From e461df7573c2b7b7e26c965d8cf2d8e175d67378 Mon Sep 17 00:00:00 2001 From: Nguyễn Gia Phong Date: Mon, 16 Dec 2019 21:31:18 +0700 Subject: [usth/MATH2.2] Numerical Methods The future starts now. --- usth/MATH2.2/labwork/2/2a.tikz | 515 ++++++++++++++++++++++++++++++++++++ usth/MATH2.2/labwork/2/labwork2.pdf | Bin 0 -> 68137 bytes usth/MATH2.2/labwork/2/report.pdf | Bin 0 -> 191189 bytes usth/MATH2.2/labwork/2/report.tex | 88 ++++++ 4 files changed, 603 insertions(+) create mode 100644 usth/MATH2.2/labwork/2/2a.tikz create mode 100644 usth/MATH2.2/labwork/2/labwork2.pdf create mode 100644 usth/MATH2.2/labwork/2/report.pdf create mode 100644 usth/MATH2.2/labwork/2/report.tex (limited to 'usth/MATH2.2/labwork/2') diff --git a/usth/MATH2.2/labwork/2/2a.tikz b/usth/MATH2.2/labwork/2/2a.tikz new file mode 100644 index 0000000..c27b94f --- /dev/null +++ b/usth/MATH2.2/labwork/2/2a.tikz @@ -0,0 +1,515 @@ +% Title: gl2ps_renderer figure +% Creator: GL2PS 1.4.0, (C) 1999-2017 C. Geuzaine +% For: Octave +% CreationDate: Fri Sep 27 13:13:59 2019 +\begin{pgfpicture} +\color[rgb]{1.000000,1.000000,1.000000} +\pgfpathrectanglecorners{\pgfpoint{0pt}{0pt}}{\pgfpoint{576pt}{432pt}} +\pgfusepath{fill} +\begin{pgfscope} +\pgfpathrectangle{\pgfpoint{0pt}{0pt}}{\pgfpoint{576pt}{432pt}} +\pgfusepath{fill} +\pgfpathrectangle{\pgfpoint{0pt}{0pt}}{\pgfpoint{576pt}{432pt}} +\pgfusepath{clip} +\pgfpathmoveto{\pgfpoint{74.880005pt}{399.599976pt}} +\pgflineto{\pgfpoint{521.279968pt}{47.520004pt}} +\pgflineto{\pgfpoint{74.880005pt}{47.520004pt}} +\pgfpathclose +\pgfusepath{fill,stroke} +\pgfpathmoveto{\pgfpoint{74.880005pt}{399.599976pt}} +\pgflineto{\pgfpoint{521.279968pt}{399.599976pt}} +\pgflineto{\pgfpoint{521.279968pt}{47.520004pt}} +\pgfpathclose +\pgfusepath{fill,stroke} +\color[rgb]{0.850000,0.850000,0.850000} +\pgfsetlinewidth{0.500000pt} +\pgfsetdash{{16pt}{0pt}}{0pt} +\pgfpathmoveto{\pgfpoint{88.846191pt}{399.599976pt}} +\pgflineto{\pgfpoint{88.846191pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{159.892960pt}{399.599976pt}} +\pgflineto{\pgfpoint{159.892960pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{230.939713pt}{399.599976pt}} +\pgflineto{\pgfpoint{230.939713pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{301.986481pt}{399.599976pt}} +\pgflineto{\pgfpoint{301.986481pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{373.033234pt}{399.599976pt}} +\pgflineto{\pgfpoint{373.033234pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{444.079987pt}{399.599976pt}} +\pgflineto{\pgfpoint{444.079987pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{515.126709pt}{399.599976pt}} +\pgflineto{\pgfpoint{515.126709pt}{47.520004pt}} +\pgfusepath{stroke} +\color[rgb]{0.150000,0.150000,0.150000} +\pgfsetdash{}{0pt} +\pgfpathmoveto{\pgfpoint{88.846191pt}{51.985016pt}} +\pgflineto{\pgfpoint{88.846191pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{88.846191pt}{395.134949pt}} +\pgflineto{\pgfpoint{88.846191pt}{399.599976pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{159.892960pt}{51.985016pt}} +\pgflineto{\pgfpoint{159.892960pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{159.892960pt}{395.134949pt}} +\pgflineto{\pgfpoint{159.892960pt}{399.599976pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{230.939713pt}{51.985016pt}} +\pgflineto{\pgfpoint{230.939713pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{230.939713pt}{395.134949pt}} +\pgflineto{\pgfpoint{230.939713pt}{399.599976pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{301.986481pt}{51.985016pt}} +\pgflineto{\pgfpoint{301.986481pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{301.986481pt}{395.134949pt}} +\pgflineto{\pgfpoint{301.986481pt}{399.599976pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{373.033234pt}{51.985016pt}} +\pgflineto{\pgfpoint{373.033234pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{373.033234pt}{395.134949pt}} +\pgflineto{\pgfpoint{373.033234pt}{399.599976pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{444.079987pt}{51.985016pt}} +\pgflineto{\pgfpoint{444.079987pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{444.079987pt}{395.134949pt}} +\pgflineto{\pgfpoint{444.079987pt}{399.599976pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{515.126709pt}{51.985016pt}} +\pgflineto{\pgfpoint{515.126709pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{515.126709pt}{395.134949pt}} +\pgflineto{\pgfpoint{515.126709pt}{399.599976pt}} +\pgfusepath{stroke} +{ +\pgftransformshift{\pgfpoint{88.846191pt}{42.518860pt}} +\pgfnode{rectangle}{north}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{0}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{159.892944pt}{42.518860pt}} +\pgfnode{rectangle}{north}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{1}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{230.939713pt}{42.518860pt}} +\pgfnode{rectangle}{north}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{2}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{301.986450pt}{42.518860pt}} +\pgfnode{rectangle}{north}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{3}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{373.033234pt}{42.518860pt}} +\pgfnode{rectangle}{north}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{4}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{444.080017pt}{42.518860pt}} +\pgfnode{rectangle}{north}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{5}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{515.126709pt}{42.518860pt}} +\pgfnode{rectangle}{north}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{6}}}{}{\pgfusepath{discard}}} +\color[rgb]{0.850000,0.850000,0.850000} +\pgfsetdash{{16pt}{0pt}}{0pt} +\pgfpathmoveto{\pgfpoint{521.279968pt}{87.024216pt}} +\pgflineto{\pgfpoint{74.880005pt}{87.024216pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{521.279968pt}{143.059479pt}} +\pgflineto{\pgfpoint{74.880005pt}{143.059479pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{521.279968pt}{199.094757pt}} +\pgflineto{\pgfpoint{74.880005pt}{199.094757pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{521.279968pt}{255.130035pt}} +\pgflineto{\pgfpoint{74.880005pt}{255.130035pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{521.279968pt}{311.165283pt}} +\pgflineto{\pgfpoint{74.880005pt}{311.165283pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{521.279968pt}{367.200562pt}} +\pgflineto{\pgfpoint{74.880005pt}{367.200562pt}} +\pgfusepath{stroke} +\color[rgb]{0.150000,0.150000,0.150000} +\pgfsetdash{}{0pt} +\pgfpathmoveto{\pgfpoint{79.347992pt}{87.024216pt}} +\pgflineto{\pgfpoint{74.880005pt}{87.024216pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{516.812012pt}{87.024216pt}} +\pgflineto{\pgfpoint{521.279968pt}{87.024216pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{79.347992pt}{143.059479pt}} +\pgflineto{\pgfpoint{74.880005pt}{143.059479pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{516.812012pt}{143.059479pt}} +\pgflineto{\pgfpoint{521.279968pt}{143.059479pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{79.347992pt}{199.094757pt}} +\pgflineto{\pgfpoint{74.880005pt}{199.094757pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{516.812012pt}{199.094757pt}} +\pgflineto{\pgfpoint{521.279968pt}{199.094757pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{79.347992pt}{255.130035pt}} +\pgflineto{\pgfpoint{74.880005pt}{255.130035pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{516.812012pt}{255.130035pt}} +\pgflineto{\pgfpoint{521.279968pt}{255.130035pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{79.347992pt}{311.165283pt}} +\pgflineto{\pgfpoint{74.880005pt}{311.165283pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{516.812012pt}{311.165283pt}} +\pgflineto{\pgfpoint{521.279968pt}{311.165283pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{79.347992pt}{367.200562pt}} +\pgflineto{\pgfpoint{74.880005pt}{367.200562pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{516.812012pt}{367.200562pt}} +\pgflineto{\pgfpoint{521.279968pt}{367.200562pt}} +\pgfusepath{stroke} +{ +\pgftransformshift{\pgfpoint{69.875519pt}{87.024216pt}} +\pgfnode{rectangle}{east}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{-2}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{69.875519pt}{143.059479pt}} +\pgfnode{rectangle}{east}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{-1}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{69.875519pt}{199.094757pt}} +\pgfnode{rectangle}{east}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{0}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{69.875519pt}{255.130035pt}} +\pgfnode{rectangle}{east}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{1}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{69.875519pt}{311.165283pt}} +\pgfnode{rectangle}{east}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{2}}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{69.875519pt}{367.200562pt}} +\pgfnode{rectangle}{east}{\fontsize{10}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{{3}}}{}{\pgfusepath{discard}}} +\pgfsetrectcap +\pgfsetdash{{16pt}{0pt}}{0pt} +\pgfpathmoveto{\pgfpoint{521.279968pt}{47.520004pt}} +\pgflineto{\pgfpoint{74.880005pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{521.279968pt}{399.599976pt}} +\pgflineto{\pgfpoint{74.880005pt}{399.599976pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{74.880005pt}{399.599976pt}} +\pgflineto{\pgfpoint{74.880005pt}{47.520004pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{521.279968pt}{399.599976pt}} +\pgflineto{\pgfpoint{521.279968pt}{47.520004pt}} +\pgfusepath{stroke} +{ +\pgftransformshift{\pgfpoint{298.079987pt}{409.599976pt}} +\pgfnode{rectangle}{south}{\fontsize{11}{0}\selectfont\textcolor[rgb]{0,0,0}{$x_1^2 + x_1 x_2 - 10 = 0$,\qquad $x_2 + 3 x_1 x_2^2 - 57 = 0$}}{}{\pgfusepath{discard}}} +{ +\pgftransformshift{\pgfpoint{56.875519pt}{223.559998pt}} +\pgftransformrotate{90.000000}{\pgfnode{rectangle}{south}{\fontsize{11}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{$x_2$}}{}{\pgfusepath{discard}}}} +{ +\pgftransformshift{\pgfpoint{298.079987pt}{31.518875pt}} +\pgfnode{rectangle}{north}{\fontsize{11}{0}\selectfont\textcolor[rgb]{0.15,0.15,0.15}{$x_1$}}{}{\pgfusepath{discard}}} +\color[rgb]{0.000000,0.447000,0.741000} +\pgfsetbuttcap +\pgfsetroundjoin +\pgfsetdash{}{0pt} +\pgfpathmoveto{\pgfpoint{220.951141pt}{396.020844pt}} +\pgflineto{\pgfpoint{219.723114pt}{399.952057pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{224.894592pt}{384.085938pt}} +\pgflineto{\pgfpoint{220.951141pt}{396.020844pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{229.080688pt}{372.151001pt}} +\pgflineto{\pgfpoint{224.894592pt}{384.085938pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{232.602112pt}{362.649445pt}} +\pgflineto{\pgfpoint{229.080688pt}{372.151001pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{233.477020pt}{360.216125pt}} +\pgflineto{\pgfpoint{232.602112pt}{362.649445pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{237.927200pt}{348.281189pt}} +\pgflineto{\pgfpoint{233.477020pt}{360.216125pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{242.659943pt}{336.346252pt}} +\pgflineto{\pgfpoint{237.927200pt}{348.281189pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{247.703003pt}{324.411346pt}} +\pgflineto{\pgfpoint{242.659943pt}{336.346252pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{247.734314pt}{324.339661pt}} +\pgflineto{\pgfpoint{247.703003pt}{324.411346pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{252.748062pt}{312.476440pt}} +\pgflineto{\pgfpoint{247.734314pt}{324.339661pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{258.121918pt}{300.541534pt}} +\pgflineto{\pgfpoint{252.748062pt}{312.476440pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