Algorithms and Data Structures Searching and Sorting

Nguyễn Gia Phong-BI9-184

December 3, 2019

1 Cocktail Shaker Sort

The code is implemented following the cocktail shaker sort's pseudocod \mathbb{Z}^{1} with bubble sort's optimization ${ }^{2}$ whose time complexity is analyzed as follows

1.1 Best Case

For the matter of brevity, we consider all operations on the array's n members are in constant time $(\Theta(1))$. If the array is already sorted, after the first while loop (line 25), h is still low and thus the do-while loop is broken. Since the while loop runs from low + size to high - size by size steps, the running time is (high - low - size*2)/size +1 or nmemb - 1. Therefore the best case time complexity is $\Omega(n-1)=\Omega(n)$.

1.2 Average Case

Assume the average case is when the array is uniformly shuffled, that is, every permutation has the equal probability to occur.

Given a permutation of an n-element array, consider the positive integer $k \leq n$ that exactly the last $n-k$ members are continuously in the correct positions (as in the ascendingly sorted array). It is obvious that for $k=1$, the array is sorted and the probability of the permutation to appear is $1 / n$!. For $1<k \leq n$, if we fix the last $n-k$ members in their right places, out of the k ! permutations of the first k elements, $(k-1)$! ones has the k-th greatest

[^0]at the correct place. Therefore, let X be the number that exactly $n-X$ last elements are in the right positions, we have
\[

p_{X}(k)= $$
\begin{cases}\frac{1}{n!} & \text { if } k=1 \\ \frac{k!-(k-1)!}{n!} & \text { otherwise }\end{cases}
$$
\]

Applying this to the first while (line 25) with n and $X-1$ being the number of steps from low to high, before and after high $=\mathrm{h}$ respectively, the expectation of X is

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{k=1}^{n} k p_{X}(k) \\
& =\frac{1}{n!}+\sum_{k=2}^{n} \frac{k!k-k!}{n!} \\
& =\frac{1}{n!}+\sum_{k=3}^{n+1} \frac{k!}{n!}-\sum_{k=2}^{n} \frac{k!}{n!}-\sum_{k=2}^{n} \frac{k!}{n!} \\
& =\frac{1}{n!}+\frac{(n+1)!}{n!}-\frac{2!}{n!}-\sum_{k=2}^{n} \frac{k!}{n!} \\
& =n+1-\sum_{k=1}^{n} \frac{k!}{n!} \\
& =n-\sum_{k=1}^{n-1} \frac{k!}{n!}
\end{aligned}
$$

Hence after line 28, the newly sorted length of the array is

$$
n-\mathbf{E}[X-1]=n-\mathbf{E}[X]+1=1+\sum_{k=1}^{n-1} \frac{k!}{n!}=\Theta(1)
$$

Similarly, line 31 to 35 also sort $\Theta(1)$ element(s), thus each iteration of the do-while loop to sort $\Theta(1)$ members. The overall average-case time complexity is

$$
\begin{aligned}
T(n) & = \begin{cases}(n-\Theta(1))+(n-\Theta(1))+T(n-\Theta(1)) & \text { if } n>0 \\
\Theta(1) & \text { otherwise }\end{cases} \\
& = \begin{cases}2 n-\Theta(1)+T(n-\Theta(1)) & \text { if } n>0 \\
\Theta(1) & \text { otherwise }\end{cases} \\
& =\Theta(1)+\sum_{k=1}^{m}(2 k-\Theta(1))=2 \sum_{k=1}^{m} k-\sum_{k=1}^{m} \Theta(1)=m^{2}+m-\sum_{k=1}^{m} \Theta(1)
\end{aligned}
$$

where m satisfies

$$
\begin{aligned}
\exists\left\{f_{k} \mid k \in 1 . . m\right\} \subset \Theta(1), \sum_{k=1}^{m} f_{k}(n) & =n \Longrightarrow \sum_{k=1}^{m} \Theta(1)=\Theta(n) \Longrightarrow m=\Theta(n) \\
\Longrightarrow T(n) & =\Theta\left(n^{2}\right)+\Theta(n)-\Theta(n)=\Theta\left(n^{1}\right)
\end{aligned}
$$

1.3 Worst Case

If the array is reversely sorted, after each first while (line 25), high is decreased by size; and after each second while (line 32), low is increased by size. For low + size >= high, it takes (high-low-size)/size + 1 >> 1 or nmemb / 2 iterations of the do-while loop (line 23). The overall complexity would then be

$$
\begin{aligned}
\sum_{k=1}^{\lfloor n / 2\rfloor}(n-2 k+1+n-2 k) & =\sum_{k=1}^{\lfloor n / 2\rfloor}(2 n-4 k+1) \\
& =n^{2}+2\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)+\left\lfloor\frac{n}{2}\right\rfloor \\
& =O\left(n^{2}\right)
\end{aligned}
$$

2 Merge Sort

As usual, the linked list is implemented using classic Lisp's cons-cells. The program is thus compiled by

```
cc construct.c Ex2.c -o Ex2
```

To keep the implementation concise, memory safety as well as stack limit was not considered.

It is trivial that the time complexity of merge is $\Theta(n)$ with n being the total length of left and right. For msort, the running time of the while loop at line 27 is also $\Theta(n)$, where n is the length of the input list. The overall time complexity is

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ \Theta(n)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lceil\frac{n}{2}\right\rceil\right) & \text { otherwise }\end{cases}
$$

The recurrence can be stated as

$$
T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n)
$$

By the master theorem ${ }^{3}$,

$$
T(n)=2 T\left(\frac{n}{2}\right)+\Theta\left(n^{\log _{2} 2}\right)=\Theta\left(n^{\log _{2} 2} \lg n\right)=\Theta(n \lg n)
$$

3 Copying

This report along with the source files are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

[^1]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Cocktail_shaker_sort\#Pseudocode
 2 https://en.wikipedia.org/wiki/Bubble_sort\#Optimizing_bubble_sort

[^1]: ${ }^{3}$ Let $a \geq 1$ and $b>1$ be constants, and let $T(n)$ be defined on the nonnegative integers by the recurrence

 $$
 T(n)=a T\left(\frac{n}{b}\right)+\Theta\left(n^{\log _{b} a}\right)
 $$

 where n / b is interpreted as either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$, then

 $$
 T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)
 $$

