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2 Limits

2.3 Limit Laws

Evaluate the limit:

. 222 + 1 22 +1 2.2241 3
lim =4/ lim = .
=2\ 3x — 2 =2 3 — 2 3:-2—2 2
) x? — 4dx , 4
lim —— = lim P
z=4x2 —3x—4 s—ax+1 5
CoVIFt—=V1—-t 2t
lim = lim
=0 t =0 t(v/ 1+t + /1 —1t)
li 2
= lim
0 (VI+1++1—1)
B 2
V1I+4/1
=1

40. Prove that lim,_,o+ /zes™ = = 0.
Given e > 0, let § = §e%. If 0 < 2 < 0+ ¢ then

T 2 P T
0 < Vze'™s < eV < 3\/% = [Vze™: — 0| < e
Thus, by the definition of right-hand limit,

. in™
lim /ze*™ = =0

z—0t

(12)

(25)



59. Prove that lim, o f(z) = 0 if

fz) =

22 if z is rational
0 if x is irrational

Given € > 0, let 6 = /&. If 0 < |z — 0] < 4, then 0 < 22 < ¢ or
|f(z) — 0] < e. Thus, by the definition of a limit,

lim f(x) =0
lifz >0 Oifz >0

and g(z) =
0iftz <0 9@ = ik s <0
Thus lim,_,o f(x)g(x) = 0 though neither lim, o f(z) nor lim,_,o g(x) exists.

61. If f(z) = then f(z)g(x) = 0.

2.4 The precise definition of a limit

3. Given f(z) = /x, if La: — 4] < 1.44 then |/z — 2] < 0.4.
21. Prove that lim,_,, %_’”2_6 = 5.
Given e > 0, let § = . If 0 < |z — 2| < ¢, then

2+ —6
lt+3—-5|<e <= ——5‘ <e
T —2
Thus, by the definition of a limit, lim, o xij_x?_ 6 — 5.

39. Prove that lim,_,o f(x) does not exist if

0 if x is rational
-

1 if z is irrational
Suppose lim, .o f(z) = L, hence by the definition of limit, for every ¢ > 0,
there exists 0 > 0 that
O<|r—0|<d=|f(z)—L|<e (%)

For L = 0, consider ¢ = |L—1|. For every 0, there is at least one irrational
z € (0,9), which turns (*) into a false statement:

O<|z|<d=|1-L|<|L—-1

For L # 0, consider ¢ = |L|. For every d, there is at least one rational
x € (0,9), which turns (x) into a false statement:

0<|z|<d=|L| <|L|

Conclusion: The assumption is incorrect; in other words, lim,_,o f(z) does
not exist.



2.5 Continuity

22. Explain why the function f is discontinuous at the given number a = 3.

- {5870

6ifx=3
)2+ 1ifz#3
~|6ifz=3
Since lim, 3 f(z) = lim, 322 + 1) = 7 # 6 = f(3), f is discontinuous
at 3.
} . . ; i T
7 1 2 3 4
26. G(x) = 2;52;171 is a rational function so it is continuous at every number

in its domain.

38. Since arctan is an inverse trigonometric function and thus continuous at

. . . . 2_ .
every number in its domain and lim,_,9 ﬁ = lim,_,9

lim arctan —- 2 tan >
11m arctan ———— — arctan —
z—2 32 — 6x 3

2.6 To Infinity and Beyond!
Find the limit:

926 — x . 0
= lim =
z—oc0 341 r——00 —] — =5
X

(24)



2.7 Derivatives
24. If g(z) = 2* — 2,
g(1+h) —g(1)

/ I I
g(1) = lim
4 o (14 _
:hm(l—I—h) 2—(1 2)
h—0 h
. WY +4RP+6R2+4h+1 -1
= lim
h—0 h

= lim(h® + 4h® + 6h + 4)
h—0

An equation of the tangent line to g at (1, —1):
y—9(1)=g()(z—-1) &= y=4a-5
Determine whether f/(0) exists.

B xsin%ifa:;«éo
fle) = {Oifgszo (53)

f'(0) = lim

h—0

f(0+h) — £(0)
h

1
hsmh

= lim
h—0

= lim sin — (does not exist)
h—0

_ Jatsintifa #£0
fle) = {Oifx:O (54)

f(O+h) — £(0)
h

2 i 1
hsmh

= lim
h—0

1
_ .
hlg[l)hsmh

Since Vh # 0,—|h| < hsing < |h| and limj,_o(—|h|) = lim,|h| = 0,
according to the Squeeze Theorem, f'(0) = 0.
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3 Differentiation

3.4 The chain rule

Find the derivative of the function.
y = cos y/sin(tan 7x) (45)

y = —y/sin(tan mc)/ - sin y/sin(tan 7z)

_ sin’(tan 7z) - sin /sin(tan 7x)

24/sin(tan 7x)

_ tan’ 7z - cos(tan ) - sin y/sin(tan 7x)

24/sin(tan )

msec? x - cos(tan 7z ) - sin 4/sin(tan )

24/sin(tan )

y = [z + (2 + sin® z)*)* (46)

g =4[z + (z +sin® )% [z + (z + sin® 2)*)?
401 4 3(x + sin® x)'(z + sin®? 2)?] [z + (x + sin® 2)*)?
4

[T+ 3(1 +sin 2z)(x + sin® )*][z + (z + sin® z)"]?

