Linux in Manie

reconstruction

Mitigation

Conclusio

Satellite Internet

Nguyễn Như Hiếu—BI9-103 Ngô Ngọc Đức Huy—BI9-119 Ngô Xuân Minh—BI9-167 Nguyễn Gia Phong—BI9-184 Nguyễn Hồng Quang—BI9-194 Trần Minh Vương—BI9-239

University of Science and Technology of Hà Nội

April 9, 2020

How It Works

Mits and 2 How It Works

1-way from Earth
1-way to Earth

1 Introduction

2-way

3 Limits and Challenges
Weather
Latency
Others

How It Works

1-way from Ea

1-way to Earth

2-way

viitigation:

3 Limits and Challenges
Weather
Latency
Others

4 Mitigations
Techniques
Comparison

Popular Use

- Airplane
- Cruise Ship
- Rural Area

Similarity

All three are either in or travel through area with little to no ground station.

How It Work

Limits and

Mitigation

Conclusio

Provide Internet for the whole world

Fact

Over 3.7 Billion people are living without being connected to the internet.

How It Works
1-way from Earth
1-way to Earth

Limits and

Mitigation:

- 1 Introduction
- 2 How It Works
 1-way from Earth
 1-way to Earth
 2-way
- 3 Limits and Challenges
 Weather
 Latency
 Others
- 4 Mitigations
 Techniques
 Comparison
- **5** Conclusion

How It Works
1-way from Earth

1-way to Earth 2-way

Challenge

Mitigation

- Geostationary satellite (GEO)
- Gateway
- Antenna
- Others:
 - Modem
 - Centralized NOC

How It Works
1-way from Earth
1-way to Earth

Limits and

Mitigations

Conclusion

Figure: GPS using A-GPS and GSM network

How It Works

1-way from Earth 1-way to Earth

Challenge

Mitigations

Conclusion

One-way Satellite Network

How It Works

1-way from Earth

1-way to Earth

Limits an Challenge

Mitigation:

- Upstream: Data travelling through telephone modem
- Downstream: Download through satellite

How It Works

1-way from Earth

1-way to Earth

Challenge

Mitigation

- Upload speed: Same as that of the dial-up internet
- Download speed: Much faster than dial-up internet
- Latency: Still high, much lower than two way satellite internet
- You have to tie up the telephone lie when you use the Internet

1-way from Earth
1-way to Earth

Limits an Challenge

Mitigation

.....

Components

- 1 transmitting hub station (usually very large)
- Multiple receive-only Earth stations

How It Works

1-way from Earth

1-way to Earth

2-way

Challenge

Mitigation

0.00

- Usage: IP multicast-based data, audio and video distribution
- Interactivity: Little user interface, similar to TV or radio content

How It Wor

2-way

Limits an

Mitigations

How It Works

1-way from Earth

1-way to Earth

2-way

Challeng

Mitigation

- VSAT: Send and receive data
- Telecommunication port:
 Relay data through Internet

How It Works

1-way from Earth

1-way to Earth

2-way

Challenge

Mitigations

C l

Satellite dish must be precisely pointed to avoid interference.

How It Works
1-way from Earth
1-way to Earth
2-way

Challenge

Mitigation

- Both TDMA and single channel per carrier
- Mostly Ku-band, but also C-band and Ka-band
- May utilize telephone modem to reduce latency
- Home-user's bandwidth based on payment
- Difficult on moving vehicles

1-way from Earth
1-way to Earth

2-way Limits ar

Mitigation

Portable

- Use self-contained box pointed in general direction of Satellite
- Expensive

Satellite phone

- Omnidirectional antenna so no alignment needed
- Low bandwidth so slow to browse net, useful for sending email

Limits and Challenges

Weather Latency

Mitigations

- 1 Introduction
- 2 How It Works
 1-way from Earth
 1-way to Earth
 2-way
- 3 Limits and Challenges
 Weather
 Latency
 Others
- **5** Conclusion

How It Work

Limits and

Weather Latency

Mitigation

- Fading
- Accumulating raindrop or snow
- Wind

How It Wor

Limits and

Weather Latency

Satellite altitude

• LEO: < 2000 km

• MEO: 2000-35 786 km

• GEO: > 35 786 km

Result

GEO has 12 times higher latency than terrestrial base networks. LEO and MEO have a bit lower delay.

How It Wo

Limits an

Weather Latency Others

Mitigatio

Conclusio

Economically

Costly: 2 Mb/s costs around \$100 a month.

Environmentally

Space junk: Only 2000 out of 5000 launched satellites are still in function.

Mitigations

. . .

1 Introduction

2 How It Works
1-way from Earth
1-way to Earth
2-way

3 Limits and Challenges
Weather
Latency
Others

4 Mitigations
Techniques
Comparison

How It Wor

Challenges

Mitigation

Techniques

EIRP Conti Techniques Adaptive

Transmission
Techniques

Schemes Comparison

Conclusion

Common functions:

- Monitor link quality by continuous measurements
- Predict short-term behavior and duration of satellite channel's next state
- Set parameters based on previous estimation

Limits and

Mitigation

EIRP Control

Techniques

Transmission
Techniques
Diversity Protection

Schemes Comparison

- EIRP = tranmitted power × antenna gain
- EIRP control = adjusting carrier power or antenna gain to compensate for power losses

How It Wor

Limits and

Mitigations

EIRP Control

Techniques Adaptive

Transmission
Techniques
Diversity Protecti

Comparison

- 1 Open loop: Based on recently received power.
 - Non-reliable
 - Responsive
- 2 Closed loop: Based on channel power measurements.
 - More comprehensive
 - Large propagation delay

How It Works

How It Works

Limits and

Mitigation Techniques

EIRP Control Techniques Adaptive

Techniques

Diversity Protection
Schemes

Comparison

Vary carrier power at the earth station

 Restoration of side lobes might lead to adjacent channel interference

- Increase of earth station transmit power may cause adjacent satellite interference*
- Effective and preferred by many satellite operators

^{*}Satellites are separated by 2–3 degrees on the geostationary orbit.