{262.866516pt}{290.616760pt}} +\pgflineto{\pgfpoint{258.121918pt}{300.541534pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{263.796997pt}{288.606628pt}} +\pgflineto{\pgfpoint{262.866516pt}{290.616760pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{269.533081pt}{276.671692pt}} +\pgflineto{\pgfpoint{263.796997pt}{288.606628pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{275.658051pt}{264.736786pt}} +\pgflineto{\pgfpoint{269.533081pt}{276.671692pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{277.998718pt}{260.379974pt}} +\pgflineto{\pgfpoint{275.658051pt}{264.736786pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{281.936523pt}{252.801880pt}} +\pgflineto{\pgfpoint{277.998718pt}{260.379974pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{288.481934pt}{240.866959pt}} +\pgflineto{\pgfpoint{281.936523pt}{252.801880pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{293.130920pt}{232.854568pt}} +\pgflineto{\pgfpoint{288.481934pt}{240.866959pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{295.332214pt}{228.932037pt}} +\pgflineto{\pgfpoint{293.130920pt}{232.854568pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{302.331757pt}{216.997131pt}} +\pgflineto{\pgfpoint{295.332214pt}{228.932037pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{308.263123pt}{207.479568pt}} +\pgflineto{\pgfpoint{302.331757pt}{216.997131pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{309.720245pt}{205.062210pt}} +\pgflineto{\pgfpoint{308.263123pt}{207.479568pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{317.207489pt}{193.127304pt}} +\pgflineto{\pgfpoint{309.720245pt}{205.062210pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{323.395325pt}{183.838776pt}} +\pgflineto{\pgfpoint{317.207489pt}{193.127304pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{325.100494pt}{181.192383pt}} +\pgflineto{\pgfpoint{323.395325pt}{183.838776pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{333.109131pt}{169.257477pt}} +\pgflineto{\pgfpoint{325.100494pt}{181.192383pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{338.527527pt}{161.616882pt}} +\pgflineto{\pgfpoint{333.109131pt}{169.257477pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{341.473022pt}{157.322556pt}} +\pgflineto{\pgfpoint{338.527527pt}{161.616882pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{350.036682pt}{145.387634pt}} +\pgflineto{\pgfpoint{341.473022pt}{157.322556pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{353.659729pt}{140.570648pt}} +\pgflineto{\pgfpoint{350.036682pt}{145.387634pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{358.837860pt}{133.452728pt}} +\pgflineto{\pgfpoint{353.659729pt}{140.570648pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{367.990143pt}{121.517815pt}} +\pgflineto{\pgfpoint{358.837860pt}{133.452728pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{368.791931pt}{120.509415pt}} +\pgflineto{\pgfpoint{367.990143pt}{121.517815pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{377.194977pt}{109.582901pt}} +\pgflineto{\pgfpoint{368.791931pt}{120.509415pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{383.924133pt}{101.281647pt}} +\pgflineto{\pgfpoint{377.194977pt}{109.582901pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{386.776154pt}{97.647980pt}} +\pgflineto{\pgfpoint{383.924133pt}{101.281647pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{396.544342pt}{85.713074pt}} +\pgflineto{\pgfpoint{386.776154pt}{97.647980pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{399.056366pt}{82.765381pt}} +\pgflineto{\pgfpoint{396.544342pt}{85.713074pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{406.472046pt}{73.778152pt}} +\pgflineto{\pgfpoint{399.056366pt}{82.765381pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{414.188538pt}{64.861328pt}} +\pgflineto{\pgfpoint{406.472046pt}{73.778152pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{416.720001pt}{61.843246pt}} +\pgflineto{\pgfpoint{414.188538pt}{64.861328pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{427.128693pt}{49.908325pt}} +\pgflineto{\pgfpoint{416.720001pt}{61.843246pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{429.320740pt}{47.487869pt}} +\pgflineto{\pgfpoint{427.128693pt}{49.908325pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{429.601562pt}{47.167923pt}} +\pgflineto{\pgfpoint{429.320740pt}{47.487869pt}} +\pgfusepath{stroke} +\color[rgb]{0.929000,0.694000,0.125000} +\pgfpathmoveto{\pgfpoint{191.405945pt}{396.020844pt}} +\pgflineto{\pgfpoint{187.225342pt}{399.952026pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{202.337708pt}{386.530823pt}} +\pgflineto{\pgfpoint{191.405945pt}{396.020844pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{205.529144pt}{384.085938pt}} +\pgflineto{\pgfpoint{202.337708pt}{386.530823pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{217.469910pt}{375.461426pt}} +\pgflineto{\pgfpoint{205.529144pt}{384.085938pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{222.707169pt}{372.151001pt}} +\pgflineto{\pgfpoint{217.469910pt}{375.461426pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{232.602112pt}{366.148254pt}} +\pgflineto{\pgfpoint{222.707169pt}{372.151001pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{243.883011pt}{360.216125pt}} +\pgflineto{\pgfpoint{232.602112pt}{366.148254pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{247.734314pt}{358.241425pt}} +\pgflineto{\pgfpoint{243.883011pt}{360.216125pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{262.866516pt}{351.308777pt}} +\pgflineto{\pgfpoint{247.734314pt}{358.241425pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{270.392731pt}{348.281189pt}} +\pgflineto{\pgfpoint{262.866516pt}{351.308777pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{277.998718pt}{345.231445pt}} +\pgflineto{\pgfpoint{270.392731pt}{348.281189pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{293.130920pt}{339.824341pt}} +\pgflineto{\pgfpoint{277.998718pt}{345.231445pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{304.179565pt}{336.346252pt}} +\pgflineto{\pgfpoint{293.130920pt}{339.824341pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{308.263123pt}{335.041077pt}} +\pgflineto{\pgfpoint{304.179565pt}{336.346252pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{323.395325pt}{330.592438pt}} +\pgflineto{\pgfpoint{308.263123pt}{335.041077pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{338.527527pt}{326.672333pt}} +\pgflineto{\pgfpoint{323.395325pt}{330.592438pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{348.157104pt}{324.411346pt}} +\pgflineto{\pgfpoint{338.527527pt}{326.672333pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{353.659729pt}{323.072388pt}} +\pgflineto{\pgfpoint{348.157104pt}{324.411346pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{368.791931pt}{319.656311pt}} +\pgflineto{\pgfpoint{353.659729pt}{323.072388pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{383.924133pt}{316.584137pt}} +\pgflineto{\pgfpoint{368.791931pt}{319.656311pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{399.056366pt}{313.806396pt}} +\pgflineto{\pgfpoint{383.924133pt}{316.584137pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{406.854156pt}{312.476440pt}} +\pgflineto{\pgfpoint{399.056366pt}{313.806396pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{414.188538pt}{311.152557pt}} +\pgflineto{\pgfpoint{406.854156pt}{312.476440pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{429.320740pt}{308.598175pt}} +\pgflineto{\pgfpoint{414.188538pt}{311.152557pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{444.452972pt}{306.257477pt}} +\pgflineto{\pgfpoint{429.320740pt}{308.598175pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{459.585144pt}{304.104706pt}} +\pgflineto{\pgfpoint{444.452972pt}{306.257477pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{474.717346pt}{302.118134pt}} +\pgflineto{\pgfpoint{