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14 Partial Derivatives

14.2 Limits et Continuity

37. Determine the set of points at which the function is continuous.

f(x, y) =


x2y3

2x2 + y2
if (x, y) 6= (0, 0)

1 if (x, y) = (0, 0)

By AM-GM inequality,

x2+x2+y2 ≥ 3x2|y| ⇐⇒ x2|y3|
3x2|y|

≥ x2|y3|
2x2 + y2

≥ 0 ⇐⇒ −y2

3
≤ x2y3

2x2 + y2
≤ y2

3

Since ±y2/3→ 0 as y → 0, by the Squeeze Theorem,

lim
x→0
y→0

f(x, y) = 0 6= f(0, 0)

Therefore f is discontiuous at (0, 0). On R2\{0}, f is a rational function
and thus is continuous on its domain.
44. Let

f(x, y) =

{
0 if y ≤ 0 or y ≥ x4

1 if 0 < y < x4

(a) For all paths of the form y = mxa with a < 4 ⇐⇒ 4− a > 0, consider
the function g(x) = |y| − x4 = |m| · |x|a − |x|4:

g(x) ≥ 0 ⇐⇒ |m| · |x|a ≥ |x|4 ⇐⇒ |x| ≤ 4−a
√
|m|
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When this condition is met, either y ≤ 0 or y = |y| ≥ x4, so f(x, y) = 0.
Therefore f(x, y) = 0→ 0 as (x, y)→ (0, 0) on{

(x, y)
∣∣∣x ∈ [− 4−a

√
|m|, 4−a

√
|m|
]
∩D

}
which includes the point (0, 0) if the domain D of x 7→ mxa does.

(b) It is trivial that f(0, 0) = 0. Along y = x4/2, for x 6= 0,

x4 − y = x4 − x4

2
=
x4

2
> 0 ⇐⇒ y < x4 =⇒ f(x, y) = 1

Hence

lim
x→0
y→0

f

(
x,
x4

2

)
= 1 6= f(0, 0) = 0

or f is discontiuous on y = x4/2 at (0, 0).

(c) Using the same reasoning, one may also easily show that f is discontiuous
on the entire curve y = x4/20.

14.3 Partial Derivatives

33. Find the first partial derivatives of the function.

w = ln(x+ 2y + 3z)

∂w

∂x
=

1

x+ 2y + 3z
· ∂(x+ 2y + 3z)

∂x
=

1

x+ 2y + 3z

∂w

∂y
=

1

x+ 2y + 3z
· ∂(x+ 2y + 3z)

∂y
=

2

x+ 2y + 3z

∂w

∂z
=

1

x+ 2y + 3z
· ∂(x+ 2y + 3z)

∂z
=

3

x+ 2y + 3z

50. Use implicit differentiation to find ∂z/∂x and ∂z/∂y.

yz + x ln y = z2 =⇒


y
∂z

∂x
+ ln y = 2z

∂z

∂x

z +
x

y
= 2z

∂z

∂y

⇐⇒


ln y

2z − y
=
∂z

∂x

2 +
x

2yz
=
∂z

∂y

66. Find grst.

g(r, s, t) = er sin(st) =⇒ gr = er sin(st)

=⇒ grs = ser cos(st) =⇒ grst = −ster sin(st)
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101. Let

f(x, y) =


x3y + xy3

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

(a) Graph f .

−4 −2 0 2 4 −5

0

5−5

0

5

x
y

(b) Find the first partial derivatives of f when (x, y) 6= (0, 0).

∂f

∂x
=

(x2 + y2)
∂(x3y − xy3)

∂x
− (x3y − xy3)∂(x2 + y2)

∂x
(x2 + y2)2

=
(x2 + y2)(3x2y − y3)− 2x(x3y − xy3)

(x2 + y2)2

=
x4y + 4x2y3 − y5

x4 + 2x2y2 + y4

∂f

∂x
=

(x2 + y2)(x3 − 3xy2)− 2y(x3y − xy3)
(x2 + y2)2

=
x5 − 4x3y2 − xy4

x4 + 2x2y2 + y4

(c) Find fx, fy at (0, 0).