How It Wo

Limits and Challenges

Mitigation

EIRP Control Techniques

Adaptive

Techniques

Diversity Protecti
Schemes

- Vary carrier power on-board the satellite
- Difficult to implement due to satellite size and weight limitations
- Subject to
 - 1 Adjacent channel interference
 - 2 Intermodulation interference
 - 3 Intersystem interference (with terrestrial networks)

11..... In AA7...

Limits and

Mitigation

EIRP Control Techniques

Adaptive Transmission Techniques

Diversity Protect Schemes

Conclusio

Adjust antenna gain on-board the satellite for a certain geographical region

- Shape satellite antenna for nearly constant ground receive power, even under rainfall
- Does not need expensive calculations for attenuation estimation[†]
- Technology and research are WIP

[†]SBS compensates the entire coverage area instead of a single site.

Carrier Service

How It Wo

Limits and

Mitigation

EIRP Contro

Techniques

Adaptive

Transmission

Techniques

Diversity Protecti
Schemes

Schemes Comparison

- Modify processing/transmission manner of signals
- Resource-shared techniques
- Categories:
 - Hierarchical coding
 - 2 Hierarchical modulation
 - 3 Data rate reduction

Limits and

Mitigation Techniques

EIRP Contre Techniques

Adaptive Transmission Techniques

Diversity Protecti Schemes

- Add redundancy to the information signal
- Trade-off between bandwidth and error probability
- Different conditions require different coding schemes
- Prioritize users with less efficient coding schemes, i.e. longer bursts (TDMA) or larger bandwidth (FDMA)

Laborator action

How It Wor

Limits and

Mitigation Techniques EIRP Contro

Techniques

Adaptive

Transmission
Techniques
Diversity Protec

Schemes Comparison

- Provide lower quality fallback in case of weak signals
- Exchange bandwidth efficiency for power requirements
- Suitable for localized satellite systems, e.g. VSAT
- Users with lower-order modulation get more resources

How It Wor

Limits and

Techniques
EIRP Contro

Techniques

Adaptive

Transmission

Techniques

Diversity Prot
Schemes

- Reduce information data rate for power gain
- Distribute satellite resources equally to every user
- Utilizable where significant information rate reduction is tolerable, e.g. video or data but voice transmission

How It Wor

Limits and

Mitigation

Techniques EIRP Contro Techniques

Transmiss Technique

Diversity Protection Schemes

- Use multiple channels with different characteristics
- Oriented against rain fades and highly efficient
- Performance criteria
 - Diversity gain: difference between site attenuation and joint attenuation, for the same probability level
 - Diversity improvement: ratio of site exceedence probability to the joint one, for the same attenuation value

How It Wor

Limits and

Mitigatio

Techniques EIRP Cont

Adaptive Transmissio

Diversity Protection Schemes

Comparison

	>	4 7 2	150
Diversity	Setup	Efficiency	Cost
Site	Connected earth stations	High	High
Orbital	Earth station may choose	Low	Low
	between satellites		
Frequency	Use lower frequency	Adaptive	Terrestrial
	on higher attenuation		equipments
Time	Repeat faded data	Selective [‡]	N/A

^{‡...}of fade duration

How It Wor

Limits and

Mitigation Techniques Comparison

Conclusion

Tech	Availability	Max gain (dB)	Cons
ULPC	0.01–10 %	5 (VSAT) 15 (hubs)	power range
	0.01-10 %	3 (sat. TWTA)	power range
SBS	0.01–1 %	5 (sat. antenna)	immature research

Table: Comparisons between EIRP control techniques

Laboratoria de la constitución d

How It Wor

Limits and

Mitigatio Techniques Comparison

Conclusio

Tech	Availability	Max gain (dB)	Cons
HC/HM	0.01–10 %	10 – 15 $(E_b/N_0 \text{ range})$	fading in many stations
DDR	0.01–10 %	3–9	low rate intolerant

Table: Comparisons between adaptive transmission techniques

How It Wor

Limits and

Mitigation Techniques Comparison

Conclusion

Tech	Availability	Max gain (dB)	Cons
SD	0.001-0.1 %	10-30	cost
		(conv. rain)	
OD	0.001-1 %	3–10	satellite switch
FD	0.01-10 %	30 (Ka– <mark>Ku</mark>)	cost

Table: Comparisons between diversity protection schemes

Satellite Internet

Group 1

Introduction

Conclusion

How It Works

1-way from Earth

1-way to Earth

2-way

3 Limits and Challenges
Weather
Latency
Others

4 Mitigations
Techniques
Comparison

TIOW IL VVOI

Limite and

Mitigation:

- Have many potentials
- Challenging
- Need more research

How It Work

Limits and

Mitigation

Conclusion

Athanasios D. Panagopoulos,
Pantelis-Daniel M. Arapoglou and Panayotis G. Cottis.
"Satellite communications at Ku, Ka, and V bands:
Propagation impairments and mitigation techniques".

Communications Surveys & Tutorials, vol. 6, p. 2–14.
IEEE, 2004. doi:10.1109/COMST.2004.5342290.

Satellite Internet access. Wikipedia.

How It Work

Limits and

Mitigation

Conclusion

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.