Cuculutu Review

Nguyễn Gia Phong

Summer 2019

14 Partial Derivatives

14.2 Limits et Continuity

37. Determine the set of points at which the function is continuous.

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{3}}{2 x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 1 & \text { if }(x, y)=(0,0)\end{cases}
$$

By AM-GM inequality,

$$
x^{2}+x^{2}+y^{2} \geq 3 x^{2}|y| \Longleftrightarrow \frac{x^{2}\left|y^{3}\right|}{3 x^{2}|y|} \geq \frac{x^{2}\left|y^{3}\right|}{2 x^{2}+y^{2}} \geq 0 \Longleftrightarrow \frac{-y^{2}}{3} \leq \frac{x^{2} y^{3}}{2 x^{2}+y^{2}} \leq \frac{y^{2}}{3}
$$

Since $\pm y^{2} / 3 \rightarrow 0$ as $y \rightarrow 0$, by the Squeeze Theorem,

$$
\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)=0 \neq f(0,0)
$$

Therefore f is discontiuous at $(0,0)$. On $\mathbb{R}^{2} \backslash\{0\}, f$ is a rational function and thus is continuous on its domain.
44. Let

$$
f(x, y)= \begin{cases}0 & \text { if } y \leq 0 \text { or } y \geq x^{4} \\ 1 & \text { if } 0<y<x^{4}\end{cases}
$$

(a) For all paths of the form $y=m x^{a}$ with $a<4 \Longleftrightarrow 4-a>0$, consider the function $g(x)=|y|-x^{4}=|m| \cdot|x|^{a}-|x|^{4}$:

$$
g(x) \geq 0 \Longleftrightarrow|m| \cdot|x|^{a} \geq|x|^{4} \Longleftrightarrow|x| \leq \sqrt[4-a]{|m|}
$$

When this condition is met, either $y \leq 0$ or $y=|y| \geq x^{4}$, so $f(x, y)=0$. Therefore $f(x, y)=0 \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ on

$$
\{(x, y) \mid x \in[-\sqrt[4-a]{|m|}, \sqrt[4-a]{|m|}] \cap D\}
$$

which includes the point $(0,0)$ if the domain D of $x \mapsto m x^{a}$ does.
(b) It is trivial that $f(0,0)=0$. Along $y=x^{4} / 2$, for $x \neq 0$,

$$
x^{4}-y=x^{4}-\frac{x^{4}}{2}=\frac{x^{4}}{2}>0 \Longleftrightarrow y<x^{4} \Longrightarrow f(x, y)=1
$$

Hence

$$
\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f\left(x, \frac{x^{4}}{2}\right)=1 \neq f(0,0)=0
$$

or f is discontiuous on $y=x^{4} / 2$ at $(0,0)$.
(c) Using the same reasoning, one may also easily show that f is discontiuous on the entire curve $y=x^{4} / 20$.

14.3 Partial Derivatives

33. Find the first partial derivatives of the function.

$$
\begin{aligned}
w & =\ln (x+2 y+3 z) \\
\frac{\partial w}{\partial x} & =\frac{1}{x+2 y+3 z} \cdot \frac{\partial(x+2 y+3 z)}{\partial x}=\frac{1}{x+2 y+3 z} \\
\frac{\partial w}{\partial y} & =\frac{1}{x+2 y+3 z} \cdot \frac{\partial(x+2 y+3 z)}{\partial y}=\frac{2}{x+2 y+3 z} \\
\frac{\partial w}{\partial z} & =\frac{1}{x+2 y+3 z} \cdot \frac{\partial(x+2 y+3 z)}{\partial z}=\frac{3}{x+2 y+3 z}
\end{aligned}
$$

50. Use implicit differentiation to find $\partial z / \partial x$ and $\partial z / \partial y$.

$$
y z+x \ln y=z^{2} \Longrightarrow\left\{\begin{array} { l l }
{ y \frac { \partial z } { \partial x } + \operatorname { l n } y } & { = 2 z \frac { \partial z } { \partial x } } \\
{ z + \frac { x } { y } } & { = 2 z \frac { \partial z } { \partial y } }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
\frac{\ln y}{2 z-y} & =\frac{\partial z}{\partial x} \\
2+\frac{x}{2 y z} & =\frac{\partial z}{\partial y}
\end{array}\right.\right.
$$

66. Find $g_{r s t}$.

$$
\begin{aligned}
g(r, s, t)=e^{r} \sin (s t) \Longrightarrow g_{r} & =e^{r} \sin (s t) \\
& \Longrightarrow g_{r s}=s e^{r} \cos (s t) \Longrightarrow g_{r s t}=-s t e^{r} \sin (s t)
\end{aligned}
$$

101. Let

$$
f(x, y)= \begin{cases}\frac{x^{3} y+x y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Graph f.

(b) Find the first partial derivatives of f when $(x, y) \neq(0,0)$.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\left(x^{2}+y^{2}\right) \frac{\partial\left(x^{3} y-x y^{3}\right)}{\partial x}-\left(x^{3} y-x y^{3}\right) \frac{\partial\left(x^{2}+y^{2}\right)}{\partial x}}{\left(x^{2}+y^{2}\right)^{2}} \\
&= \frac{\left(x^{2}+y^{2}\right)\left(3 x^{2} y-y^{3}\right)-2 x\left(x^{3} y-x y^{3}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
&= \frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{x^{4}+2 x^{2} y^{2}+y^{4}} \\
& \frac{\partial f}{\partial x}=\frac{\left(x^{2}+y^{2}\right)\left(x^{3}-3 x y^{2}\right)-2 y\left(x^{3} y-x y^{3}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \quad=\frac{x^{5}-4 x^{3} y^{2}-x y^{4}}{x^{4}+2 x^{2} y^{2}+y^{4}}
\end{aligned}
$$

(c) Find f_{x}, f_{y} at $(0,0)$.