459.585144pt}{304.104706pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{487.619995pt}{300.541534pt}} +\pgflineto{\pgfpoint{474.717346pt}{302.118134pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{489.849579pt}{300.247009pt}} +\pgflineto{\pgfpoint{487.619995pt}{300.541534pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{504.981750pt}{298.329956pt}} +\pgflineto{\pgfpoint{489.849579pt}{300.247009pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{520.113953pt}{296.545319pt}} +\pgflineto{\pgfpoint{504.981750pt}{298.329956pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{521.726379pt}{296.367828pt}} +\pgflineto{\pgfpoint{520.113953pt}{296.545319pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{288.183136pt}{49.908325pt}} +\pgflineto{\pgfpoint{281.119476pt}{47.167923pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{293.130920pt}{51.833923pt}} +\pgflineto{\pgfpoint{288.183136pt}{49.908325pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{308.263123pt}{57.172562pt}} +\pgflineto{\pgfpoint{293.130920pt}{51.833923pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{323.395325pt}{61.808441pt}} +\pgflineto{\pgfpoint{308.263123pt}{57.172562pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{323.516937pt}{61.843246pt}} +\pgflineto{\pgfpoint{323.395325pt}{61.808441pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{338.527527pt}{66.245590pt}} +\pgflineto{\pgfpoint{323.516937pt}{61.843246pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{353.659729pt}{70.168640pt}} +\pgflineto{\pgfpoint{338.527527pt}{66.245590pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{368.791931pt}{73.659744pt}} +\pgflineto{\pgfpoint{353.659729pt}{70.168640pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{369.336151pt}{73.778152pt}} +\pgflineto{\pgfpoint{368.791931pt}{73.659744pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{383.924133pt}{77.093185pt}} +\pgflineto{\pgfpoint{369.336151pt}{73.778152pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{399.056366pt}{80.196411pt}} +\pgflineto{\pgfpoint{383.924133pt}{77.093185pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{414.188538pt}{83.005966pt}} +\pgflineto{\pgfpoint{399.056366pt}{80.196411pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{429.320740pt}{85.561630pt}} +\pgflineto{\pgfpoint{414.188538pt}{83.005966pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{430.262543pt}{85.713074pt}} +\pgflineto{\pgfpoint{429.320740pt}{85.561630pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{444.452972pt}{88.143188pt}} +\pgflineto{\pgfpoint{430.262543pt}{85.713074pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{459.585144pt}{90.526176pt}} +\pgflineto{\pgfpoint{444.452972pt}{88.143188pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{474.717346pt}{92.719208pt}} +\pgflineto{\pgfpoint{459.585144pt}{90.526176pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{489.849579pt}{94.744141pt}} +\pgflineto{\pgfpoint{474.717346pt}{92.719208pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{504.981750pt}{96.619598pt}} +\pgflineto{\pgfpoint{489.849579pt}{94.744141pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{513.782349pt}{97.647980pt}} +\pgflineto{\pgfpoint{504.981750pt}{96.619598pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{520.113953pt}{98.452171pt}} +\pgflineto{\pgfpoint{513.782349pt}{97.647980pt}} +\pgfusepath{stroke} +\pgfpathmoveto{\pgfpoint{521.726379pt}{98.646957pt}} +\pgflineto{\pgfpoint{520.113953pt}{98.452171pt}} +\pgfusepath{stroke} +\end{pgfscope} +\end{pgfpicture} diff --git a/usth/MATH2.2/labwork/2/labwork2.pdf b/usth/MATH2.2/labwork/2/labwork2.pdf new file mode 100644 index 0000000..ba27a25 Binary files /dev/null and b/usth/MATH2.2/labwork/2/labwork2.pdf differ diff --git a/usth/MATH2.2/labwork/2/report.pdf b/usth/MATH2.2/labwork/2/report.pdf new file mode 100644 index 0000000..6711c94 Binary files /dev/null and b/usth/MATH2.2/labwork/2/report.pdf differ diff --git a/usth/MATH2.2/labwork/2/report.tex b/usth/MATH2.2/labwork/2/report.tex new file mode 100644 index 0000000..c4481fa --- /dev/null +++ b/usth/MATH2.2/labwork/2/report.tex @@ -0,0 +1,88 @@ +\documentclass[a4paper,12pt]{article} +\usepackage[english,vietnamese]{babel} +\usepackage{amsmath} +\usepackage{lmodern} +\usepackage{hyperref} +\usepackage{tikz} + +\newcommand{\exercise}[1]{\noindent\textbf{#1.