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

h30−h03
h2+02

− 0

h
= lim

h→0
0 = 0

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= lim

h→0
0 = 0
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(d) Show that fxy(0, 0) = −1 and fyx(0, 0) = 1.

fxy(0, 0) = lim
h→0

fx(0, h)− fx(0, 0)

h
= lim

h→0

0+0−h5
0+0+h4

− 0

h
= lim

h→0
−1 = −1

fyx(0, 0) = lim
h→0

fy(h, 0)− fy(0, 0)

h
= lim

h→0

h5+0+0
h4+0+0

− 0

h
= lim

h→0
1 = 1

(e) The result of part (d) does not contradict Clairaut’s Theorem, which only
covers the case fxy and fyx are continuous at (0, 0). Using GeoGebra we
get the second derivatives of f on R\{0} as followed:

fxy = fyx =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

Since fxy(x, 0) = x6/x6 → 1 while fxy = −y6/y6 → −1 as (x, y)→ (0, 0)
the second derivative is discontinuous at origin.

14.6 Directional Derivatives

17. Find the directional derivative of h(r, s, t) = ln(3r + 6s+ 9t) at (1, 1, 1)
in the direction of v = 4̂ı + 12̂ + 6k̂.

From gradient of h

∇h =
3̂ı + 6̂ + 9k̂

3r + 6s+ 9t
=⇒ ∇h(1, 1, 1) =

ı̂

6
+

̂

3
+
k̂

2

and unit vector of v

v̂ =
2̂ı

7
+

6̂

7
+

3k̂

7

we can compute the direction derivative as

Dv̂(1, 1, 1) = ∇h(1, 1, 1) · v̂ =
1

21
+

4

7
+

3

14
=

23

42

14.7 Maximum and Minimum Values

18. Find the local maximum and minimum values and saddle point(s) of
the function. If you have three-dimensional graphing software, graph the
function with a domain and viewpoint that reveal all the important aspects
of the function.

f(x, y) = sinx sin y, −π < x < π, −π < y < π
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=⇒

{
fx = cosx sin y

fy = sinx cos y

=⇒

{
fxx = fyy = − sinx sin y

fxy = fyx = sinx sin y

=⇒ D = fxxfyy − f 2
xy = 0

For fx = fy = 0, either x = y = 0 or
x, y ∈ {±π/2}. D does not indicate
if f has local extreme values at these
critical points.

−2
0

2 −2

0

2−1

0

1

x
y

It is clear that f has 2 local maximums of 1 at x = y = ±π and 2 local
minimum of -1 at x = −y = ±π, since these are its absolute extreme values
as well.

Suppose f(0, 0) is a local minimum. Then, by definition, f(a, b) ≥ f(0, 0) =
0 if (a, b) is sufficiently close to origin (say, at most within [−π/2, π/2]2).
However, for all a, b satisfying ab < 0, f(a, b) = sin a sin b < 0, thus our
assumption is incorrect. Similarly, f does not has a local maximum at origin
because

∀a, b ∈
[
−π

2
,
π

2

]
: ab > 0, f(a, b) = sin a sin b > 0 = f(0, 0)

Therefore (0, 0) is a saddle point.
35. Find the absolute extreme values of f(x, y) = 2x3 + y4 on the unit disc.

The critical points of f occur when

fx = fy = 0 ⇐⇒ 6x2 = 4y3 = 0 ⇐⇒ x = y = 0

at which f(x, y) = f(0, 0) = 0.
On the unit circle, as y2 = 1− x2, let

g(x) = f(x, y) = 2x3 + (1− x2)2 = x4 + 2x3 − 2x2 + 1

Within [−1, 1], g′(x) = 4x3 + 6x2 − 4x = 0 if and only if x = 0 or x = 0.5.
Since g(−1) = −2, g(0) = 1, g(0.5) = 0.8125 and g(1) = 2, the absolute
minimum and maximum of g on [−1, 1] are respectively g(−1) = −2 and
g(1) = 2.

Thus on the boundary, the minimum value of f is -2 at (−1,±1) and the
maximum value is 2 at (1,±1).
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46. Find the dimensions of the box with volume 1000 cm3 that has minimal
surface area.

Let the dimensions of the box be x, y, z in dm, x, y, z are positive and
xyz = 1. Total surface area of the box would then be

S(x, y, z) = 2xy + 2yz + 2zx

By AM-GM inequality,

S(x, y, z) ≥ 2 · 3√xy · yz · zx = 6

Thus S has its absolute minumum of 6 at x = y = z = 1.
53. If the length of the diagonal of a rectangular box must be L, what is the
largest possible volume?