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h^{3} 0-h 0^{3}}{h^{2}+0^{2}}-0}{h}=\lim _{h \rightarrow 0} 0=0 \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=\lim _{h \rightarrow 0} 0=0
\end{aligned}
$$

(d) Show that $f_{x y}(0,0)=-1$ and $f_{y x}(0,0)=1$.

$$
\begin{aligned}
& f_{x y}(0,0)=\lim _{h \rightarrow 0} \frac{f_{x}(0, h)-f_{x}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{0+0-h^{5}}{0+0+h^{4}}-0}{h}=\lim _{h \rightarrow 0}-1=-1 \\
& f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h^{5}+0+0}{h^{4}+0+0}-0}{h}=\lim _{h \rightarrow 0} 1=1
\end{aligned}
$$

(e) The result of part (d) does not contradict Clairaut's Theorem, which only covers the case $f_{x y}$ and $f_{y x}$ are continuous at $(0,0)$. Using GeoGebra we get the second derivatives of f on $\mathbb{R} \backslash\{0\}$ as followed:

$$
f_{x y}=f_{y x}=\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}}
$$

Since $f_{x y}(x, 0)=x^{6} / x^{6} \rightarrow 1$ while $f_{x y}=-y^{6} / y^{6} \rightarrow-1$ as $(x, y) \rightarrow(0,0)$ the second derivative is discontinuous at origin.

14.6 Directional Derivatives

17. Find the directional derivative of $h(r, s, t)=\ln (3 r+6 s+9 t)$ at $(1,1,1)$ in the direction of $\mathbf{v}=4 \hat{\mathbf{i}}+12 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$.

From gradient of h

$$
\nabla h=\frac{3 \hat{\mathbf{\imath}}+6 \hat{\mathbf{j}}+9 \hat{\mathbf{k}}}{3 r+6 s+9 t} \Longrightarrow \nabla h(1,1,1)=\frac{\hat{\mathbf{i}}}{6}+\frac{\hat{\mathbf{j}}}{3}+\frac{\hat{\mathbf{k}}}{2}
$$

and unit vector of \mathbf{v}

$$
\hat{\mathbf{v}}=\frac{2 \hat{\mathbf{i}}}{7}+\frac{6 \hat{\mathbf{j}}}{7}+\frac{3 \hat{\mathbf{k}}}{7}
$$

we can compute the direction derivative as

$$
D_{\hat{\mathbf{v}}}(1,1,1)=\nabla h(1,1,1) \cdot \hat{\mathbf{v}}=\frac{1}{21}+\frac{4}{7}+\frac{3}{14}=\frac{23}{42}
$$

14.7 Maximum and Minimum Values

18. Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function.

$$
f(x, y)=\sin x \sin y, \quad-\pi<x<\pi, \quad-\pi<y<\pi
$$

$$
\begin{aligned}
& \Longrightarrow\left\{\begin{array}{l}
f_{x}=\cos x \sin y \\
f_{y}=\sin x \cos y
\end{array}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
f_{x x}=f_{y y}=-\sin x \sin y \\
f_{x y}=f_{y x}=\sin x \sin y
\end{array}\right. \\
& \Longrightarrow D=f_{x x} f_{y y}-f_{x y}^{2}=0
\end{aligned}
$$

For $f_{x}=f_{y}=0$, either $x=y=0$ or $x, y \in\{ \pm \pi / 2\}$. D does not indicate if f has local extreme values at these critical points.

It is clear that f has 2 local maximums of 1 at $x=y= \pm \pi$ and 2 local minimum of -1 at $x=-y= \pm \pi$, since these are its absolute extreme values as well.

Suppose $f(0,0)$ is a local minimum. Then, by definition, $f(a, b) \geq f(0,0)=$ 0 if (a, b) is sufficiently close to origin (say, at most within $\left.[-\pi / 2, \pi / 2]^{2}\right)$. However, for all a, b satisfying $a b<0, f(a, b)=\sin a \sin b<0$, thus our assumption is incorrect. Similarly, f does not has a local maximum at origin because

$$
\forall a, b \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]: a b>0, \quad f(a, b)=\sin a \sin b>0=f(0,0)
$$

Therefore $(0,0)$ is a saddle point.
35. Find the absolute extreme values of $f(x, y)=2 x^{3}+y^{4}$ on the unit disc.

The critical points of f occur when

$$
f_{x}=f_{y}=0 \Longleftrightarrow 6 x^{2}=4 y^{3}=0 \Longleftrightarrow x=y=0
$$

at which $f(x, y)=f(0,0)=0$.
On the unit circle, as $y^{2}=1-x^{2}$, let

$$
g(x)=f(x, y)=2 x^{3}+\left(1-x^{2}\right)^{2}=x^{4}+2 x^{3}-2 x^{2}+1
$$

Within $[-1,1], g^{\prime}(x)=4 x^{3}+6 x^{2}-4 x=0$ if and only if $x=0$ or $x=0.5$. Since $g(-1)=-2, g(0)=1, g(0.5)=0.8125$ and $g(1)=2$, the absolute minimum and maximum of g on $[-1,1]$ are respectively $g(-1)=-2$ and $g(1)=2$.

Thus on the boundary, the minimum value of f is -2 at $(-1, \pm 1)$ and the maximum value is 2 at $(1, \pm 1)$.
46. Find the dimensions of the box with volume $1000 \mathrm{~cm}^{3}$ that has minimal surface area.

Let the dimensions of the box be x, y, z in dm, x, y, z are positive and $x y z=1$. Total surface area of the box would then be

$$
S(x, y, z)=2 x y+2 y z+2 z x
$$

By AM-GM inequality,

$$
S(x, y, z) \geq 2 \cdot 3 \sqrt{x y \cdot y z \cdot z x}=6
$$

Thus S has its absolute minumum of 6 at $x=y=z=1$.
53. If the length of the diagonal of a rectangular box must be L, what is the largest possible volume?

