University of Science and Technology of Hanoi
Address: USTH Building, 18 Hoang Quoc
Viet, Cau Giay, Hanoi

VIETNAM FRANCE UNIVERSITY

Algorithms and data structures
Labwork # 2: Linked Lists

Follow the below guide:

After a labwork, you will have one week (or 7 days) to complete all exercises.
All submissions must be sent before 23:59 of the day before the next labwork
day.

Compress all code source files in a zip file and rename it as FULLNAME-ID-
TT#no.zip (e.g NguyenVanA-070-TT1.zip). Save your files according to the
exercise number i.e Ex1.cpp, Ex2.c, etc. Incorrect filenames will result in no
score for the respective exercises.

Only code source files (.c or .cpp) should be in the zip files. Other files (.exe,
.0) MUST be removed from the zip file.

Send to this email: doan-nhat.quang@usth.edu.vn

Copy /Paste from any source is not tolerated. Penalty will be applied for late
submission.

NOTE: You must follow the guide. Incorrect zip file name, zip files containing
other files (.exe), copy/paste lead to heavy penalty.

Exercise 1: Assume that a railway train has N railroad cars attached together

such as: cary, cary, cars, ..., cary.

Each car carries a number of passengers (int type) and has a name (char type).
Both variables are user-defined values.

If there is any cars that don’t have any passengers, they should be removed
from the train.

It is possible to add new cars into the train.

A function is available to display all cars’ information or the length of the
train.



Implement a program in C using Linked List to manage the train and test all
functions.

Exercise 2: Suppose that a polynomial function ay + a1 + asx? + ... + a,a”
Using Linked Lists, we would like to improve the computation of this function. The
declaration of each node should be as following:

e a value stands for a constant of each term a; (i =0, ..,n)
e a degree indicates the degree of each term

e a pointer points to the next term

Implement and test the program in C using Linked List to manage this polyno-
mial function:

e add new terms, verify that the old term exists, if in the case, return the addition

between the old and new ones i.e given the polynomial function agz® + a;x!,

a new term is added into the function then the final term should be af'® =

ag“ + agp
e remove a term from the function
e cnter a value for x then calculate the whole function

e display the whole function in the screen



