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1 Introduction

1.1 Brief Description
Since the dawn of computer science, sorting and searching algorithms have
drawn a significant amount of attention from researchers, due to their broad
applications in solving a huge number of problems and sub-problems in many
fields. In spite of their straightforward, familiar statements, these algorithm
link with a variety of important programming concepts, namely data struc-
tures, divide and conquer technique and of course complexity analysis and
time–space tradeoffs.

In this report, we only discuss some of the most basic searching and
sorting algorithms. While trying to implement them, we also analyze their
strengths and weaknesses, as well as the ease and difficulties we encounter
using the language Java and object-oriented programming in general.

Whilst overall, we follow [1], we also try to make use of newer Java features
to write more generic and concise code.

This report is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License.

1.2 Authors and Credits
The work has been undertaken by group number 11, whose members are
listed in the following table, with Nguyễn Công Thành being our leader.
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whose lectures gave us basic understanding on the key principles of object-
oriented programming. Without her guidance, we might never have a chance
to take an in-depth exploration on this topic.
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2 Searching
For the sake of simplicity, we only consider searching operating on array-like
data structures with constant-time random access and without duplicated
entries. This affects a few implementation design decision we will be making
later on. The searching problem is then stated in [1, p. 634] accordingly:

Given a value x, return the [zero-based] index of x in the array,
if such x exists. Otherwise, return NOT_FOUND (-1).

In this section, we will discover two searching algorithms: linear search
and binary search. Both of these, albeit being simple, are being used in many
different programming tasks.

2.1 Linear Search
Linear search, by definition, sequentially checks each element of a list until
a match is found or the whole list has been searched. This matches the
algorithm implemented in java.util.List.indexOf [2, indexOf]. Given

var list = java.util.Arrays.asList(4, 20, 6, 9);

where var is a Java SE 10 feature for eliding “the often-unnecessary manifest
declaration of local variable types” [3], which, in this case, is List<Integer>.

list.indexOf(6) would then give 2 and list.indexOf(7) returns -1.
For the matter of completeness, we also try to implement the description

provided by the documentation [2, indexOf]

import java.util.List;

public class Search
{

public static final int NOT_FOUND = -1;

public static linear(List l, Object o)
{

for (int i = 0; i < l.size(); ++i)
if (o == null ? l.get(i) == null : o.equals(l.get(i)))

return i;
return NOT_FOUND;

}
}
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From this dummy implementation, it is trivial that linear search has, as it
name suggests, linear time complexity. The nullity check every iteration adds
a bit of overhead, but if performance is ever concerned, the better tested and
optimized standard library should be used instead. Moving o == null to
the upper level would require duplicating the for loop, creating redundancy
and making the code less readable and less maintainable.

Unsurprisingly, 2 and -1 are returned from Search.linear(list, 6) and
Search.linear(list, 7), respectively.

2.2 Binary Search
Binary search find the position of a target value within a sorted array by
“testing the middle of an interval, eliminating the half of the [array] in which
the key cannot lie, and then repeating the procedure iteratively” [4]. This
could be intuitively implemented using recursion:

// ...
public class Search
{

// ...
private static <T>
int binary(List<? extends Comparable<? super T>> list, T key,

int low, int high)
{

if (high < low)
return NOT_FOUND;

var mid = (low + high) / 2;
var cmp = list.get(mid).compareTo(key);
if (cmp < 0)

return binary(list, key, mid + 1, high);
if (cmp > 0)

return binary(list, key, low, mid - 1);
return mid;

}
}

Search.binary is declared as a generic method to allow more implicit
calls, where the compiler will infer the type of key as well as that of each el-
ement of list [5]. This makes the method work on any type of argument that
is a subclass of Comparable, which is required for Comparable.compareTo. In
fact, java.util.Collections.binarySearch’s declaration follows the same
strategy [6, binarySearch].
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Instead of directly exposing this method where users need to provide the
lower and higher bound of the indices, we overload it with a wrapper to
ensure encapsulation:

// ...
public class Search
{

// ...
public static <T>
int binary(List<? extends Comparable<? super T>> list, T key)
{

return binary(list, key, 0, list.size());
}

}

To test our implementation, we first need list to be sorted. By providing
null to its sort method, we can sort it in the elements’ natural (ascending)
order [2, sort]. As list is now [4, 6, 9, 20], Search.binary(list, 6) and
Search.binary(list, 7) return 1 and -1 respectively.

java.util.Collections.binarySearch(list, 7) gives -3, however, due
to its slightly different behavior:

[If key is not in the list, returns] (-(insertion point) - 1).
The insertion point is defined as the point at which the key would
be inserted into the list: the index of the first element greater than
the key, or list.size() if all elements in the list are less than
the specified key. [6, binarySearch]

Since the algorithm only give up the search until the array is bisected to
a nonpositive length (high < low), the time-complexity of binary search is
asymptotic to log2 n, where n is the size of the array. In other words, on
modern 64-bit computers with support for at most 18EB of address space,
the running time is still negligible (64 comparisons). Despite the use of
List interface in the implementation, Search.binary is not Θ(lg n)∗ on
LinkedList, which has Θ(n) random access.