3.7 Applications in Sciences

9. A rock is thrown vertically upward from the surface of Mars, its height
after t seconds is h = 15t — 1.86¢2.

dh
2) = (15— 3.720)(2) = 756 (m/s) (a)
375 T 25v/39
h:25<:>15t—1.86t2:25<:>t:$9—3 (b)

So at t = 2.35 s or t = 5.71 the Rock’s height is 25 m. Its velocity at this
point is

375 F 25v/39

v=(t— 15— 3.72t) ( 5

) = +6.24 (m/s)



10. A particle moves with position function
s=1t"—4t> =208 +20t  t>0
v=20 <= §=20 <= 4> — 12t — 40t + 20 = 20 (a)
Since ¢ is nonnegative, the particle has a velocity of 20 m/s at t = 0 and

t=295s.
a=0 <= =0 <= 121> — 24t — 40 =0 (b)

Since t is nonnegative, the acceleration is 0 at ¢t = 4/ % — 1 s. This is when

the instantaneous speed of the particle (|v|) reaches its critical value.

21. The force F' acting on a body with velocity v and mass m = my — Z—;
(where mg is the mass of the particle at rest and c is the speed of light) is

the rate of change of momentum:

d(mw)
="

dt
_d MU
St w2

c2

a o o

Ctdt dw | e

(=]



30. The frequency of vibrations a vibrating violin string is given by

1 /T
= —/— T>0,p>0

(a) The rate of change of the frequency with respect to

(i) The length: % = %.

daf _ 1
dT — 4L/Tp’

(iii) The density: % == p%.

(ii) The tension:

(b) The pitch of a note gets higher when the string is shorter and lower when
the tension or density is increased.

35. Applying the gas law

PV =nRT <+— T:ﬂ
nRk

The rate of change of temperature can be easily calculated via differenti-

ation:
AT _ d PV
dt — dt \ nR

1 dVv dP
—E(PH+VE>

8.0-0.15+10-0.10

- 10 - 0.0821
1241

10 - 0.0821
B 2

10 - 0.0821
=2 (K/s)

(In the calculation above, significant figures are taken into consideration.)



3.8 Exponential Growth and Decay

4. Let P(t) be the bacteria count after ¢ hours. As the bacteria culture grows

with constant relative growth rate,
dpP

dt

Since P(2) = 400 and P(6) = 25600,

P(0)e* = 400 P(0)e** = 400
<~
P(0)e% = 25600

kP = P(t) = P(0)e"

k=18 ~104%

2

Thus (a) the relative growth rate is 104%, (b) the initial size of the culture

is 50 and (c) the number of bacteria after ¢ hours is 50v/8t.
The number of cells after 4.5 hours:

P(4.5) = 50V/8%5 ~ 5382

The rate of growth after 4.5 hours:

ap dvs'

L (4.5) = 50——(4.

i (4.5) =50 P (4.5)
=50 (¢ V8 In VB) (4.5)
= 25-8>*In8

~ 5596 (bacteria per minute)
The population reach 50000 when
50V/8 = 50000 <= & = 10° <= ¢ = log, 100 ~ 6.64 (days)
8. Given 50 mg of “°Sr which has a half-life of 28 days.

(a) Formula of the mass remaining after ¢ days: m(t) = 50 - 274/25.

10/7

(b) The mass remaining after 40 days: m(40) = 50 - ~ 19 (mg).

1
2

(c¢) To decay to a mass of 2 mg, it takes —28log, % ~ 130 (days).

8

(d)

(e)

(f)



(d) The graph of the mass function:
m

20 |
40 |
30 |
20 |

10 ¢

: : : : : : > ¢
20 40 60 80 100 120 140
16. Let T'(t) be the temperature of the coffee after t minutes. The surrounding
temperature is 20°C, so Newton’s Law of Cooling states that
dT
dt
If we let y = T — 20, then y(0) = T'(0) — 20 = 95 — 20 = 75, so y satisfies

= k(T — 20)

When the temperature of the coffee is 70°C, its cooling rate is 1°C per
minute, i.e.

y+20=70  _ fy(t)=50
ky(t) = —1
— 75e 10 =50 «= t=150In1.5 ~ 20 (minutes)

3.9 Related rates

10. A particle is moving along a hyperbola zy = 8

d(zy) d8 dz dy
:—dt =% <~ ya_’_"ﬂa—o
dx
2. 0 1 4.3=0
<~ dt+
= %:—6 (cm/s)



12. Let D(t) (cm) be the diameter of the ball at minute ¢, its surface area is
A(D) = 7D? (cm?).

dA dA dD
— =1 <=
dt

dD dD 1
— . — =1 2rD— =1 —_— = —
o a0 TR T T A T 2D
Thus the decreasing rate of the diameter when it is 10 cm:
dD 1
E(lo) = 50- (cm/s)
14.
20 |- .
Z
\
[9p) 10 - |
A
0 - & B ® |
| | | |
0 50 100 150
W -E

Ax(t) = wp(t) —walt) {Ax(t) — 150 — 35t
Ay(t) = ys(t) — yal(t)

Ay(t) = 25t
d 1850t — 5250
— As(t) = V18502 — 10500¢ + 22500 = — =
dt — /1850¢2 — 10500¢ + 22500
ds 4y 1850 - 4 — 5250
dt* 7’ /1850 - 16 — 10500 - 4 + 22500

2150 215101
v/10100
27. Let h(t) (ft) be the height of the cone at minute ¢. Volume of the cone is

T 21 (km/h)
wh? dV. wh dh dh 180
V=G =3 ~% & = &
dh 180 18
—(10) = — =
— <1(10)

