
Algorithms and Data Structures
Searching and Sorting
Nguyễn Gia Phong—BI9-184

December 3, 2019

1 Cocktail Shaker Sort
The code is implemented following the cocktail shaker sort’s pseudocode1

with bubble sort’s optimization2 whose time complexity is analyzed as follows

1.1 Best Case
For the matter of brevity, we consider all operations on the array’s n members
are in constant time (Θ(1)). If the array is already sorted, after the first while
loop (line 25), h is still low and thus the do–while loop is broken. Since the
while loop runs from low + size to high - size by size steps, the run-
ning time is (high - low - size*2)/size + 1 or nmemb - 1. Therefore
the best case time complexity is Ω(n− 1) = Ω(n).

1.2 Average Case
Assume the average case is when the array is uniformly shuffled, that is,
every permutation has the equal probability to occur.

Given a permutation of an n-element array, consider the positive integer
k ≤ n that exactly the last n − k members are continuously in the correct
positions (as in the ascendingly sorted array). It is obvious that for k = 1,
the array is sorted and the probability of the permutation to appear is 1/n!.
For 1 < k ≤ n, if we fix the last n− k members in their right places, out of
the k! permutations of the first k elements, (k−1)! ones has the k-th greatest

1https://en.wikipedia.org/wiki/Cocktail_shaker_sort#Pseudocode
2https://en.wikipedia.org/wiki/Bubble_sort#Optimizing_bubble_sort

1

https://en.wikipedia.org/wiki/Cocktail_shaker_sort#Pseudocode
https://en.wikipedia.org/wiki/Bubble_sort#Optimizing_bubble_sort


at the correct place. Therefore, let X be the number that exactly n−X last
elements are in the right positions, we have

pX(k) =


1
n! if k = 1

k!− (k − 1)!
n! otherwise

Applying this to the first while (line 25) with n and X − 1 being the
number of steps from low to high, before and after high = h respectively,
the expectation of X is

E[X] =
n∑

k=1
kpX(k)

= 1
n! +

n∑
k=2

k!k − k!
n!

= 1
n! +

n+1∑
k=3

k!
n! −

n∑
k=2

k!
n! −

n∑
k=2

k!
n!

= 1
n! + (n + 1)!

n! − 2!
n! −

n∑
k=2

k!
n!

= n + 1−
n∑

k=1

k!
n!

= n−
n−1∑
k=1

k!
n!

Hence after line 28, the newly sorted length of the array is

n− E[X − 1] = n− E[X] + 1 = 1 +
n−1∑
k=1

k!
n! = Θ(1)

Similarly, line 31 to 35 also sort Θ(1) element(s), thus each iteration
of the do–while loop to sort Θ(1) members. The overall average-case time
complexity is

T (n) =
{

(n−Θ(1)) + (n−Θ(1)) + T (n−Θ(1)) if n > 0
Θ(1) otherwise

=
{

2n−Θ(1) + T (n−Θ(1)) if n > 0
Θ(1) otherwise

= Θ(1) +
m∑

k=1
(2k −Θ(1)) = 2

m∑
k=1

k −
m∑

k=1
Θ(1) = m2 + m−

m∑
k=1

Θ(1)

2



where m satisfies

∃{fk | k ∈ 1 .. m} ⊂ Θ(1),
m∑

k=1
fk(n) = n =⇒

m∑
k=1

Θ(1) = Θ(n) =⇒ m = Θ(n)

=⇒ T (n) = Θ
(
n2
)

+ Θ(n)−Θ(n) = Θ
(
n1
)

1.3 Worst Case
If the array is reversely sorted, after each first while (line 25), high is de-
creased by size; and after each second while (line 32), low is increased by
size. For low + size >= high, it takes (high-low-size)/size + 1 >> 1
or nmemb / 2 iterations of the do–while loop (line 23). The overall complex-
ity would then be

bn/2c∑
k=1

(n− 2k + 1 + n− 2k) =
bn/2c∑
k=1

(2n− 4k + 1)

= n2 + 2
⌊

n

2

⌋ (⌊
n

2

⌋
+ 1

)
+
⌊

n

2

⌋
= O

(
n2
)

2 Merge Sort
As usual, the linked list is implemented using classic Lisp’s cons-cells. The
program is thus compiled by

cc construct.c Ex2.c -o Ex2

To keep the implementation concise, memory safety as well as stack limit
was not considered.

It is trivial that the time complexity of merge is Θ(n) with n being the
total length of left and right. For msort, the running time of the while
loop at line 27 is also Θ(n), where n is the length of the input list. The
overall time complexity is

T (n) =


Θ(1) if n ≤ 1

Θ(n) + T
(⌊

n

2

⌋)
+ T

(⌈
n

2

⌉)
otherwise

The recurrence can be stated as

T (n) = 2T
(

n

2

)
+ Θ(n)

3



By the master theorem3,

T (n) = 2T
(

n

2

)
+ Θ

(
nlog2 2

)
= Θ

(
nlog2 2 lg n

)
= Θ(n lg n)

3 Copying
This report along with the source files are licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

3Let a ≥ 1 and b > 1 be constants, and let T (n) be defined on the nonnegative integers
by the recurrence

T (n) = aT
(n

b

)
+ Θ

(
nlogb a

)
where n/b is interpreted as either bn/bc or dn/be, then

T (n) = Θ
(
nlogb a lg n

)

4

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Cocktail Shaker Sort
	Best Case
	Average Case
	Worst Case

	Merge Sort
	Copying