Since the algorithm only works on ordered lists, it is not suitable for iter-
atively inserting to a sorted list, as for linear data structures, either random
access or middle insertion has to be Ω(n)†. In that case, self-balancing binary
search tree should be used instead.

∗The notation f = Θ(g) indicates that f grows at the same rate as g.
†The notation f = Ω(g) indicates that f grows at least as as fast as g.
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3 Sorting
The sorting problem is stated in [1, p. 638] as

Given an array of n values, arrange the values into ascending
order.

This section discusses only three sorting algorithms, namely selection sort,
bubble sort and heapsort.

3.1 Selection Sort
Selection sort could be performed by iterating through every position and
select the minimum element from the current one to the end of the array.
The in-place algorithm could be implemented in Java as follows:

import java.util.List;

import static java.util.Collections.swap;

public class Sort
{

public static <T extends Comparable<? super T>>
void selection(List<T> list)
{

int i, j, m, n = list.size();
for (i = 0; i < n; ++i)

{
for (m = j = i; j < n; ++j)

if (list.get(j).compareTo(list.get(m)) < 0)
m = j;

swap(list, i, m);
}

}
}

Since only atomic int’s are introduced, the space complexity is Θ(1).
The time complexity is, in term of swaps, Θ(n) and, in term of comparisons,

T (n) =
n−1∑
i=0

n−1∑
j=i

1 =
n−1∑
i=0

(n− i) =
n∑

i=1
i =

n2 + n

2
= Θ(n2)

One could micro-optimize by tweaking i’s and j’s bounds by an unit but
that does not make the algorithm any faster asymptotically.
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Just to make sure everything works correctly, we do a simple check

var list = java.util.Arrays.asList("foo", "bar", "baz");
Sort.selection(list);
System.out.println(list);

and get [bar, baz, foo] printed to stdout as expected.

3.2 Bubble Sort
In [1, p. 646], the author praised bubble sort to finish sooner than selection
sort on average and best cases. Whilst the latter is true, we will try to explain
why the former is generally incorrect.

To do this, we first need to understand what bubble sort is. As defined
in [7, p. 40], the code below operating on an array a of size n qualifies as
bubble sort.

for (int i = n - 1; i > 0; --i)
for (int j = 1; j < i; ++j)

if (a[j] < a[j - 1])
swap(a, j, j - 1);

This näıve version, like selection sort, has the time complexity Θ(n2)
in term of comparisons (it underperform selection sort in term of swaps
however–this will be discussed right after the implementation is completed).
Though, as pointed out in [8],

Nearly every description of bubble sort describes how to terminate
the sort early if the vector becomes sorted.

Hence, we upgrade the pseudocode to

boolean swapped;
do

{
swapped = false;
for (int j = 1; j < n; ++j)

if (a[j] < a[j - 1])
{

swap(a, j, j - 1);
swapped = true;

}
}

while (swapped);
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We can do further optimization avoiding comparing the last t − 1 items
when running for the t-th time of the outer loop, as after iteration t − 1,
these have already bubbled up to its final place [9]. With this in mind, we
write our final implementation:
// ...
public class Sort
{

// ...
public static <T extends Comparable<? super T>>
void bubble(List<T> list)
{

for (int n = list.size(), m = 0; n > 1; n = m, m = 0)
for (int i = 1; i < n; ++i)

if (list.get(i).compareTo(list.get(i - 1)) < 0)
swap(list, m = i, i - 1);

}
}

In the best case where the list is already sorted, during the first iteration
of the outer loop, m remains zero, which is then assigned to n to break the
loop, hence the time complexity is that of the inner loop or n − 1 = Ω(n).
Otherwise, denote S as a subset of all positive integers not greater than
list.size(). The time complexity would then be

T (n) =
∑
n∈S

Θ(n)

On random data, #S = Θ(n) and thus T (n) = Θ(n2).
As demonstrated in [8], selection sort outperforms bubble sort on average

cage, despite their asymptotically equivalent time complexity:
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Looking back at [1, p. 646], we are now able to spot Wu’s misconception:

On average, we expect the bubble sort to finish sorting sooner
than the selection sort, because there will be more data movements
for the same number of comparisons, and there is a test to exit
the method when the array gets sorted.