=—=—=5.7
107 T

(ft/s)

10



4 Applications of derivative

4.1 Max and Min

Find the absolute min and max values of f.

f(z) = 32" — 42® — 1227 + 1, [—2,3] (51)

Since f’(z) = 122® — 1222 — 24z, we have f'(z) = 0 when z € {-1,0,2}.
The values of f at these critical numbers are

f(=1)=3+4—12+1=—4
f0)=1
f(2) =48 -32—48+1=-31

The values of f at endpoints are

F(=2) =48 +32— 48+ 1 =33
f(3) =243 — 108 — 108 + 1 = 28

Comparing these five numbers and using the Closed Interval Method,
we see that the absolute minimum value is f(2) = —31 and the absolute
maximum value is f(—2) = 33.

f(t) =tvVd — 2, [—1,2] (55)

Since f'(t) = %7 with ¢ € [—1,2], we have f/(t) = 0 when t = /2.

The value of f at this critical number is f(v/2) = 2. The value of f at

endpoints are f(—1) = —v/3 and f(2) = 0. Comparing these 3 numbers and

using the Closed Interval Method, we see that the absolute minimum value
is f(—1) = —v/3 and the absolute maximum value is f(v/2) = 2.

fl@)y=we™™ =14 (59)
With = € [—1,4], we have f'(z) = (1 - %) e~*’/8 when x = 2. Compar-
ing values of f at this critical number and endpoints, the minimum value is
f(=1) = —e~/® and the maximum value is f(2) = 2e~%/2.
4.2 The Mean Theorem

26. Let h be the function that h(z) = f(x) — g(z). Since both f and g are
continuous on [a, b] and differentiable on (a, b), h inherits the same properties.

11



By applying the Mean Value Theorem to h on the interval [a,b], we get a

number ¢ € (a,b) such that
() — h(a) = (b~ ) (0
= f(b) —g(b) — f(a) + g(a) = (b= a)(f'(c) = 4'(c))
> f(b) —g(b) = (b—a)(f'(c) —g'(c))
b—a>0and f'(c) —g'(c) <0so f(b) —g(b) <0 or f(b) < g(b).

>0« z+1>1
<— Vr+1>1

<~ vVr+1—-1>0

2
:><\/x+1—1) >0
<< r+1-2vx+1+1>0
<—— r+2>2Vr+1

1
<= \/1+x<1+§x

33. Prove the identity

r—1 T
arcsin = 2arctan - =
z+1 Ve 2

i — in =1 s —
Let = <y = arcsin e <3 and z = arctan y/z, then

: _z—1 dsiny _ d (z—1
{Slny T x4+l :>{ dz ~— dzx (z+1)

tanz = \/z dtanz _ d&f
cosy - gt = (xfl)Q
— 2 1 dz _ 1
(tan z 4+ )—m = m
Ty 2
2 z
<\/E + 1) T =55
4 dy _ 2
2 - 2
(z+1) x 1 (z+1)
r+1)§ =5z
dy _ 1
= e T
Az 20a+)vz

12



Foralz >0Qorxz+1>1>0

-1 _QE_%
x 4+

d
o (2 arctan \/x — arcsin =2 -0

2 1

2@+ 1)z (z+ 1)z
=0

Thus the function z — 2 arctan \/x — arcsin % is constant on its domain
[0, 00). Consequently, in [0, c0)
r—1

—1
2 arctan y/z — arcsin — (2~ 2arctan /7 — arcsin (0)
r+1 r+1

= 2arctan \/6 — arcsin _T

—T
=0—- —
2
_T
2
-1
< arcsinx = 2arctan\/_ —g

4.3 Shape of a graph

75. Given two funtions f and g which are positive and concave upward on
I,ie. forall zin I

f(z) >0
f'(x) >0
g(x) >0
g"(x) >0

Second derivative of the product function fg:

(f(@)g(2))" = (f'(2)g(x) + f(2)g () = ["()g(x) +2f (x)g (x) + [ (2)g"(x)

If f and g are both increasing or decreasing, then f'(z)¢'(z) > 0, which
means Vo € I, (f(z)g(x))” > 0, or fg is concave upward on I. Otherwise,
f is increasing and ¢ is decreasing for instance, fg may be either concave
upward, concave downward or linear:

13
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76. In order for h = f(g(x)) to be concave upward on R

h" >0 <= (fog)">0
< ((f'og)-g) >0
= (fleg) g +(feg)-g">0
< (f"o9) (¢)+(f'og)-g">0

Because f and g are given to be concave upward on R, i.e. f” > 0 and
g’ >0, and Vz € R, ¢*(x) > 0, s0 if f/ > 0 or f is an increasing function, h
will be concave upward.

77. Show that tanx > x for 0 <z < 7.

Let f be the function that f(z) = tanz—z. On (0, §), sinw cos x # 0 thus
tan z exists and is nonzero. Therefore, f'(z) = tan®(xz) > 0 or f is increasing
on [0, ], which means for all x in (0, §),

f(z) > f(0) <= tanz —x >tan0 — 0 < tanx > x

78. Use mathematical induction to prove that for all positive integer n,
Ve >0, e 21+Zﬁ (%)
i=1

Let f be the function of domain [0,00) that f(x) = e — x, then for all
x>0, f'(x) =€e"—1> f'(0) = 0 (since it is obvious that f’ is an increasing
function). Hence Vz > 0,¢” —2 > e’ —0=1 < Vo >0,e* > 1+, ie.
(%) is true for n = 1.