Let the dimensions of the box be three positive numbers $x, y, z, x^{2}+y^{2}+$ $z^{2}=L^{2}$. The volume of the box would then be $V(x, y, z)=x y z$. By AM-GM inequality,

$$
V(x, y, z)=\sqrt{x^{2} y^{2} z^{2}} \leq \frac{x^{2}+y^{2}+z^{2}}{3}=\frac{L^{2}}{3}
$$

Thus V has its absolute maximum of $L^{2} / 3$ at $x=y=z=L / \sqrt{3}$.

14.8 Lagrange Multipliers

12. Use Lagrange multipliers to find the maximum and minimum values of $f(x, y, z)=x^{4}+y^{4}+z^{4}$ subject to $g(x, y, z)=x^{2}+y^{2}+z^{2}=1$.

Extreme values of f occur when

$$
\left\{\begin{array} { l }
{ \nabla f = \lambda \nabla g } \\
{ g (x , y , z) = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\left\langle 4 x^{3}, 4 y^{3}, 4 z^{3}\right\rangle=\lambda\langle 2 x, 2 y, 2 z\rangle \neq \mathbf{0} \\
x^{2}+y^{2}+z^{2}=1
\end{array}\right.\right.
$$

1. For $\lambda=2 / 3, x^{2}=y^{2}=z^{2}=1 / 3=f(x, y, z)$.
2. For $\lambda=1$ and $\left(x^{2}, y^{2}, z^{2}\right) \in\{(0,1 / 2,1 / 2),(1 / 2,0,1 / 2),(1 / 2,1 / 2,0)\}$, $f(x, y, z)=1 / 2$.
3. For $\lambda=2$ and $\left(x^{2}, y^{2}, z^{2}\right) \in\{(1,0,0),(0,1,0),(0,0,1)\}, f(x, y, z)=1$.

Therefore, subject to the given constrain, f has absolute maximum of 1 and minimum of $1 / 3$.
42. Find the maximum and minimum volumes of a rectangular box whose surface area is $1500 \mathrm{~cm}^{2}$ and whose total edge length is 200 cm .

Let the dimensions of the box be x, y, z in dm, with x, y, z are positive, $2 x y+2 y z+2 z x=15$ and $4 x+4 y+4 z=20$. From these constrains, we can easily obtain $x+y=5-z$ and

$$
x y+(x+y) z=\frac{15}{2} \Longleftrightarrow x y=\frac{15}{2}-5 z+z^{2}
$$

Thus with $0<z<5$ the volume of the box is

$$
V=x y z=z^{3}-5 z^{2}+\frac{15 z}{2}
$$

whose critical points are

$$
\frac{\mathrm{d} V}{\mathrm{~d} z}=3 z^{2}-10 z+\frac{15}{2}=0 \Longleftrightarrow z=\frac{10 \pm \sqrt{10}}{6}
$$

at which $V=\frac{175 \pm 5 \sqrt{10}}{54}$.
On the other hand, the constrains are equivalent to

$$
\left\{\begin{array}{l}
x^{2}+y^{2}+z^{2}=10 \\
x+y+z=5
\end{array}\right.
$$

or the intersection of a sphere and a plane, which result in a circle C. Hence the range of z would be between a and b, whereas each of $z=a$ and $z=b$ only has one point in common with C. Since all surfaces $x^{2}+y^{2}+z^{2}=10$, $x+y+z=5, z=a$ and $z=b$ has $x=y$ as their plane of symmetry, these two points must be on $x=y$ as well:

$$
\begin{aligned}
\left\{\begin{array}{l}
2 x^{2}+z^{2}=10 \\
2 x+z=5
\end{array}\right. & \Longleftrightarrow\left\{\begin{array}{l}
2 x^{2}+(5-2 x)^{2}=10 \\
z=5-2 x
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
6 x^{2}-20 x+15=0 \\
z=5-2 x
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x=\frac{10 \pm \sqrt{10}}{6} \\
z=\frac{5 \pm \sqrt{10}}{3}
\end{array}\right. \\
& \Longleftrightarrow V=\frac{175 \pm 5 \sqrt{10}}{54}
\end{aligned}
$$

These are the maximum and minimum volumes of the given box.

15 Multiple Integrals

15.2 Interated Integrals

19. Calculate the double integral.

$$
\begin{aligned}
\int_{0}^{\pi / 6} \int_{0}^{\pi / 3} x \sin (x+y) \mathrm{d} y \mathrm{~d} x & =\int_{0}^{\pi / 6}[-x \cos (x+y)]_{y=0}^{y=\pi / 3} \mathrm{~d} x \\
& =\int_{0}^{\pi / 6} x\left(\cos x-\cos \left(x+\frac{\pi}{3}\right)\right) \mathrm{d} x \\
& =\int_{0}^{\pi / 6} x \cos \left(x-\frac{\pi}{3}\right) \mathrm{d} x \\
& =\int_{0}^{\pi / 6} x \mathrm{~d} \cos \left(x-\frac{\pi}{3}\right) \\
& =\left[x \sin \left(x-\frac{\pi}{3}\right)\right]_{0}^{\pi / 6}-\int_{0}^{\pi / 6} \sin \left(x-\frac{\pi}{3}\right) \mathrm{d} x \\
& =-\frac{\pi}{12}+\left[\cos \left(x-\frac{\pi}{3}\right)\right]_{0}^{\pi / 6} \\
& =\frac{\sqrt{3}}{2}-\frac{1}{2}-\frac{\pi}{12}
\end{aligned}
$$

