System Cascade Connection

Nguyễn Gia Phong

April 15, 2020

Given two discrete-time systems A and B connected in cascade to form a new system $C=x \mapsto B(A(x))$.

1 Linearity

If A and B are linear, i.e. for all signals x_{i} and scalars a_{i},

$$
\begin{aligned}
& A\left(n \mapsto \sum_{i} a_{i} x_{i}[n]\right)=n \mapsto \sum_{i} a_{i} A\left(x_{i}\right)[n] \\
& B\left(n \mapsto \sum_{i} a_{i} x_{i}[n]\right)=n \mapsto \sum_{i} a_{i} B\left(x_{i}\right)[n]
\end{aligned}
$$

then C is also linear

$$
\begin{aligned}
C\left(n \mapsto \sum_{i} a_{i} x_{i}[n]\right) & =B\left(A\left(n \mapsto \sum_{i} a_{i} x_{i}[n]\right)\right) \\
& =B\left(n \mapsto \sum_{i} a_{i} A\left(x_{i}\right)[n]\right) \\
& =n \mapsto \sum_{i} a_{i} B\left(A\left(x_{i}\right)\right)[n] \\
& =n \mapsto \sum_{i} a_{i} C\left(x_{i}\right)[n]
\end{aligned}
$$

2 Time Invariance

If A and B are time invariant, i.e. for all signals x and integers k,

$$
\begin{aligned}
& A(n \mapsto x[n-k])=n \mapsto A(x)[n-k] \\
& B(n \mapsto x[n-k])=n \mapsto B(x)[n-k]
\end{aligned}
$$

then C is also time invariant

$$
\begin{aligned}
C(n \mapsto x[n-k]) & =B(A(n \mapsto x[n-k])) \\
& =B(n \mapsto A(x)[n-k]) \\
& =n \mapsto B(A(x))[n-k] \\
& =n \mapsto C(x)[n-k]
\end{aligned}
$$

3 LTI Ordering

If A and B are linear and time-invariant, there exists signals g and h such that for all signals $x, A=x \mapsto x * g$ and $B=x \mapsto x * h$, thus

$$
B(A(x))=B(x * g)=x * g * h=x * h * g=A(x * h)=A(B(x))
$$

or interchanging A and B order does not change C.

4 Causality

If A and B are causal, i.e. for all signals x, y and integers k,

$$
\begin{aligned}
& x[n]=y[n] \quad \forall n<k \Longrightarrow \begin{cases}A(x)[n]=A(y)[n] & \forall n<k \\
B(x)[n]=B(y)[n] & \forall n<k\end{cases} \\
& \Longrightarrow B(A(x))[n]=B(A(y))[n] \quad \forall n<k \Longleftrightarrow C(x)[n]=C(y)[n] \quad \forall n<k
\end{aligned}
$$

then C is also causal.

5 BIBO Stability

If A and B are stable, i.e. there exists a signal x and scalars a, b that

$$
\begin{aligned}
& |x[n]|<a \quad \forall n \in Z \Longrightarrow|A(x)[n]|<b \quad \forall n \in Z \\
& |x[n]|<a \quad \forall n \in Z \Longrightarrow|B(x)[n]|<b \quad \forall n \in Z
\end{aligned}
$$

then C is also stable, i.e. there exists a signal x and scalars a, b, c that

$$
\begin{aligned}
|x[n]|<a \forall n \in Z & \Longrightarrow|A(x)[n]|<b \forall n \in Z \\
& \Longrightarrow|B(A(x))[n]|<c \forall n \in Z \Longleftrightarrow|C(x)[n]|<c \forall n \in Z
\end{aligned}
$$