Suppose that () is also true for n = k (k € N*). For all nonnegative z,

ki ki
e 21—}—25 <— ¢ —1—2520

Let g be the function of domain [0, 00) that g(z) = e* — 321! f—,, then

for all positive x

k+1 . i—1 k+1 i—1

k
/ oz (4 1 xT _ oz 1 Q;_
@) =e =) —=e -1 ;(i—l)!_e ! Zz!zo

i=1

This means g in a non-decreasing function on [0, 00)

This expression shows that (x) is true for n = k 4 1. Therefore, by math-
ematical induction, it is true for all positive integers n.

15



4.4 Rule of the Hospital
Find the limit

54. Since lim,_,o+ Inx = —o0 and lim,_,q+ \/LE = 00

. . . Inz . —2x\/T o1

lim x\/a? — lim eﬁ-lnz _ ehmz—>0+ ive — ehmzHO‘F VE e 2lim,_ o4+ V2 _ D=1
z—0t z—0t+

60. Since lim, ,oo In2Inz = lim, ,.(1 +Inz) = 0o

. In 2
lim z1+mz = ¢
r—r00

In2lnzx

1+lnz — (&

limg 00 In2 — eln2 — 2

4.7 Optimization Problems
44. Given E(v) = ¢

E 2 _ 3 3 _ 2
d :aL?w (v—u)—v :aLQU 3uv
dv (v—u)? (v—u)?

Since v > u > 0, F has only one absolute extreme value, at the only
critical number v = 1.5u. Applying the First Derivative Test for Absolute
Extreme Values, v = 1.5u is shown to be the value of v that minimizes E.

45. Given S = 6sh + %SQ(\/g -csc — cot 0).

ds 3 ,d
0 =3 @(ﬁ‘CSCQ—COtH) =

352(1 — /3 - cos )

2sin’ 6

We have % = 0 when 6 = arccos \/?g Applying the First Derivative
Test for Absolute Extreme Values, this value of 8 is shown to minimize S to
Gsh + 2.

76. Using Poiseuille’s Law, we have the total resistance of the blood along
the path ABC is

—bcot b —bcotf besch
B g s g =TI o b (0ot el
] r5sin 6 ] 5

= 1

df  risin®@ risin?0  sin?0 \r{ 13

dR Ch Cbcost)  Cb (1 cos@)

We have 4% = 0 when cosf = (ro/r1)*. At this angle, the resistance is
minimized (can be shown using the First Derivative Test for Absolute Ex-
treme Values, but like in the two previous exercises, I'm too lazy to evaluate

it). When 2 = 2, the optimal branching angle is § &~ 79°.

16



5 Integral

5.1 Areas
4. Estimate the area under the graph of f(z) = y/z from x = 0 to z = 4.

B
:
hE
| &
I
3
| co
]
3|

lim R, = lim
n—oo

n—00 n
=1 =1
n—1 . n—1 .
_ . 4—-0 ) .8 7
lim L, = lim —— —zhm—g —
n—oo n—o0 n o n n—oo 1 “ 0 n
= =

For estimation, consider n — 4:

4 N 4
X 8 1 :
iﬂR”‘Z;:l:\/;_ ;:1:\/5_1+\/§+\/§+2~6.1463

3 A 3
. 8 1 :
thn:Z;_O\/;: ;_0\/5:0+1+\/§+\/§z4.1463

n—4

5. Estimate the area under the graph of f(z) = 1+2? from z = —1 to z = 2.

2+1 2+1
lim R, —llmLZf( 1+ + )

n—oo n—oo

31 2
E;OZ< (5 ))

Similarly,
n—1 2
3 31
15, b J%Z(H(z*))
3w 3i—3/2 2
lim M, = lim — 1 — -1
Jn nﬂgn;( (55 ))
For n — 3,

3
iﬂRn=2(1+(i—1)2):1+2+5:8
3 2
. 3 5 5 13
}lgMn—il<1+(z—§>> itit =0
2
) B vy _
}lgléLn_;(l—i-(z 1)?)=2+142=5

17



For n — 6,

2
lim R, = <1+ % 1 )

2@—5 1/25 17 17 25 41 65
l M, = 1 S (e —5
im <+ > 2(16+16+16+16+16+16) 5.9375

1 /5 5 13
§(Z+1+1+2+Z+5>—6.875

1 5 ) 13
E_}H%L ( ——1 >_§(2+Z+1+Z+2+Z>_5'375

16. The height (in feet) above the earth’s surface of the Endeavour, 62 sec-
onds after liftoff, can be estimated with the assist of Python (which, coinci-
dentally, has been utilized by NASA recently):

>>> time = 0, 10, 15, 20, 32, 59, 62, 125

>>> velocity = 0, 185, 319, 447, 742, 1325, 1445, 4151
>>> sum(map(int.__mul__, velocity,

map (int.__sub time[1:], time[:-1])))

—_—

122928
5.2 The Definite Integral

Evaluate the integral.

5
/(4—2x)dx:4x]§—x2]§:12—21:—9 (21)
2
2 5 2
/(2x—x3)dx:x3] - | =9-16=-7 (24)
0 0 4],

33. Evaluate integral by interpreting it in terms of areas.

[ swyar =1 (a)
/05 () dz = 10 (b)
[ s =3 ©

/ng($>d$:/OSf(ZB)dZE+/59f(ZL‘)dZE:10—8:2 (d)

18



3 forx <3
x for x >3

50. Given f(z) = {

5 3 5 227°
/ f(x)dx:/ 3dx+/ xdszx]g—l—? =9+8=17
0 0 3

3

5.3 The Fundamental Theorem of Calculus

3. Let g(x) = [ f(t)dt.
(a) By interpreting the above integral in terms of areas, we get g(0) = 0,
9(1) =2, g(2) =5, g(3) =7 and ¢(6) = 3.