28. Find the volume of the solid enclosed by the surface $z=1+e^{x} \sin y$ and the planes $x= \pm 1, y=0, y=\pi$ and $z=0$.

$$
\begin{aligned}
\int_{0}^{\pi} \int_{-1}^{1}\left(1+e^{x} \sin y\right) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{\pi}\left[x+e^{x} \sin y\right]_{x=-1}^{x=1} \mathrm{~d} y \\
& =\int_{0}^{\pi}\left(2+\left(e-\frac{1}{e}\right) \sin y\right) \mathrm{d} y \\
& =\left[2 x+\left(\frac{1}{e}-e\right) \cos y\right]_{0}^{\pi} \\
& =2 \pi
\end{aligned}
$$

15.3 Double Integrals over General Regions

10. Evaluate the double integral.

$$
\begin{aligned}
\int_{1}^{e} \int_{0}^{\ln x} x^{3} \mathrm{~d} y \mathrm{~d} x & =\int_{1}^{e} x^{3} \ln x \mathrm{~d} x \\
& =\int_{1}^{e} \ln x \mathrm{~d} \frac{x^{4}}{4} \\
& \left.=\frac{x^{4} \ln x}{4}\right]_{1}^{e}-\int_{1}^{e} \frac{x^{4}}{4} \mathrm{~d} \ln x \\
& =e^{4}-\int_{1}^{e} \frac{x^{3}}{4} \mathrm{~d} x \\
& \left.=e^{4}-\frac{x^{4}}{16}\right]_{1}^{e} \\
& =\frac{15 e^{4}+1}{16}
\end{aligned}
$$

16. Set up iterated integrals for both orders of integration. Then evaluate the double integral using the easier order and explain why it's easier.

$$
\begin{aligned}
& I=\iint_{D} y^{2} e^{x y} \mathrm{~d} A, \quad D \text { is bounded by } y=x, y=4, x=0 \\
& \Longrightarrow I=\int_{0}^{4} \int_{x}^{4} y^{2} e^{x y} \mathrm{~d} y \mathrm{~d} x=\int_{0}^{4} \int_{0}^{y} y^{2} e^{x y} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Since $y^{2} e^{x y}$ is simply an exponential function of x, it would be easier to evaluate

$$
\begin{aligned}
I & =\int_{0}^{4} \int_{0}^{y} y^{2} e^{x y} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{0}^{4}\left[y^{3} e^{x y}\right]_{x=0}^{x=y} \mathrm{~d} y \\
& =\int_{0}^{4} y^{3} e^{y^{2}} \mathrm{~d} y=\int_{0}^{4} y^{2} \mathrm{~d} \frac{e^{y^{2}}}{2} \\
& \left.=\frac{y^{2} e^{y^{2}}}{2}\right]_{0}^{4}-\int_{0}^{4} \frac{e^{y^{2}}}{2} \mathrm{~d} y^{2} \\
& =8 e^{16}-\int_{0}^{16} \frac{e^{z}}{2} \mathrm{~d} z \\
& \left.=8 e^{16}-\frac{e^{z}}{2}\right]_{0}^{16}=\frac{15 e^{16}}{2}
\end{aligned}
$$

31. Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the plane $y=z$ in the first octant.

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1} \frac{1-x^{2}}{2} \mathrm{~d} x=\frac{1}{3}
$$

15.4 Double Integrals in Polar Coordinates

13. Evaluate the given integral by changing to polar coordinates.

$$
I=\iint_{R} \arctan \frac{y}{x} \mathrm{~d} A, \quad \text { where } R=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4,0 \leq y \leq x\right\}
$$

In polar coordinates,

$$
R=[1,2] \times\left[0, \frac{\pi}{4}\right]
$$

thus

$$
\begin{aligned}
I & =\int_{0}^{\pi / 4} \int_{1}^{2} \arctan \frac{r \sin \theta}{r \cos \theta} r \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{\pi / 4} \int_{1}^{2} \arctan \tan \theta r \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{\pi / 4} \int_{1}^{2} \theta r \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{\pi / 4} \frac{3 \theta}{2} \mathrm{~d} r \mathrm{~d} \theta \\
& =\frac{3 \pi^{2}}{64}
\end{aligned}
$$

17. Use a double integral to find the area of the region inside C_{1} : $(x-1)^{2}+y^{2}=1$ and outside $C_{0}: x^{2}+y^{2}=1$.

In polar coordinates C_{1} has the equation $r=2 \cos \theta$ and the equation of C_{0} is $r=1$. Therefore the given region is within $1 \leq r \leq 2 \cos \theta$, whereas $\theta \in[-\pi, \pi]$.

Since on $[-\pi, \pi], 2 \cos \theta \geq 1 \Longleftrightarrow-\pi / 3 \leq \theta \leq \pi / 3$, the area of the given region is

$$
\begin{aligned}
\int_{-\pi / 3}^{\pi / 3} \int_{1}^{2 \cos \theta} r \mathrm{~d} r \mathrm{~d} \theta & =\int_{-\pi / 3}^{\pi / 3} \frac{4 \cos ^{2} \theta-1}{2} \mathrm{~d} \theta \\
& =\int_{-\pi / 3}^{\pi / 3}\left(2 \cos ^{2} \theta-1+\frac{1}{2}\right) \mathrm{d} \theta \\
& =\int_{-\pi / 3}^{\pi / 3}\left(\cos 2 \theta+\frac{1}{2}\right) \mathrm{d} \theta \\
& =\left[\frac{\sin 2 \theta+\theta}{2}\right]_{-\pi / 3}^{\pi / 3} \\
& =\frac{\sqrt{3}}{2}+\frac{\pi}{3}
\end{aligned}
$$

15.5 Applications of Double Integrals

5. Find the mass and center of mass of the lamina that occupies the region triangular D with vertices $(0,0),(2,1),(0,3)$ and has the given density function $\rho(x, y)=x+y$.

