
University of Science and Technology of Hanoi

Address: USTH Building, 18 Hoang Quoc

Viet, Cau Giay, Hanoi

Algorithms and data structures
Labwork # 2: Linked Lists

Follow the below guide:

• After a labwork, you will have one week (or 7 days) to complete all exercises.

All submissions must be sent before 23:59 of the day before the next labwork

day.

• Compress all code source files in a zip file and rename it as FULLNAME-ID-

TT#no.zip (e.g NguyenVanA-070-TT1.zip). Save your files according to the

exercise number i.e Ex1.cpp, Ex2.c, etc. Incorrect filenames will result in no

score for the respective exercises.

• Only code source files (.c or .cpp) should be in the zip files. Other files (.exe,

.o) MUST be removed from the zip file.

• Send to this email: doan-nhat.quang@usth.edu.vn

• Copy/Paste from any source is not tolerated. Penalty will be applied for late

submission.

• NOTE: You must follow the guide. Incorrect zip file name, zip files containing

other files (.exe), copy/paste lead to heavy penalty.

Exercise 1: Assume that a railway train has N railroad cars attached together

such as: car1, car2, car3, ..., carN .

• Each car carries a number of passengers (int type) and has a name (char type).

Both variables are user-defined values.

• If there is any cars that don’t have any passengers, they should be removed

from the train.

• It is possible to add new cars into the train.

• A function is available to display all cars’ information or the length of the

train.

1



Implement a program in C using Linked List to manage the train and test all

functions.

Exercise 2: Suppose that a polynomial function a0 + a1x + a2x
2 + ... + anx

n

Using Linked Lists, we would like to improve the computation of this function. The

declaration of each node should be as following:

• a value stands for a constant of each term ai (i = 0, .., n)

• a degree indicates the degree of each term

• a pointer points to the next term

Implement and test the program in C using Linked List to manage this polyno-

mial function:

• add new terms, verify that the old term exists, if in the case, return the addition

between the old and new ones i.e given the polynomial function a0x
0 + a1x

1,

a new term is added into the function then the final term should be atotal0 =

anew0 + a0

• remove a term from the function

• enter a value for x then calculate the whole function

• display the whole function in the screen

2