(b) g is increasing on (0, 3).

(¢) g has a maximum value of 7 at x = 3.

(d)

Find the derivative of the function.

VT 2 vV 2
4 SR, P d / G vz
dz J; 24+1 dvz \ )y 2*+1 dz

T 2242

d tanx d tanx dtanx
—_— t tdt = t tdt
S ARRVUEN (/ N ) o

dtanzx

_ \/tanx + vtanz

cos? x

19



64. Given the error function

2

277
erf(x / ® At = erf'(z) =
G VT

b b
/ e dt = g/ erf' (t) dt = g[erf(b) — erf(a)] (a)
With y = e*” erf(x)

/
y = (ez2> erf(z) + ¢* erf'(z)

= 2z¢"” erf(z) + ¢

= 2z¢” erf(z) +

2
=2xy + —= (b)

Jr
5.4 Infinite Integral

56. Let y(z) be the vertical postion at a distance of z miles from the start
of the trail, then y/(x) = f(x). Thus, fg z)dz = y(5) — y(3), which is the
vertical displacement from 3 to 5 miles.

63. Total mass of the rod:

4
273 16 1
9] + ; =36+ — =41 (kg)

/0(9+2\/§)dx— 3 3

64. Amount of water flowing from the tank during the first 10 minutes:

10
/ (200 — 4t) dt = 200¢];" — 2¢%] ;" = 2000 — 200 = 1800 (1)
0

5.5 The Substitution Rule
74. Given f(z) = sin \?/E
Since f(—x) = siny/—x = sin—/z = —sin/z = —f(x), [ is an odd
function. Hence [~ S flr)dz = f2 r)dx.
F0r2<m<30<\/_<\/_<\/_7rthussm\/_>0andf2 r)dr >
0. Futhermore, sin /= < 1 so f2 r)dr < f2 dr = 1.

20



Evaluate the integral.

2 2 2
/ (a:+3)\/4—:172dx:/ x\/4—x2dx+3/ V4 —a2?dx
-2 -2

2
=0+4+3-27
= 6m

24 24 I
it oq 04 mt 7t
85— 0.18cos — | dt = 85t — — [ T cos Tt
/0 < cos 12) b =25 ), 12 1

4 2
= 2040 — 5— cosxdx

25T Jo
. 27
9040 — 54 sin x
25m |,
= 2040

3 3
400 + / 450.268¢"12°07 dt = 400 + 400 / 1.12567¢" 12507 gt
0 0

= 400 + 400¢!12567) "
— 40061.12567-3

~ 11713

6 Applications of Integration

6.1 Areas Between Curves

Evaluate the integral

1 1
/ |ew—x2+1|dx:/ (ew—xz—i-l)dx
-1 -1

3
1 1 1
—e—-d+l—-—=-11
°73 ¢ 3
1+4
= e — — —_
e 3

(77)

(82)



/4}1:2—3:6—1-4‘ dx:/4(x2—3:c+4) dz
1 1

3 312 4

3 2 .
64—1 48—3
— — 16 — 4
3 5 +16
21
=5 (7)
2111 271 1
[t [ (A1) as
1 |z 1 \r

111

24 8 32

1
== 9

53. Find the values of ¢ such that

lel |c|
/ ‘x2—c2—c2+x2 d:z::576<:>/ (02—x2) dx = 288

el ||

371l
— [029(: — —] = 288

—le]

4|
<— —— =288
3
< |c| =6
<— ¢c= =6

54. Find the area of the region enclosed by the line y = maz and the curve
Y=m

Those two curves enclose a region if and only if the following equations
has two unique solutions, i.e. m € (0,1)

1—
— ma*+(m—-1r=0 < mE{O,i—m}
m

22



The area of the region would then be

1

—m
m

A:

m$—x2+1

3

; ‘
1—-m
T

x
- d — d
21 mx) x+/0 (ma: $2+1> x

1-m

T m T
_ d — d
21 mx) :I:—l—/o (m:v a:2—|—1) x
1—-m

I I
— T T
PoEsf s
N N

_/0 1 dz? ma2]° ma?] /;z
S Jma 2?41 dx 2 |ma 2 |, o a2+1
_12 0 1
m (mT—l)Qa:—i—l
m2—2m+1
=————— +2In(lz + 1|)](:n2_2m+1
m By
m?—2m+1 2m2 —2m + 1
=— —2In 5
m m

6.2 Volumes

Evaluate the integral

2 .T2 2 xZ
2 — — = 4 — —
/17r< 2) dx 7T/1 ( x+4>dx

372
:W[4x—x2+x—}

121,
7
= 4 -3+ —
7T( +12)
_197r
12




4

2 2 154
/ﬂx——25+10x2—a:4 dx:27r/ L 1022 +25) dz
|16 s \16
3 572
o |10 s 3T
16 |,
_887r
3