$$
\begin{aligned}
m & =\iint_{D}(x+y) \mathrm{d} A \\
& =\int_{0}^{2} \int_{x / 2}^{3-x}(x+y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{2} \frac{36-9 x^{2}}{8} \mathrm{~d} x \\
& =9-3=6
\end{aligned}
$$

$$
\begin{aligned}
\bar{x} & =\iint_{D} \frac{x(x+y)}{m} \mathrm{~d} A & \bar{y} & =\iint_{D} \frac{y(x+y)}{m} \mathrm{~d} A \\
& =\int_{0}^{2} \int_{x / 2}^{3-x} \frac{x^{2}+x y}{6} \mathrm{~d} y \mathrm{~d} x & & =\int_{0}^{2} \int_{x / 2}^{3-x} \frac{x y+y^{2}}{6} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{2} \frac{12 x-3 x^{3}}{16} \mathrm{~d} x & & =\int_{0}^{2} \frac{6-3 x}{4} \mathrm{~d} x \\
& =\frac{3}{4} & & =\frac{3}{2}
\end{aligned}
$$

15.6 Surface Area

7. Find the area of the part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

$$
\begin{aligned}
& \iint_{D} \sqrt{1+\left(\frac{\partial\left(y^{2}-x^{2}\right)}{\partial x}\right)^{2}+\left(\frac{\partial\left(y^{2}-x^{2}\right)}{\partial y}\right)^{2}} \mathrm{~d} A \\
= & \iint_{D} \sqrt{1+4 x^{2}+4 y^{2}} \mathrm{~d} A \\
= & \int_{0}^{2 \pi} \int_{1}^{2} r \sqrt{1+4 r^{2} \cos ^{2} \theta+4 r^{2} \sin ^{2} \theta} \mathrm{~d} r \mathrm{~d} \theta \\
= & \int_{1}^{2} \pi \sqrt{1+4 r^{2}} \mathrm{~d} r^{2} \\
= & \int_{1}^{4} \pi \sqrt{1+4 t} \mathrm{~d} t \\
= & \pi\left[\frac{(1+4 t)^{1.5}}{6}\right]_{1}^{4} \\
= & \frac{17^{1.5}-5^{1.5}}{6} \pi
\end{aligned}
$$

16 Vector Calculus

16.2 Line Integrals

12. Evaluate the integral, where C is the given curve.

$$
\begin{aligned}
I & =\int_{C}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d} s, \quad C: x=t, y=\cos 2 t, z=\sin 2 t, 0 \leq t \leq 2 \pi \\
I & =\int_{0}^{2 \pi}\left(x^{2}+y^{2}+z^{2}\right) \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} z}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} z}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t \\
& =\int_{0}^{2 \pi}\left(t^{2}+\cos ^{2} 2 t+\sin ^{2} 2 t\right) \sqrt{\left(\frac{\mathrm{d} t}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} \cos 2 t}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} \sin 2 t}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t \\
& =\int_{0}^{2 \pi}\left(t^{2}+1\right) \sqrt{2} \mathrm{~d} t=\frac{8 \pi \sqrt{2}}{3}+2 \pi \sqrt{2}
\end{aligned}
$$

15. With C is the line segment from $(1,0,0)$ to $(4,1,2), x=3 t+1, y=t$, $z=2 t$, whereas $0 \leq t \leq 1$ and

$$
\begin{aligned}
J & =\int_{C} z^{2} \mathrm{~d} x+x^{2} \mathrm{~d} y+y^{2} \mathrm{~d} z \\
& =\int_{0}^{1} z^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} t} \mathrm{~d} t+y^{2} \frac{\mathrm{~d} z}{\mathrm{~d} t} \mathrm{~d} t \\
& =\int_{0}^{1}\left(x^{2}+2 y^{2}+3 z^{2}\right) \mathrm{d} t \\
& =\int_{0}^{1}\left(9 t^{2}+6 t+1+2 t^{2}+12 t^{2}\right) \mathrm{d} t \\
& =\int_{0}^{1}\left(23 t^{2}+6 t+1\right) \mathrm{d} t \\
& =\left[\frac{23 t^{3}}{3}+3 t^{2}+t\right]_{0}^{1}=\frac{35}{3}
\end{aligned}
$$

39. Find the work done by the force field $\mathbf{F}(x, y)=\langle x, y+2\rangle$ is moving an object along an arch of the cycloid $\mathbf{r}(t)=\langle t-\sin t, 1-\cos t\rangle, 0 \leq t \leq 2 \pi$.

$$
\begin{aligned}
W & =\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} \\
& =\int_{0}^{2 \pi} \mathbf{F} \cdot \frac{\mathrm{~d} \mathbf{r}}{\mathrm{~d} t} \mathrm{~d} t \\
& =\int_{0}^{2 \pi}\langle x, y+2\rangle \cdot\left\langle\frac{\mathrm{d} x}{\mathrm{~d} t}, \frac{\mathrm{~d} y}{\mathrm{~d} t}\right\rangle \mathrm{d} t \\
& =\int_{0}^{2 \pi}\langle t-\sin t, 3-\cos t\rangle \cdot\langle 1-\cos t, \sin t\rangle \mathrm{d} t \\
& =\int_{0}^{2 \pi}(t-t \cos t+2 \sin t) \mathrm{d} t \\
& =\left[\frac{t^{2}}{2}-t \sin t-3 \cos t\right]_{0}^{2 \pi}=2 \pi^{2}
\end{aligned}
$$

