Algorithms and Data Structures
Searching and Sorting

Nguyén Gia Phong—BI9-184
December 3, 2019

1 Cocktail Shaker Sort

The code is implemented following the cocktail shaker sort’s pseudocodeE]
with bubble sort’s optimizationf] whose time complexity is analyzed as follows

1.1 Best Case

For the matter of brevity, we consider all operations on the array’s n members
are in constant time (©(1)). If the array is already sorted, after the first while
loop (line 25), h is still Low and thus the do—while loop is broken. Since the
while loop runs from low + size to high - size by size steps, the run-
ning time is (high - low - sizex*2)/size + 1 or nmemb - 1. Therefore
the best case time complexity is Q(n — 1) = Q(n).

1.2 Average Case

Assume the average case is when the array is uniformly shuffled, that is,
every permutation has the equal probability to occur.

Given a permutation of an n-element array, consider the positive integer
k < n that exactly the last n — kK members are continuously in the correct
positions (as in the ascendingly sorted array). It is obvious that for k = 1,
the array is sorted and the probability of the permutation to appear is 1/n!.
For 1 < k < n, if we fix the last n — k members in their right places, out of
the k! permutations of the first k elements, (k—1)! ones has the k-th greatest

"https://en.wikipedia.org/wiki/Cocktail_shaker_sort#Pseudocode
Znttps://en.wikipedia.org/wiki/Bubble_sort#0Optimizing_bubble_sort

https://en.wikipedia.org/wiki/Cocktail_shaker_sort#Pseudocode
https://en.wikipedia.org/wiki/Bubble_sort#Optimizing_bubble_sort

at the correct place. Therefore, let X be the number that exactly n — X last
elements are in the right positions, we have
1
_Jnl!
Px(B) = b - 1))

otherwise
n!

Applying this to the first while (line 25) with n and X — 1 being the
number of steps from low to high, before and after high = h respectively,
the expectation of X is

1 " Kk — k!

:7+Z
nl =

n+1k| n]C' n /{Z'

ZZ“

1 (+1) 2 K
| —

n!

n! n! n! = n!
n k!
=n+1- k—|
= n!
k!
=n — —‘
= n!

Hence after line 28, the newly sorted length of the array is

n—E[X—l]:n—E[X}+1—1+nz:lk' e(1)

Similarly, line 31 to 35 also sort ©(1) element(s), thus each iteration
of the do—while loop to sort ©(1) members. The overall average-case time
complexity is

T(n) = {(” —0(1) +(n—O(1)) + T(n—O(1)) ifn>0

(1) otherwise
[2n-0(1)+T(n—-06(1) ifn>0
—le@) otherwise

+) (2k—0O(1 Z > o) =m’+m—>_ O(1)
k=1 =1 k=1 f=1

N}

where m satisfies

1.3 Worst Case

If the array is reversely sorted, after each first while (line 25), high is de-
creased by size; and after each second while (line 32), low is increased by
size. For low + size >= high, it takes (high-low-size)/size + 1 >> 1
or nmemb / 2 iterations of the do—while loop (line 23). The overall complex-
ity would then be

|n/2] /2]
> (n—2k+14n-2k)= > (2n—4k+1)
k=1 k=1

g (3 1) 3
~o ()

2 Merge Sort

As usual, the linked list is implemented using classic Lisp’s cons-cells. The
program is thus compiled by

cc construct.c Ex2.c -o Ex2

To keep the implementation concise, memory safety as well as stack limit
was not considered.

It is trivial that the time complexity of merge is ©(n) with n being the
total length of left and right. For msort, the running time of the while
loop at line 27 is also ©(n), where n is the length of the input list. The
overall time complexity is

o(1) ifn<1
T(n) = On)+T <V2LJ> +T ([;ﬂ) otherwise

The recurrence can be stated as
n

T(n) =27 (5) + o)

By the master theoremf]

T(n)=2T (;L) +06 (nlog?Q) =0 (nlog22 lg n) = O(nlgn)

3 Copying

This report along with the source files are licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

3Let a > 1 and b > 1 be constants, and let T'(n) be defined on the nonnegative integers
by the recurrence

T(n) = al () +© (n'"7)

where n/b is interpreted as either |n/b] or [n/b], then

(logy, a lg n)

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Cocktail Shaker Sort
	Best Case
	Average Case
	Worst Case

	Merge Sort
	Copying