1 1
/W‘(\/E—l)g—(xQ—l)z‘dx:/7r’x—2ﬁ—x4+2x2’dx
0 0
1
:/ﬂ(x4—2x2—x+2\/§)dsc
0

_llrw
30
h h 2
/0 (a—l—%(b—a))2 d:zc:/O (aQ—%(b—a)—{—ﬁ(b—a)Z) dz
= {azx—a—ﬁ(b—a)%—l.—g(b—a)g]h
oh 3n2 ,
—haz—%(b—(z)—irg(b—a)2
:ha2—@+h—6ﬁ+h—6ﬂ—2hab+h—b2
2 2 3 3 3
_ 11ha? — Thab + 2hb?
6

24

(11)

(50)



A:/T (w<R+m>2—w(R—m>2) de

-

= / ArRvVr? — x2dx
= 27TR/ 2vr?2 — x2dx

=27R - r?
=2m°Rr? (61)

6.4 Work

7. Spring constant: k = F'(4)/4 = 10g/4 = 2.5g (1bf/in)
Work done by stretching the spring from its natural length to 6 in:

6 2216
/ kxdr = k—} = 18k = 45g (Ibf.in)

0 2 ]o
9. Suppose that 2 J of work is needed to stretch a spring from its natural
length of 30 cm to a length of 42 cm.

0.12 910.12
k
/ krdr =2 «<— . ] =9
0 2 ]

<= 0.0072k =2
2500

= k="5- (N/m)

0.1 0.1
/ kxde = / 25002 dx
0.05 005 9

12503:2]0'1

9 0.05
1250(0.01 — 0.0025)

9

(m) (b)

F 30-9 271
E - 2500 250

25



Evaluate the integral

= 31250 (ft.Ibf)

50 25gx2}50
mgr dr =

0 0

- i i 3i
= 1 3(1—=)8(1—-—)1000g= -
i 38 (1) (17 ) 000’

" 80000 3i\?3i 3
pr— 1. — 3— — —_— . —

3
= M(%—Gﬁ—l—x?’ dx
o 3
_ 80000 {9_:;;2 o x_4]3
3 |2 4,
= 180000 (J)

26
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128
478
:11257Tg 19822 — 32:10 "
128 41,

= 330007g (ft.1bf)

6.5 Average Value of a Function

9. Given the function f(z) = (x — 3)% on [2,

fave =

5].
3 5
{3 3x2+9x12: 1

1 5
— (x—3)2dx:

1
5—2 3

Since z € [2,5],

f(c>:ftwe — (0—3)2:1 & c=14

2.5



12. Given f(x) = 2sinz — sin2z on [0, 7).

1 ™
Jave = —/ (2sinz — sin 2z) dz

T Jo
1 |:C082$ r

= = —2cosx
s 2 0

4

T

f(€) = fave = 2sinz —sin2z =2 ie z~1.24 or z ~2.81 on [0, 7).
13. Since f is continuous, apply Mean Value Theorem on [1, 3],
dee 1,3
ce 3,70 =57 [

7 Techniques of Integration

7.1 Integration by Parts

Evaluate the integral

/xcos5xd$:/§dsin5x

= T8I 5x —/sin5xd§

5
rsindr  xcosdr
= C 3
5 + 25 + ( )

/ e??sin 30 dh = / ﬁ de?

20 _:
= ﬂ — /2620 cos 36 do

2
_ 020 sin 30 B §/cos 30 4o
2 2 2
Wsin30 3e*cos3 9
_ € s;n _ € ZOS — 1_1/629 sin 30 A0
4 4 (sin30  cos 30
~ 13" ( > 1 )t¢
620
=13 —(2sin 36 — 3cos30) + C (17)
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9 Differential Equations

9.3 Separable Equations

Solve the equation.

d
d—y:xy2 — y?dy =xdx
x
d
:>/y—§:/xdx (for y # 0)
1 x?
C,——=0Cp+ —
— (y " + 5
— C—az* 1
2 Y
= y= 2 (1)
Y=o
. dy 3 : 3
(y—i—smy)@:x—l—x — [(y+siny)dy = [ (z+2°)dx
2 2 4
= %—cosy:%+%+0 (5)
dy t 2
E:m@/yeydy:/t(e dt
1
2 2
i—?z@ = /2udu=/(2t+sec%)dt
u
— =t +tant+C (13)

Since u(0) = =5, u = —V/12 + tant + 25.
%:wy@/%:/xdm (since y # 0)
dz Y
22
<~ Inly| = 5 +C
22
< |y| = exp (7 + C) (19)
Since y(0) = 1, y = exp(x?/2).
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d(y —
<— ¢ >:x—xy
dx
d
22
— C——=In|l—y|

2
@)yzli@{p(C—%) (33)

Since y(2) = 2 (which can be trivially obtained from the original condition),
y=1+exp(2 —12%/2).

9.4 Models for Population Growth
3. The Pacific halibut fishery has been modeled by the differential equation

dy
dt

() = f (o) - f oo

<~ Inly|—In|M —y|=kt+C

= 'M—l‘ = MO
y
M
= — =14 MO
y
M
A T )

As M =8x 107, k= 0.71 and y(0) = 2 x 107, from (x) we get e ¢ =3

and thus

M

y= 1+ 3e Kt

Fort=1,y~3.2x10". Fory =4 x 10", t = (In3)/0.71.
5. Suppose a population grows according to a logistic model

dP P M
yT kP <1 - M) < P(t) = =

with initial population P(0) = 1000 and carrying capacity M = 10000.

30



Suppose P(1) = 2500,
10000

0 000 o + =
— + _9
TV — {;ko , € 0=~
e —_—
e = 2500 k=1n3

After another 3 years, the population will be
10000
P3)=(t—~ ——— | (1+3)=9000

9.5 Linear Equations

Solve the differential equation.