16.3 The Fundamental Theorem for Line Integral

19. Show that the line integral is independent from any path C from $(1,0)$ to $(2,1)$ and evaluate the integral.

$$
\int_{C} \frac{2 x}{e^{y}} \mathrm{~d} x+\left(2 y-\frac{x^{2}}{e^{y}}\right) \mathrm{d} y=\int_{C}\left(\frac{2 x}{e^{y}} \hat{\mathbf{l}}+2 y \hat{\mathbf{j}}-\frac{x^{2}}{e^{y}} \hat{\mathbf{j}}\right) \cdot \mathrm{d}(x \hat{\mathbf{\imath}}+y \hat{\mathbf{j}})
$$

Since on \mathbb{R}^{2}

$$
\frac{\partial}{\partial y} \frac{2 x}{e^{y}}=\frac{-2 x}{e^{y}}=\frac{\partial}{\partial x}\left(2 y-\frac{x^{2}}{e^{y}}\right)
$$

the function

$$
\mathbf{F}(x, y)=\frac{2 x}{e^{y}} \hat{\mathbf{i}}+2 y \hat{\mathbf{j}}-\frac{x^{2}}{e^{y}} \hat{\mathbf{j}}
$$

is conservative and thus the given line integral is independent from path.
Let f be a differentiable of (x, y) that $\nabla f=\mathbf{F}$. One function satisfying this is

$$
f(x, y)=y^{2}+\frac{x^{2}}{e^{y}}
$$

By the fundamental theorem for line integrals,

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=f(2,1)-f(1,0)=\frac{4}{e}
$$

16.4 Green's Theorem

6. Use Green's Theorem to evaluate the line integral along the given positively oriented rectangle with vertices $(0,0),(5,0),(5,2)$ and $(0,2)$.

$$
\begin{aligned}
\int_{C} \cos y \mathrm{~d} x+x^{2} \sin y \mathrm{~d} y & =\int_{0}^{5} \int_{0}^{2}\left(\frac{\partial x^{2} \sin y}{\partial x}-\frac{\partial \cos y}{\partial y}\right) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{5} \int_{0}^{2}(2 x \sin y+\sin y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{5}(2 x+1)(1-\cos 2) \mathrm{d} x \\
& =30-30 \cos 2
\end{aligned}
$$

12. Use Green's Theorem to evaluate the line integral along the path C including the curve $y=\cos x$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$ and the line segment connecting these two points.

Since the curve is negatively oriented, by Green's Theorem,

$$
\begin{aligned}
& \int_{C}\left(e^{-x}+y^{2}\right) \mathrm{d} x+\left(e^{-y}+x^{2}\right) \mathrm{d} y \\
= & -\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos x}\left(\frac{\partial}{\partial x}\left(e^{-y}+x^{2}\right)-\frac{\partial}{\partial y}\left(e^{-x}+y^{2}\right)\right) \mathrm{d} y \mathrm{~d} x \\
= & \int_{\pi / 2}^{-\pi / 2} \int_{0}^{\cos x}(2 x-2 y) \mathrm{d} y \mathrm{~d} x \\
= & \int_{\pi / 2}^{-\pi / 2}\left(2 x \cos x-\cos ^{2} x\right) \mathrm{d} x \\
= & \frac{1}{2} \int_{-\pi / 2}^{\pi / 2}(\cos 2 x+1) \mathrm{d} x-\int_{-\pi / 2}^{\pi / 2} 2 x \mathrm{~d} \sin x \\
= & {\left[\frac{\sin 2 x}{4}+\frac{x}{2}-2 x \sin x-2 \cos x\right]_{-\pi / 2}^{\pi / 2}=\frac{\pi}{2} }
\end{aligned}
$$

16.5 Curl and Divergence

This section is to aid my revision of Electromagnetism. First, on \mathbb{R}^{3}, we define

$$
\nabla=\hat{\mathbf{\imath}} \frac{\partial}{\partial x}+\hat{\mathbf{j}} \frac{\partial}{\partial y}+\hat{\mathbf{k}} \frac{\partial}{\partial z}
$$

then the curl of vector field $\mathbf{F}=P \hat{\mathbf{1}}+Q \hat{\mathbf{j}}+R \hat{\mathbf{k}}$ is

$$
\begin{aligned}
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}= & \left|\begin{array}{ccc}
\hat{\mathbf{\imath}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =\hat{\mathbf{1}}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)+\hat{\mathbf{j}}\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)+\hat{\mathbf{k}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)
\end{aligned}
$$

If f is a function of three variables that has continuous second-order partial derivatives, then $\operatorname{curl}(\nabla f)=\mathbf{0}$.

On the other hand, if curlF $=\mathbf{0}$ then \mathbf{F} is a conservative vector field (preconditions: P, Q and R must be partially differentiable).

Similarly, the divergence of vector field \mathbf{F} is defined as

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\hat{\mathbf{\imath}} \frac{\partial P}{\partial x}+\hat{\mathbf{j}} \frac{\partial Q}{\partial y}+\hat{\mathbf{k}} \frac{\partial R}{\partial z}
$$

Trivially, $\nabla \cdot(\nabla \times \mathbf{F})=0$ because the terms cancel in pairs by Clairaut's Theorem.

The cool thing about operators is that they can be weirdly combined, e.g. $\operatorname{div}(\nabla f)=\nabla \cdot \nabla f=\nabla^{2} f$ and $\nabla^{2} F=\nabla \cdot \nabla \cdot \mathbf{F}$.