}} +\renewcommand{\thesection}{\Roman{section}} +\renewcommand*{\thefootnote}{\fnsymbol{footnote}} + +\title{Numerical Method: Labwork 2 Report} +\author{Nguyễn Gia Phong--BI9-184} +\date{Fall 2019} + +\begin{document} +\maketitle +\setcounter{section}{2} +\section{Polynomial} +\exercise{1.c} At the time of writing, function \verb|fzero| +in Octave have not support the \verb|Display| option +just yet\footnote{Bug report: \url{https://savannah.gnu.org/bugs/?56954}}. +However, the implementation of this option is rather trivial, +thus I made a quick patch (which is also attached at the bug report). +Using this, one can easily display all the iterations as followed: + +\begin{verbatim} +octave:1> fzero (@(x) x.^2 - 9, 0, optimset ('display', 'iter')) + +Search for an interval around 0 containing a sign change: +Func-eval 1, how = initial, a = 0, f(a) = -9, b = 0, f(b) = -9 +Func-eval 2, how = search, a = 0, f(a) = -9, b = 0.099, f(b) = -8.9902 +Func-eval 3, how = search, a = 0, f(a) = -9, b = 0.1025, f(b) = -8.98949 +Func-eval 4, how = search, a = 0, f(a) = -9, b = 0.095, f(b) = -8.99098 +Func-eval 5, how = search, a = 0, f(a) = -9, b = 0.11, f(b) = -8.9879 +Func-eval 6, how = search, a = 0, f(a) = -9, b = 0.075, f(b) = -8.99437 +Func-eval 7, how = search, a = 0, f(a) = -9, b = 0.15, f(b) = -8.9775 +Func-eval 8, how = search, a = 0, f(a) = -9, b = 0, f(b) = -9 +Func-eval 9, how = search, a = 0, f(a) = -9, b = 0.35, f(b) = -8.8775 +Func-eval 10, how = search, a = 0, f(a) = -9, b = -0.4, f(b) = -8.84 +Func-eval 11, how = search, a = 0, f(a) = -9, b = 1.1, f(b) = -7.79 +Func-eval 12, how = search, a = 0, f(a) = -9, b = -4.9, f(b) = 15.01 + +Search for a a zero in the interval [-4.9, 0]: +Func-eval 13, how = initial, x = 0, f(x) = -9 +Func-eval 14, how = interpolation, x = -1.83673, f(x) = -5.62641 (NaN%) +Func-eval 15, how = interpolation, x = -3.36837, f(x) = 2.3459 (141.7%) +Func-eval 16, how = interpolation, x = -3.19097, f(x) = 1.1823 (-49.6%) +Func-eval 17, how = interpolation, x = -2.99725, f(x) = -0.0164972 (-101.4%) +Func-eval 18, how = interpolation, x = -3.00258, f(x) = 0.0154927 (193.9%) +Func-eval 19, how = interpolation, x = -3, f(x) = 3.07975e-07 (-100.0%) +Func-eval 20, how = interpolation, x = -3, f(x) = -7.10543e-15 (-100.0%) +Func-eval 21, how = interpolation, x = -3, f(x) = 5.32907e-15 (169.7%) + +Algorithm converged + +ans = -3.0000 +\end{verbatim} + +To answer the question in part b, (since I believe these parts are linked +to each other), the current implementation of \verb|fzero| search for +the second bracket over quantitative chages below if \verb|X0| if it is a +single scalar, thus $[-4.9, 0]$ is gotten and the found solution is negative: + +\begin{verbatim} +[-.01 +.025 -.05 +.10 -.25 +.50 -1 +2.5 -5 +10 -50 +100 -500 +1000] +\end{verbatim} + +\section{Non-linear Systems} +\exercise{1.a} These statements were used to plot the given functions: +\begin{verbatim} +ezplot(@(x1, x2) x1 .^ 2 + x1 .* x2 - 10) +hold on +ezplot(@(x1, x2) x2 + 3 .* x1 .* x2 .^ 2 - 57) +\end{verbatim} + +As shown in the graphs (where $x_1^2 + x_1 x_2 = 10$ are the blue lines +and $x_2 + 3 x_1 x_2 = 57$ are the yellow ones), the solutions of $(x_1, x_2)$ +are quite close to $(2, 3)$ and $(4.5, -2)$. + +\begin{figure}[!h] + \centering + \scalebox{0.37}{\input{2a.tikz}} +\end{figure} + +I would also like to note that I am personally impressed how gnuplot +(which is utilised by Octave) is able to export to TikZ graphics with ease. +\end{document} -- cgit 1.4.1