= y=x—1+Ce” (7)

d
:L’d—y—i—y:\/i = /dxy:/ﬁdx
x

2
= Yy = w;)/i—l—C
2y/x C
<:>y:T\/_+; 9)

d
xQd—y—{—Qxy:lna: — /dyx2:/lnxdx
x
— yr’*=a(lnzx—-1)+C
lnz—-1 C
x x

31



Since y(1) =2, C' = 3.

d dt L L

— / dleft/l — % / el L q¢

— IeRt/L — %eRt/L 4 C

e o
R exp(Rt/L)

df
Ldi +RI =& < ML (— + E[) = éeRt/L

— | =

Since E =40V, L=2H, R=10Q and I(0) =0, I(t) = 4 — 4/ exp 5t and
I1(0.1) = 4 — 4/+/e.

11 Lazy Evaluation

11.3 The Integral Test and Estimates of Sums

34. Using Leonhard Euler’s calculation of the exact sum of the p-series with

p=2:
1 "1 72
¢(2) ;nz nggozig ;
o0 1 . n 2
Z;ﬁ—sgﬂ;Z@- -G p= @
o) n+1 n 3 2
1 1 = 49
S mia-m>o-Ya-Tog O
= 1 1 1 .1 72
;<zn>z‘35%2@‘znz%;ﬁ‘ﬂ ©
Determine if the series is convergent or divergent using the Integral Test.
=1
22
; n(lnn)? (22)
/oo 1 1 t 1
= lim
o z(lnz)? o Jy z(lnz)
t
—tliglo (n2) dlnz



= lim
t—o0

1
~ In?2

1 1
In2 Int

Thus by the Integral Test, the given series is convergent.

n
— (24)

‘e

n=

[ee) £E2 ) t .2?2
— = lim —dz

3 €7 t—oo fq €7

t
= lim —z?de”®
t—o0

= lim
t—o0

= lim
t—o0

= lim
t—o0

= lim
t—o0

= lim
t—o00

2—}—2:10—1—372}

3

t
(/ e v da? — a:%‘ﬂé)
3
t 273
—/ 2xde ™™ + x_x]
3 e 1y
t 2 273
/ e *d2x + [_x + x_]
t 2x + 22 3
2/ e “dx + ]
3 e’ t

3

X
€ ¢

2+2t+t2>

et

Thus by the Integral Test, the given series is convergent.
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i coiﬁ;rln) 27)

Since x + cos(mz)/y/n is neither positive (e.g. cos3m/v/3 = —1) nor
ultimately decreasing, the Integral Test cannot be used to determine whether
the series is convergent.

11.4 The Comparison Test

Determine whether the series is convergent or divergent.

o0

nt4+1
i (25)
n=1

We use the Limit Comparison Test with

nt+1 1
Qp = —F— bn:—
n3 + n2 n

and obtain

‘/7’L4+1 ) \/1+n—14

lim dn _ lim —— = lim

n—00 0y, n—oo N2 +n n—oo | 4+ %

1>0

Since this limit exists and Z% is divergent (p-series with p = 1), the
given series diverges by the Limit Comparison Test.

1
> ~ (29)
n=1
|
lim 1/n+1) = lim =0<1
n—00 1/n! n—o00 N, +

Thus by the Ratio Test, the given series is absolutely convergent.

.l
- (30)
n=1 n*

n! 2 n! 2

nt o n2 2nn2 T p2

Since both Y~ n!/n™ and 3 2/n? are series with positive terms and }_ 2/n?

converges because it is a constant time of p-series with p = 2, by the Com-
parison Test, Y n!/n™ is convergent.
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o0

> = 3

n=1
We use the Limit Comparison Test with
1

:nC/ﬁ

1
an, b, = —
n

and obtain

1
n—oo b, n—00 {l/ﬁ

L2Inn s negative on (e, 00), n % is ultimately decreasing.

. 1 I_
Sinoe vm = o, "
Additionally, Un > S 1 on this interval, thus

. 1 ) 1
nh—{go(/ﬁ_mf{"_\/ﬁ'nENg’}_l>0

Therefore, the given series diverges by the Limit Comparison Test, as
>~ 1 is divergent (p-series with p = 1).

11.5 Alternating Series

Test the series for convergence or divergence.

o nnn
Sy (19)
n=1
Since (nt )" e the given alternating series diverges
(n+1)! nl? ) g ges.
S (=1 (\/n F1- \/ﬁ> (20)
n=1
For all n,

n+2n<ni+2n+l = \/m<n+1
= n+ynn+2)+n+2<4n+4
= Vn+2+yn<2vn+1
— Vn+2-vVn+l<vn+l-—+vn (i

| R S UvE
fim (VT Vi) = i = i e =

(i)

lim
n—oo

Thus, by the Alternating Series Test, the given series is convergent.
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11.6 Absolute Convergence
Determine whether the series is absolutely convergent, conditionally conver-

gent, or divergent.

e —2n)5” 22)

Z(n+1

51 5 5
o (20 T (L Y (ST —32>1

lim
n—00 n+1 n+1
Thus the given series diverges by the Root Test.
Z (30)

21157

n=1 i=1

T 2 242/ 2
lim ——=— = lim =1 ==-<1
nooo [[Ly 325 nooe3n+5  noe3+5/n 3

Thus by the Ratio Test, the given series is absolutely convergent.