While bubble sort may take advantage of the pre-sorted parts of the array
to do fewer comparisons, the number of swaps is Θ(n2), which grows strictly
faster than selection sort’s Θ(n). Consequently, instead of swapping more
to finish faster, the bubble variant does more unnecessary data movements.
Furthermore, write operations on memory are usually slower than reading,
which makes swaps much costlier than comparisons. Finally, it could be
summarized by a quote from Donald Knuth [10],

In fact, one of Demuth’s main results was that in a certain sense
‘bubble sorting’ is the optimum way to sort. [...] It turns out that
[all other sorting methods studied] are always better in practice,
in spite of the fact that Demuth has proved the optimality of
bubble sorting on a certain peculiar type of machine.

3.3 Heapsort
Heapsort could be viewed as an improved version of selection sort, where the
selection is done on the right data structure: the heap [11]. To sort an array
ascendingly in place, we use a binary max-heap to keep track of the largest
element in the unsorted region and move it to the beginning of the sorted
one, iteratively.

The binary heap is an array object A which resembles a nearly completely
filled binary tree, except possibly the lowest level. This kind of heap has two
attributes: length of the array and size of the heap, where 0 ≤ size ≤ length
and valid elements of the heap only reside within the [0, size) index interval
of the array [7, p. 151].

We choose java.util.List as the interface for the inner representation
of heap and come up with the following declaration:

import java.util.List;

public class Heap<T extends Comparable<? super T>>
{

private List<T> list;
private int size;
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public int getSize()
{

return size;
}

public int getLength()
{

return list.size();
}

public T get(int i)
{

return list.get(i);
}

}

Since the elements are of the type Comparable, Heap is a max-heap in a
purely conceptual sense. That is, the order totally depends on T.compareTo,
which could be defined or overridden by the users. The max-heap property is
then defined as that for every node i other than the root A0, Aparent(i) ≥ Ai,
where the indices of a node’s parent, left child and right child are given by

parent(i) =
⌊

i− 1
2

⌋
left(i) = 2i + 1
right(i) = 2i + 2

To maintain this property at node i, with the assumption that the binary
trees rooted at left(i) and right(i) are already max-heaps, we use heapify,
which sift the value at Ai down the heap if it is smaller than its children:

// ...
import static java.util.Collections.swap;

public class Heap<T extends Comparable<? super T>>
{

// ...
public void heapify(int i)
{

int right = i + 1 << 1;
int left = right - 1;
int largest = i;
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if (left < size && get(left).compareTo(get(largest)) > 0)
largest = left;

if (right < size && get(right).compareTo(get(largest)) > 0)
largest = right;

if (largest != i)
{

swap(list, i, largest);
heapify(largest);

}
}

}

At each call, the index of the greatest element among Ai, Aleft(i) and
Aright(i) is assigned to largest. In case Ai is greatest, the subtree rooted
at Ai is already a max-heap and the method terminates. Otherwise, Ai is
swapped with Alargest, which makes node i and its children to satisfy the
max-heap property. The subtree rooted at largest, though, might violate
the property so heapify needs to be called on it. For instance, given i points
to the subtree on the left, then heapify would step-by-step turn it to the
one on the right:
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The running time of heapify on a subtree of height (number of edges
between the root and the furthest leaf) h is the time Θ(1)) to make Ai,
Aleft(i) and Aright(i) a max-heap, plus the time to run heapify on one of its
children if necessary:

T (h) ≤ T (h− 1) + Θ(1) ≤ T (0) +
h∑

i=1
Θ(1) = T (0) + Θ(h)

Since T (0) is obviously Θ(1),

T (h) ≤ Θ(h) =⇒ T (h) = O(h)‡

A binary tree of size n may have at maximum height of h = blog2 nc, thus
the time complexity with respect to the size of the subtree is O(log2 n).