Now we are able to write Green's Theorem in the vector form

$$
\oint_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \hat{\mathbf{k}} \mathrm{d} A
$$

whereas $\mathbf{r}(t)=x(t) \hat{\mathbf{1}}+y(t) \hat{\mathbf{j}}$. The outward normal vector to the contour is given by $\mathbf{n}(t)=\frac{\mathrm{d} y}{\mathrm{~d} t} \hat{\mathbf{1}}-\frac{\mathrm{d} x}{\mathrm{~d} t} \hat{\mathbf{j}}$. So we have the second vector form of Green's Theorem.

$$
\oint_{\partial S} \mathbf{F} \cdot \hat{\mathbf{n}} \mathrm{~d} s=\iint_{S} \operatorname{div} \mathbf{F} \mathrm{~d} A
$$

16.6 Parametric Surfaces and Their Areas

42. Find the area of the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the plane $y=x$ and the cylinder $y=x^{2}$.

$$
\begin{aligned}
& \int_{0}^{1} \int_{x^{2}}^{x} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)_{2}} \mathrm{~d} y \mathrm{~d} x \\
= & \int_{0}^{1} \int_{x^{2}}^{x} \sqrt{2} \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1}\left(x-x^{2}\right) \sqrt{2} \mathrm{~d} y \mathrm{~d} x \\
= & \frac{1}{2}-\frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

17 Second-Order Differential Equations

17.1 Homogeneous Linear Equations

11. Solve the differential equation.

$$
2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}-y=0
$$

Since the auxiliary equation $2 r^{2}+2 x-1=0$ has two real and distinct roots $\frac{ \pm \sqrt{3}-1}{2}$, the general solution is

$$
y=c_{1} \exp \frac{\sqrt{3}-1}{2} t+c_{2} \exp \frac{-\sqrt{3}-1}{2} t
$$

21. Solve the initial value problem.

$$
y^{\prime \prime}-6 y^{\prime}+10 y=0, \quad y(0)=2, \quad y^{\prime \prime}(0)=3
$$

Since the auxiliary equation $r^{2}-6 x+10=0$ has two complex roots $3 \pm i$, the general solution is

$$
y=e^{3 x}\left(c_{1} \cos x+c_{2} \sin x\right) \Longrightarrow y^{\prime}=e^{3 x}\left(\left(3 c_{1}+c_{2}\right) \cos x+\left(3 c_{2}-c_{1}\right) \sin x\right)
$$

As $y(0)=2, c_{1}=2$. Similarly, from $y^{\prime}(0)=3$, we can obtain $3 c_{1}-$ $c_{2}=3 \Longrightarrow c_{2}=3$. Thus the solution of the initial value problem is $y=$ $e^{3 x}(3 \cos x+2 \sin x)$.

17.2 Nonhomogeneous Linear Equations

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
\begin{equation*}
y^{\prime \prime}-4 y^{\prime}+5 y=e^{-x} \tag{5}
\end{equation*}
$$

The auxiliary equation of $y^{\prime \prime}-4 y^{\prime}+5 y=0$ is $r^{2}-4 r+5=0$ with roots $r=2 \pm i$. Hence the solution to the complementary equation is

$$
y_{c}=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)
$$

Since $G(x)=e^{-x}$ is an exponential function, we seek a particular solution of an exponential function as well:

$$
y_{p}=A e^{-x} \Longrightarrow y_{p}^{\prime}=-A e^{-x} \Longrightarrow y_{p}^{\prime \prime}=A e^{-x}
$$

Substituting these into the differential equation, we get

$$
A e^{-x}-4 A e^{-x}+5 A e^{-x}=e^{-x} \Longleftrightarrow A=\frac{1}{10}
$$

Thus the general solution of the exponential equation is

$$
\begin{gather*}
y=y_{c}+y_{p}=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)+\frac{1}{10 e^{x}} \\
y^{\prime \prime}+y^{\prime}-2 y=x+\sin 2 x, \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{10}
\end{gather*}
$$

The auxiliary equation of $y^{\prime \prime}+y^{\prime}-2 y=0$ is $r^{2}+r-2=0$ with roots $r=-2,1$. Thus the solution to the complementary equation is

$$
y_{c}=c_{1} e^{x}+\frac{c_{2}}{e^{2 x}}
$$

We seek a particular solution of the form

$$
\begin{aligned}
y_{p}=A x+B+C & \cos 2 x+D \sin 2 x \\
& \\
& \Longrightarrow y_{p}^{\prime}=A-2 C \sin \\
& \Longrightarrow y_{p}^{\prime \prime}=-4 C \cos 2 x \\
& \Longrightarrow x-4 D \sin 2 x
\end{aligned}
$$

Substituting these into the differential equation, we get

$$
\begin{gathered}
(-4 C+2 D-2 C) \cos 2 x+(-4 D-2 C-2 D) \sin 2 x+A-2 B-2 A x=x+\sin 2 x \\
\Longleftrightarrow\left\{\begin{array} { l }
{ - 4 C + 2 D - 2 C = 0 } \\
{ - 4 D - 2 C - 2 D = 1 } \\
{ A - 2 B = 0 } \\
{ - 2 A = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
A=-1 / 2 \\
B=-1 / 4 \\
C=-1 / 20 \\
D=-3 / 20
\end{array}\right.\right.
\end{gathered}
$$

Thus the general solution of the exponential equation is

$$
\begin{aligned}
y=y_{c}+y_{p}=c_{1} e^{x}+\frac{c_{2}}{e^{2 x}}- & \frac{x}{2}-\frac{1}{4}-\frac{\cos 2 x}{20}-\frac{3 \sin 2 x}{20} \\
& \Longrightarrow y^{\prime}=c_{1} e^{x}-\frac{2 c_{2}}{e^{2 x}}-\frac{1}{2}+\frac{\sin 2 x}{10}-\frac{3 \cos 2 x}{10}
\end{aligned}
$$

Since $y(0)=1$ and $y^{\prime}(0)=0$,

$$
\left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } - \frac { 1 } { 4 } - \frac { 1 } { 2 0 } = 1 } \\
{ c _ { 1 } - 2 c _ { 2 } - \frac { 3 } { 1 0 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = \frac { 1 3 } { 1 0 } } \\
{ c _ { 1 } - 2 c _ { 2 } = \frac { 3 } { 1 0 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
c_{1}=\frac{29}{30} \\
c_{2}=\frac{1}{3}
\end{array}\right.\right.\right.
$$

Therefore the solution to the initial value problem is

$$
y=\frac{29 e^{x}}{30}+\frac{1}{3 e^{2 x}}-\frac{x}{2}-\frac{1}{4}-\frac{\cos 2 x}{20}-\frac{3 \sin 2 x}{20}
$$

17.3 Applications

3. A spring with a mass of 2 kg has damping constant 14 , and a force of 6 N is required to keep the spring stretched 0.5 m beyond its natural length. The spring is stretched 1 m beyond its natural length and then released with zero velocity. Find the position of the mass at any time t.

