET, input, input_len); // store input_len for the faux strlen hook current_input_len = input_len; return true; } static void mem_map_checked(uc_engine *uc, uint64_t addr, size_t size, uint32_t mode) { size = pad(size); //printf("SIZE %llx, align: %llx\n", size, ALIGNMENT); uc_err err = uc_mem_map(uc, addr, size, mode); if (err != UC_ERR_OK) { printf("Error mapping %zu bytes at 0x%llx: %s (mode: %d)\n", size, (unsigned long long) addr, uc_strerror(err), mode); exit(1); } } int main(int argc, char **argv, char **envp) { if (argc == 1) { printf("Test harness for simple_target.bin. Usage: harness [-t] \n"); exit(1); } bool tracing = false; char *filename = argv[1]; if (argc > 2 && !strcmp(argv[1], "-t")) { tracing = true; filename = argv[2]; } uc_engine *uc; uc_err err; uc_hook hooks[2]; char *file_contents; // Initialize emulator in X86_64 mode err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc); if (err) { printf("Failed on uc_open() with error returned: %u (%s)\n", err, uc_strerror(err)); return -1; } printf("Loading data input from %s\n", BINARY_FILE); off_t len = afl_mmap_file(BINARY_FILE, &file_contents); if (len < 0) { perror("Could not read binary to emulate"); return -2; } if (len == 0) { fprintf(stderr, "File at '%s' is empty\n", BINARY_FILE); return -3; } // Map memory. mem_map_checked(uc, BASE_ADDRESS, len, UC_PROT_ALL); /* printf("Len: %lx\n", len); */ fflush(stdout); // write machine code to be emulated to memory if (uc_mem_write(uc, BASE_ADDRESS, file_contents, len) != UC_ERR_OK) { printf("Error writing to CODE"); } // Release copied contents munmap(file_contents, len); // Set the program counter to the start of the code uint64_t start_address = CODE_ADDRESS; // address of entry point of main() uint64_t end_address = END_ADDRESS; // Address of last instruction in main() uc_reg_write(uc, UC_X86_REG_RIP, &start_address); // address of entry point of main() // Setup the Stack mem_map_checked(uc, STACK_ADDRESS - STACK_SIZE, STACK_SIZE, UC_PROT_READ | UC_PROT_WRITE); uint64_t stack_val = STACK_ADDRESS; printf("%llu", (unsigned long long) stack_val); uc_reg_write(uc, UC_X86_REG_RSP, &stack_val); // reserve some space for our input data mem_map_checked(uc, INPUT_LOCATION, INPUT_SIZE_MAX, UC_PROT_READ); // build a "dummy" argv with length 2 at 0x10000: // 0x10000 argv[0] NULL // 0x10008 argv[1] (char *)0x10016 --. points to the next offset. // 0x10016 argv[1][0], ... <-^ contains the acutal input data. (INPUT_LOCATION + INPUT_OFFSET) uc_mem_write(uc, 0x10008, "\x16\x00\x01", 3); // little endian of 0x10016, see above // If we want tracing output, set the callbacks here if (tracing) { // tracing all basic blocks with customized callback uc_hook_add(uc, &hooks[0], UC_HOOK_BLOCK, hook_block, NULL, 1, 0); uc_hook_add(uc, &hooks[1], UC_HOOK_CODE, hook_code, NULL, BASE_ADDRESS, BASE_ADDRESS + len - 1); } // Add our strlen hook (for this specific testcase only) int strlen_hook_pos = BASE_ADDRESS + 0x116b; uc_hook strlen_hook; uc_hook_add(uc, &strlen_hook, UC_HOOK_CODE, hook_strlen, NULL, strlen_hook_pos, strlen_hook_pos); printf("Starting to fuzz :)\n"); fflush(stdout); // let's gooo uc_afl_ret afl_ret = uc_afl_fuzz( uc, // The unicorn instance we prepared filename, // Filename of the input to process. In AFL this is usually the '@@' placeholder, outside it's any input file. place_input_callback, // Callback that places the input (automatically loaded from the file at filename) in the unicorninstance &end_address, // Where to exit (this is an array) 1, // Count of end addresses NULL, // Optional calback to run after each exec false, // true, if the optional callback should be run also for non-crashes 1000, // For persistent mode: How many rounds to run NULL // additional data pointer ); switch(afl_ret) { case UC_AFL_RET_ERROR: printf("Error starting to fuzz\n"); return -3; break; case UC_AFL_RET_NO_AFL: printf("No AFL attached - We are done with a single run.\n"); break; default: break; } return 0; }