‡The notation f = O(g) indicates that f grows at most as as fast as g.
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Noticeably, ∀i ≥ bn/2c, 2i + 2 > 2i + 1 ≥ n ⇐⇒ right(i) > left(i) ≥ n.
In other words, only nodes of indices less than bn/2c have children. Therefore,
a heap could be constructed as follows

// ...
public class Heap<T extends Comparable<? super T>>
{

// ...
public Heap(List<T> a)
{

list = a;
size = a.size();
for (int i = size >> 1; i-- > 0;)

heapify(i);
}

}

Before the construction, each node from bn/2c (size >> 2) to n − 1 is
a leaf and a trivial heap on its own. Consider the iteration where heapify
is called on node i and assume every node after i is the root of a heap
beforehand, then after the iteration, all nodes from i to n−1 are foots of max-
heaps. Consequently, by mathematical induction, after the construction, the
whole array becomes a heap. According to [7, p. 159], this constructor runs
in linear time (O(n)).

Heapsort uses the max-heap to select the next largest element to move
it to the start of the sorted region. This in-place movement could be imple-
mented as the method pop, which also return the largest element to make
the method make sense on its own.

// ...
public class Heap<T extends Comparable<? super T>>
{

// ...
public T pop() throws RuntimeException
{

if (size < 1)
throw new RuntimeException("heap underflow");

swap(list, 0, --size);
heapify(0);
return get(size);

}
}
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Choosing the n− 1 largest element, we are left with the minimum value
at the beginning of the list and the rest of the list are all greater or equal to
the first element.

// ...
public class Sort
{

// ...
public static <T extends Comparable<? super T>>
void heap(List<T> list)
{

var heap = new Heap<T>(list);
for (int i = 1; i < list.size(); ++i)

heap.pop();
}

}

The step-by-step selection from the example heap is shown below as an
illustration. One may notice that the result qualifies as a min-heap.

9

6

0 4

8

3

8

6

0 4

3

9

6

4

0 8

3

9

4

0

6 8

3

9

3

0

6 8

4

9

0

3

6 8

4

9

The running time of Sort.heap is that of Heap constructor, plus n − 1
times that of Heap.pop, which is

T (n) = O(n) + (n− 1)(Θ(1) + O(log2 n))
= O(n) + Θ(n)O(log2 n)
= O(n) + O(n log2 n)
= O(n log2 n)

This is a huge improvement from selection sort’s and bubble sort’s O(n2).
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4 Comparing
Our implementations of searching and sorting algorithms in Java work on any
collection of data whose natural order is specified, that is, where elements
implement Comparable. However, they does not cover the case another order
is required, there is not any option to use our current library other than
subclassing every item with a different compareTo method, which, in every
sense, is counter-intuitive.

In [1], Wu dedicated a whole “Sample Development” section to address
this issue and came up with the final solution of using the standard interface
java.util.Comparator [12] which declare the method compare. We start
with refactoring Sort.selection to comply with this facility:

// ...
import java.util.Comparator;

public class Sort
{

public static <T>
void selection(List<T> list, Comparator<T> comparator)
{

int i, j, m, n = list.size();
for (i = 0; i < n; ++i)

{
for (m = j = i; j < n; ++j)

if (comparator.compare(list.get(j), list.get(m)) < 0)
m = j;

swap(list, i, m);
}

}
}

To sort in reversed order, we can subclass Comparator anonymously [13]

var list = java.util.Arrays.asList(4, 2, 0, 6, 9);
Sort.selection(list, new java.util.Comparator<Integer>()
{

public int compare(Integer a, Integer b)
{

return -a.compareTo(b);
}

});
System.out.println(list);
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As expected, the snippet above prints [9, 6, 4, 2, 0] to stdout.
In order to maintain backward-comparability, we write a helper class

extracting the natural order from any Comparable to a Comparator:

import java.util.Comparator;

public class Compare<T extends Comparable<? super T>>
implements Comparator<T>
{

public int compare(T a, T b)
{

return a.compareTo(b);
}

}

and wrap the current Sort.selection with

// ...
public class Sort
{

// ...
public static <T extends Comparable<? super T>>
void selection(List<T> list)
{

selection(list, new Compare<T>());
}

}

Sort.bubble can be refactored similarly, but since Sort.heap does all the
comparisons in Heap, we are required to make Heap work with Comparator’s

// ...
import java.util.Comparator;

public class Heap<T>
{

// ...
private Comparator<T> cmp;

public void heapify(int i)
{

int right = i + 1 << 1;
int left = right - 1;
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int largest = i;
if (left < size && cmp.compare(get(left), get(largest)) > 0)

largest = left;
if (right < size && cmp.compare(get(right), get(largest)) > 0)

largest = right;
if (largest != i)

