From 9b82ec25a2915273b1a6dbd2e9fbb66b0a75587d Mon Sep 17 00:00:00 2001 From: Nguyễn Gia Phong Date: Fri, 12 Jun 2020 14:23:00 +0700 Subject: [usth/ICT2.9] Add final project --- usth/ICT2.9/compose/anon.pdf | Bin 0 -> 95868 bytes usth/ICT2.9/compose/anon.tex | 81 +++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 81 insertions(+) create mode 100644 usth/ICT2.9/compose/anon.pdf create mode 100644 usth/ICT2.9/compose/anon.tex (limited to 'usth/ICT2.9/compose') diff --git a/usth/ICT2.9/compose/anon.pdf b/usth/ICT2.9/compose/anon.pdf new file mode 100644 index 0000000..3416256 Binary files /dev/null and b/usth/ICT2.9/compose/anon.pdf differ diff --git a/usth/ICT2.9/compose/anon.tex b/usth/ICT2.9/compose/anon.tex new file mode 100644 index 0000000..4a3b62f --- /dev/null +++ b/usth/ICT2.9/compose/anon.tex @@ -0,0 +1,81 @@ +\documentclass[a4paper,12pt]{article} +\usepackage[english,vietnamese]{babel} +\usepackage{amsmath} +\usepackage{enumerate} +\usepackage{lmodern} + +\title{System Cascade Connection} +\author{{\selectlanguage{vietnamese}Nguyễn Gia Phong}} + +\begin{document} +\selectlanguage{english}\maketitle +Given two discrete-time systems $A$ and $B$ connected in cascade to form +a new system $C = x \mapsto B(A(x))$. + +\section{Linearity} +If $A$ and $B$ are linear, i.e. for all signals $x_i$ and scalars $a_i$, +\begin{align*} + A\left(n \mapsto \sum_i a_i x_i[n]\right) &= n \mapsto \sum_i a_i A(x_i)[n]\\ + B\left(n \mapsto \sum_i a_i x_i[n]\right) &= n \mapsto \sum_i a_i B(x_i)[n] +\end{align*} +then $C$ is also linear +\begin{align*} + C\left(n \mapsto \sum_i a_i x_i[n]\right) + &= B\left(A\left(n \mapsto \sum_i a_i x_i[n]\right)\right)\\ + &= B\left(n \mapsto \sum_i a_i A(x_i)[n]\right)\\ + &= n \mapsto \sum_i a_i B(A(x_i))[n]\\ + &= n \mapsto \sum_i a_i C(x_i)[n] +\end{align*} + +\section{Time Invariance} +If $A$ and $B$ are time invariant, i.e. for all signals $x$ and integers $k$, +\begin{align*} + A(n \mapsto x[n - k]) &= n \mapsto A(x)[n - k]\\ + B(n \mapsto x[n - k]) &= n \mapsto B(x)[n - k]\\ +\end{align*} +then $C$ is also time invariant +\begin{align*} + C(n \mapsto x[n - k]) + &= B(A(n \mapsto x[n - k]))\\ + &= B(n \mapsto A(x)[n - k])\\ + &= n \mapsto B(A(x))[n - k]\\ + &= n \mapsto C(x)[n - k] +\end{align*} + +\section{LTI Ordering} +If $A$ and $B$ are linear and time-invariant, there exists signals $g$ and $h$ +such that for all signals $x$, $A = x \mapsto x * g$ and $B = x \mapsto x * h$, +thus \[B(A(x)) = B(x * g) = x * g * h = x * h * g = A(x * h) = A(B(x))\] +or interchanging $A$ and $B$ order does not change $C$. + +\section{Causality} +If $A$ and $B$ are causal, i.e. for all signals $x$, $y$ and integers $k$, +\begin{multline*} + x[n] = y[n]\quad\forall n < k + \Longrightarrow\begin{cases} + A(x)[n] = A(y)[n]\quad\forall n < k\\ + B(x)[n] = B(y)[n]\quad\forall n < k + \end{cases}\\ + \Longrightarrow B(A(x))[n] = B(A(y))[n]\quad\forall n < k + \iff C(x)[n] = C(y)[n]\quad\forall n < k +\end{multline*} +then $C$ is also causal. + +\section{BIBO Stability} +If $A$ and $B$ are stable, i.e. there exists a signal $x$ +and scalars $a$, $b$ that +\begin{align*} + |x[n]| < a\quad\forall n \in \mathbb Z + &\Longrightarrow |A(x)[n]| < b\quad\forall n \in \mathbb Z\\ + |x[n]| < a\quad\forall n \in \mathbb Z + &\Longrightarrow |B(x)[n]| < b\quad\forall n \in \mathbb Z +\end{align*} +then $C$ is also stable, i.e. there exists a signal $x$ +and scalars $a$, $b$, $c$ that +\begin{align*} + |x[n]| < a\;\forall n \in \mathbb Z + &\Longrightarrow |A(x)[n]| < b\;\forall n \in \mathbb Z\\ + &\Longrightarrow |B(A(x))[n]| < c\;\forall n \in \mathbb Z + \iff |C(x)[n]| < c\;\forall n \in \mathbb Z +\end{align*} +\end{document} -- cgit 1.4.1