\documentclass[a4paper,12pt]{article} \usepackage[english,vietnamese]{babel} \usepackage{amsmath} \usepackage{enumerate} \usepackage{lmodern} \title{System Cascade Connection} \author{{\selectlanguage{vietnamese}Nguyễn Gia Phong}} \begin{document} \selectlanguage{english}\maketitle Given two discrete-time systems $A$ and $B$ connected in cascade to form a new system $C = x \mapsto B(A(x))$. \section{Linearity} If $A$ and $B$ are linear, i.e. for all signals $x_i$ and scalars $a_i$, \begin{align*} A\left(n \mapsto \sum_i a_i x_i[n]\right) &= n \mapsto \sum_i a_i A(x_i)[n]\\ B\left(n \mapsto \sum_i a_i x_i[n]\right) &= n \mapsto \sum_i a_i B(x_i)[n] \end{align*} then $C$ is also linear \begin{align*} C\left(n \mapsto \sum_i a_i x_i[n]\right) &= B\left(A\left(n \mapsto \sum_i a_i x_i[n]\right)\right)\\ &= B\left(n \mapsto \sum_i a_i A(x_i)[n]\right)\\ &= n \mapsto \sum_i a_i B(A(x_i))[n]\\ &= n \mapsto \sum_i a_i C(x_i)[n] \end{align*} \section{Time Invariance} If $A$ and $B$ are time invariant, i.e. for all signals $x$ and integers $k$, \begin{align*} A(n \mapsto x[n - k]) &= n \mapsto A(x)[n - k]\\ B(n \mapsto x[n - k]) &= n \mapsto B(x)[n - k]\\ \end{align*} then $C$ is also time invariant \begin{align*} C(n \mapsto x[n - k]) &= B(A(n \mapsto x[n - k]))\\ &= B(n \mapsto A(x)[n - k])\\ &= n \mapsto B(A(x))[n - k]\\ &= n \mapsto C(x)[n - k] \end{align*} \section{LTI Ordering} If $A$ and $B$ are linear and time-invariant, there exists signals $g$ and $h$ such that for all signals $x$, $A = x \mapsto x * g$ and $B = x \mapsto x * h$, thus \[B(A(x)) = B(x * g) = x * g * h = x * h * g = A(x * h) = A(B(x))\] or interchanging $A$ and $B$ order does not change $C$. \section{Causality} If $A$ and $B$ are causal, i.e. for all signals $x$, $y$ and integers $k$, \begin{multline*} x[n] = y[n]\quad\forall n < k \Longrightarrow\begin{cases} A(x)[n] = A(y)[n]\quad\forall n < k\\ B(x)[n] = B(y)[n]\quad\forall n < k \end{cases}\\ \Longrightarrow B(A(x))[n] = B(A(y))[n]\quad\forall n < k \iff C(x)[n] = C(y)[n]\quad\forall n < k \end{multline*} then $C$ is also causal. \section{BIBO Stability} If $A$ and $B$ are stable, i.e. there exists a signal $x$ and scalars $a$, $b$ that \begin{align*} |x[n]| < a\quad\forall n \in \mathbb Z &\Longrightarrow |A(x)[n]| < b\quad\forall n \in \mathbb Z\\ |x[n]| < a\quad\forall n \in \mathbb Z &\Longrightarrow |B(x)[n]| < b\quad\forall n \in \mathbb Z \end{align*} then $C$ is also stable, i.e. there exists a signal $x$ and scalars $a$, $b$, $c$ that \begin{align*} |x[n]| < a\;\forall n \in \mathbb Z &\Longrightarrow |A(x)[n]| < b\;\forall n \in \mathbb Z\\ &\Longrightarrow |B(A(x))[n]| < c\;\forall n \in \mathbb Z \iff |C(x)[n]| < c\;\forall n \in \mathbb Z \end{align*} \end{document}