By Hooke's law,

$$
k(0.5)=6 \Longleftrightarrow k=12
$$

By Newton's second law of motion,

$$
2 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+14 \frac{\mathrm{~d} x}{\mathrm{~d} t}+12 x=0
$$

Since the auxiliary equation $2 r^{2}+14 r+12=0$ has two real and distinct roots $r=-6,-1$, the general solution is

$$
x=\frac{c_{1}}{e^{t}}+\frac{c_{2}}{e^{6 t}} \Longrightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{-c_{1}}{e^{t}}-\frac{6 c_{2}}{e^{6 t}}
$$

From $x(0)=1$ and $x^{\prime}(0)=0$ we get

$$
\left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = 1 } \\
{ - c _ { 1 } - 6 c _ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
c_{1}=6 / 5 \\
c_{2}=-1 / 5
\end{array}\right.\right.
$$

Therefore the position at any time t is

$$
x=\frac{6}{5 e^{t}}-\frac{c_{2}}{5 e^{6 t}}
$$

9 First-Order Differential Equations

9.3 Separable Equations

8. Solve the differential equation.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} \theta} & =\frac{e^{y} \sin ^{2} \theta}{y \sec \theta} \\
\Longleftrightarrow \int \frac{y}{e^{y}} \mathrm{~d} y & =\int \sin \theta \cos \theta \mathrm{d} \theta \\
\Longleftrightarrow \int-y \mathrm{~d} e^{-y} & =\int \sin ^{2} \theta \mathrm{~d} \sin \theta \\
\Longleftrightarrow \int e^{-y} \mathrm{~d} y-\frac{y}{e^{y}} & =\frac{\sin ^{3} \theta}{3} \\
\Longleftrightarrow \frac{1+y}{e^{y}} & =C-\frac{\sin ^{3} \theta}{3}
\end{aligned}
$$

9.5 Linear Equations

28. In a damped RL circuit, the generator supplies a voltage of $E(t)=$ $40 \sin 60 t$ volts, the inductance is 1 H , the resistance is 10Ω and $I(0)=1 \mathrm{~A}$.

$$
\begin{align*}
& E-L \frac{\mathrm{~d} I}{\mathrm{~d} t}-R I=0 \\
\Longleftrightarrow & \frac{40}{L} \sin 60 t=\frac{\mathrm{d} I}{\mathrm{~d} t}+\frac{R I}{L} \\
\Longleftrightarrow & \frac{40 e^{t R / L}}{L} \sin 60 t=\frac{R I}{L} e^{t R / L}+\frac{\mathrm{d} I}{\mathrm{~d} t} e^{t R / L} \\
\Longleftrightarrow & \frac{40}{L} \int e^{t R / L} \sin 60 t \mathrm{~d} t=\int \mathrm{d} I e^{t R / L} \tag{*}
\end{align*}
$$

Let $J=\int e^{t R / L} \sin 60 t \mathrm{~d} t$,

$$
\begin{aligned}
J & =\frac{-1}{60} \int e^{t R / L} \mathrm{~d} \cos 60 t \\
& =\frac{1}{60} \int \cos 60 t \mathrm{~d} e^{t R / L}-\frac{e^{t R / L} \cos 60 t}{60} \\
& =\frac{R}{3600 L} \int e^{t R / L} \mathrm{~d} \sin 60 t-\frac{e^{t R / L} \cos 60 t}{60} \\
& =\frac{R}{3600 L} e^{t R / L} \sin 60 t-\frac{R}{3600 L} \int \sin 60 t \mathrm{~d} e^{t R / L}-\frac{e^{t R / L} \cos 60 t}{60} \\
& =\frac{R}{3600 L} e^{t R / L} \sin 60 t-\frac{R^{2}}{3600 L^{2}} J-\frac{e^{t R / L} \cos 60 t}{60}
\end{aligned}
$$

Hence $J=\frac{e^{t R / L}\left(R L \sin 60 t-60 L^{2} \cos 60 t\right)}{R^{2}+3600 L^{2}}$ and (*) is equivalent to

$$
\begin{aligned}
& \frac{40 e^{t R / L}(R \sin 60 t-60 L \cos 60 t)}{R^{2}+3600 L^{2}}=I e^{t R / L}-C \\
& \Longleftrightarrow I=\frac{40 R \sin 60 t-2400 L \cos 60 t}{R^{2}+3600 L^{2}}+\frac{C}{e^{t R / L}} \\
& \quad \Longleftrightarrow I=\frac{\sin 60 t-3 \cos 60 t}{5}+\frac{C}{e^{t / 20}}
\end{aligned}
$$

Since $I=1$ at $t=0$,

$$
1=\frac{\sin 0-3 \cos 0}{5}+\frac{C}{e^{0}} \Longleftrightarrow C=\frac{8}{5}
$$

and thus $I=\frac{\sin 60 t-3 \cos 60 t}{5}+\frac{8}{5} \exp \frac{-t}{20}$.
At $t=0.1, I=(\sin 6-3 \cos 6) / 5+1.6 e^{-1 / 200} \approx 2.11 \mathrm{~A}$.