11.8 Power Series
Find the radius of convergence and the interval of convergence of the series.

;)(‘””(;:m (14)

Let a, = (—1)"z**1/(2n + 1)!,
2
. ‘ =0<1

An41
4n? +10n +6

Qn,

lim

n—oo n—oo

Thus by the Ratio Test, the series is convergent for all z and the radius

of convergence is R = oo.
(17)

n .3 4
lim |2 = lim 3z +4)vn = 3|z + 4|
n—o0o | Uy, n—o00 vn+1




Using the Ratio Test, we see that the series converges if |z +4| < 1/3 and
it diverges if |z + 4| > 1/3, thus the radius of convergence is R = 1/3.

When |z + 4| = 1/3, the series is either Y (—3)"/y/n or Y_3"/y/n, both
of which diverge by the Test for Divergence. Therefore the interval of con-
vergence is (—13/3,—11/3).

Z —(z —a)", b>0 (22)

b(x —a)lnn

i
o n300 ’ In(n+ 1)

n—oo

= bz — a|

Using the Ratio Test, we see that the series converges if |z —a| < b~! and
it diverges if |z — a| > b~!, thus the radius of convergence is R = b~!.

When |z —a| = b7}, the series is > (+b)"/ Inn, which diverges by the Test
for Divergence. Therefore the interval of convergence is (a — b~!, a + b71).

n

Z n(lnn)? (26)

n=2

Let a, = 2*"/n/(Inn)?,

. Ap+1
lim

n—oo

r’nin’n o
(n+1)In*(n+1)|

m
a’TL n—o0
Using the Ratio Test, we see that the series converges if |x| < 1 and it
diverges if |z| > 1, therefore the radius of convergence is R = 1.
When x = +1, a, = n~'/(Inn)?, which is defined by a continuous, posi-
tive and decreasing function z — x7!/(Inx)? on [2, c0).

© 1 Lo
——dr=1li ——dl
/2 z(Inx)? R 5 (Inz)? ne
Int 1

= lim — dx
t—o00 In2 €T

By the Integral Test, > >°,n~'/(Inn)* converges, and thus the interval
if of convergence of the given power series is [—1, 1].
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11.9 Representations of Functions as Power Series

Find a power series representation for the function and determine the interval
of convergence.

flx) = 1_4ﬂ:=5§: )" =Y 527 (4)
n=0

Interval of convergence is (—1,1).

72 0 0 3n+2
o= =5 () = (10)
n=0 n=0
Interval of convergence is (—a, a).
T+ 2
Jw) = 202 —x —1
1 1
-1 2z+1
S Ve
n=0 n=0
=) (~1—=(=2)")a" (12)
n=0

Interval of convergence is (—1,1) N (—1/2,1/2) = (—1/2,1/2).
40. Find the sum of the series when |z| < 1.

i na" = i "4 i(n —1)a™ !
n=1 n=1 n=1
= i "+ i nx'"
n=0 n=0
1 = n—1
= 1 — 2 +x nZ:; nx
1
RREEE (a)
; nx" =z nz::l nz" ! = ﬁ (b.i)



Si(ea)@

f;nm 1)t = f‘;m St f;m Yn— 2
- 2§;(n— 1)xn+zgn<n_ 1)
:2((1_—969«")2 e 1—x> (1-2)
21

o0 n? —-n 2‘7;2 1 ..
E TR (:c — m) (5) =4 (c.ii)
> n X n2_n > n
E — = E o + n§:1 ne" =4+2=6 (c.iii)

11.10 Taylor and Maclaurin Series

Find the Taylor series for f centered at the given value of a and the associative
radius of convergence.

f(z) =Inz, a=2 (15)

_ :Z + ni (:p — (n_—ll) nin) (2) - (x —2)"
—In2+ i(—n”—l (xn;f)n
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Let a, = (—1)" ' (z — 2)"/(n2"),

an+1 _ |:L’—2|

2

_ n
= lim |z — 2|

lim
n—oo

Qn

Using the Ratio Test, we see f(x) =In2+ ) a, converges if |z — 2| < 2
and it diverges if |x — 2| > 2, therefore the associative radius of convergence
is R=2.

flz) =—, a=—3 (16)

—~ nl
= -1\ 1 .
e () s
_ i(_l)n (x+3)"
n=0 (_3)n+1
N (@)
- ZO gn+l
Let a, = (x + 3)" /3",
. aner| o3 |+ 3
lim |[——| = lim =
n—o00 Qp n—00 3 3

Using the Ratio Test, we see that the series converges if |x + 3| < 3 and

it diverges if |z + 3| > 3, therefore the associative radius of convergence is
R =3.

(18)

c—~ nl
B =L cos X T\
72 n! (x—§>
n=0
“— (2n)! 2



Let a, = (—1)"(z — 7/2)?"/(2n)!,

@2y
n—oo (2n 4 2)(2n + 1)

Ap+1
Qp,

lim

n—oo

=0<1

Using the Ratio Test, we see that the series converges for all z, thus the
associative radius of convergence is R = o0.

Let a, = 4("/?)(z — 16)"/16",

1/2—n
n+1

Ap+1
Qn,

lv —16] |z — 16|
6 16

lim

n—oo

= lim
n—oo

Using the Ratio Test, we see that the series converges if |z — 16| < 16 and
it diverges if |z — 16| > 16, therefore the associative radius of convergence is
R =16.

55. Use series to evaluate the limit.
poln(i4e) o a- S (D)

lim —— % = lim
z—0 2 z—0 xr2
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Find the sum of the series.

I e Ol

n

—~ (2n+ 1)22n+1 o

42
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