{
swap(list, i, largest);
heapify(largest);

}
}

public Heap(List<T> a, Comparator<T> c)
{

list = a;
size = a.size();
cmp = c;
for (int i = size >> 1; i-- > 0;)

heapify(i);
}

}

and re-write Sort.heap to use the new Heap

// ...
public class Sort
{

// ...
public static <T>
void heap(List<T> list, Comparator<T> comparator)
{

var heap = new Heap<T>(list, comparator);
for (int i = 1; i < list.size(); ++i)

heap.pop();
}

public static <T extends Comparable<? super T>>
void heap(List<T> list)
{

heap(list, new Compare<T>());
}

}
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For the next example, we use a minimal, read-only version of the Person
class from [1, p. 666], which is ordered by name by default:

public class Person implements Comparable<Person>
{

private String name;
private Integer age;
private Character gender;

public Person(String name, Integer age, Character gender)
{

this.name = name;
this.age = age;
this.gender = gender;

}

public int compareTo(Person other)
{

return this.name.compareTo(other.name);
}

public String toString()
{

return String.format("%s (%d%c)", name, age, gender);
}

public String getName()
{

return name;
}

public Integer getAge()
{

return age;
}

public Character getGender()
{

return gender;
}

}
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We use a list of the oldest current state leaders [14] for this test

var list = java.util.Arrays.asList(
new Person("Mahathir Mohamad", 94, ’M’),
new Person("Elizabeth II", 93, ’F’),
new Person("Sheikh Sabah Al-Ahmad Al-Jaber Al-Sabah", 90, ’M’),
new Person("Paul Biya", 86, ’M’),
new Person("Michel Aoun", 84, ’M’),
new Person("Mahmoud Abbas", 83, ’M’),
new Person("Francis", 82, ’M’));

Sort.heap(list);
list.forEach(System.out::println);

and get

Elizabeth II (93F)
Francis (82M)
Mahathir Mohamad (94M)
Mahmoud Abbas (83M)
Michel Aoun (84M)
Paul Biya (86M)
Sheikh Sabah Al-Ahmad Al-Jaber Al-Sabah (90M)

It would neither be challenging to re-sort this list by their ages:

var ageComparator = new java.util.Comparator<Person>()
{

public int compare(Person a, Person b)
{

return a.getAge().compareTo(b.getAge());
}

};
Sort.heap(list, ageComparator);
list.forEach(System.out::println);

which gives us

Francis (82M)
Mahmoud Abbas (83M)
Michel Aoun (84M)
Paul Biya (86M)
Sheikh Sabah Al-Ahmad Al-Jaber Al-Sabah (90M)
Elizabeth II (93F)
Mahathir Mohamad (94M)
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Linear search is able to run without any modification: we would still
receive 4 from Search.linear(list, list.get(4)). Binary search, how-
ever, would not work correctly if the order of the list is not natural. One
with Comparator support may be implemented as follows.

import java.util.List;
import java.util.Comparator;

public class Search
{

// ...
private static <T>
int binary(List<? extends T> list, T key,

Comparator<? super T> c, int low, int high)
{

if (high < low)
return NOT_FOUND;

var mid = (low + high) / 2;
var cmp = c.compare(list.get(mid), key);
if (cmp < 0)

return binary(list, key, c, mid + 1, high);
if (cmp > 0)

return binary(list, key, c, low, mid - 1);
return mid;

}

public static <T>
int binary(List<? extends T> list, T key,

Comparator<? super T> c)
{

return binary(list, key, c, 0, list.size());
}

}

Now Search.binary(list, list.get(5), ageComparator) would re-
turn the right index 5 instead of -1 like Search.binary(list, list.get(5)).
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5 Conclusion
Albeit searching and sorting belong to the category of algorithms, by im-
plementing them, we were still able to recognize a variety of object-oriented
concepts, namely:

1. Through encapsulation of the inner representations and behaviors, we
can create intuitive programming interfaces, whilst keeping the code
clear and concise. Notable examples are the implementation of binary
search and the heap data structure.

2. Through polymorphism, generic and convenient libraries can be writ-
ten, which allow more code reuse and thus facilitate more effective de-
velopment. We wrote all of the classes and methods with this principle
in mind.

3. Through inheritance, it is possible to extend the functionalities of each
object. Together with polymorphism (which defines the behavioral
interfaces), it enable us to generalize our codebase one step further, as
shown in section 4, without spending too much energy on refactoring.

Generally, though, we find shoving every self-contained function into a
class as a static method rather redundant.
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