Let the dimensions of the box be three positive numbers x, y, z, x2 + y2 +
z2 = L2. The volume of the box would then be V (x, y, z) = xyz. By AM-GM
inequality,

V (x, y, z) =
√
x2y2z2 ≤ x2 + y2 + z2

3
=
L2

3

Thus V has its absolute maximum of L2/3 at x = y = z = L/
√

3.

14.8 Lagrange Multipliers

12. Use Lagrange multipliers to find the maximum and minimum values of
f(x, y, z) = x4 + y4 + z4 subject to g(x, y, z) = x2 + y2 + z2 = 1.

Extreme values of f occur when{
∇f = λ∇g
g(x, y, z) = 1

⇐⇒

{
〈4x3, 4y3, 4z3〉 = λ〈2x, 2y, 2z〉 6= 0

x2 + y2 + z2 = 1

1. For λ = 2/3, x2 = y2 = z2 = 1/3 = f(x, y, z).

2. For λ = 1 and (x2, y2, z2) ∈ {(0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0)},
f(x, y, z) = 1/2.

3. For λ = 2 and (x2, y2, z2) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, f(x, y, z) = 1.

Therefore, subject to the given constrain, f has absolute maximum of 1
and minimum of 1/3.
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42. Find the maximum and minimum volumes of a rectangular box whose
surface area is 1500 cm2 and whose total edge length is 200 cm.

Let the dimensions of the box be x, y, z in dm, with x, y, z are positive,
2xy + 2yz + 2zx = 15 and 4x+ 4y + 4z = 20. From these constrains, we can
easily obtain x+ y = 5− z and

xy + (x+ y)z =
15

2
⇐⇒ xy =

15

2
− 5z + z2

Thus with 0 < z < 5 the volume of the box is

V = xyz = z3 − 5z2 +
15z

2

whose critical points are

dV

dz
= 3z2 − 10z +

15

2
= 0 ⇐⇒ z =

10±
√

10

6

at which V =
175± 5

√
10

54
.

On the other hand, the constrains are equivalent to{
x2 + y2 + z2 = 10

x+ y + z = 5

or the intersection of a sphere and a plane, which result in a circle C. Hence
the range of z would be between a and b, whereas each of z = a and z = b
only has one point in common with C. Since all surfaces x2 + y2 + z2 = 10,
x + y + z = 5, z = a and z = b has x = y as their plane of symmetry, these
two points must be on x = y as well:{

2x2 + z2 = 10

2x+ z = 5
⇐⇒

{
2x2 + (5− 2x)2 = 10

z = 5− 2x

⇐⇒

{
6x2 − 20x+ 15 = 0

z = 5− 2x

⇐⇒


x =

10±
√

10

6

z =
5±
√

10

3

=⇒V =
175± 5

√
10

54

These are the maximum and minimum volumes of the given box.
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15 Multiple Integrals

15.2 Interated Integrals

19. Calculate the double integral.∫ π/6

0

∫ π/3

0

x sin(x+ y) dy dx =

∫ π/6

0

[−x cos(x+ y)]y=π/3y=0 dx

=

∫ π/6

0

x
(

cosx− cos
(
x+

π

3

))
dx

=

∫ π/6

0

x cos
(
x− π

3

)
dx

=

∫ π/6

0

x d cos
(
x− π

3

)
=
[
x sin

(
x− π

3

)]π/6
0
−
∫ π/6

0

sin
(
x− π

3

)
dx

= − π

12
+
[
cos
(
x− π

3

)]π/6
0

=

√
3

2
− 1

2
− π

12

28. Find the volume of the solid enclosed by the surface z = 1 + ex sin y and
the planes x = ±1, y = 0, y = π and z = 0.∫ π

0

∫ 1

−1
(1 + ex sin y) dx dy =

∫ π

0

[x+ ex sin y]x=1
x=−1 dy

=

∫ π

0

(
2 +

(
e− 1

e

)
sin y

)
dy

=

[
2x+

(
1

e
− e
)

cos y

]π
0

= 2π
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15.3 Double Integrals over General Regions

10. Evaluate the double integral.∫ e

1

∫ lnx

0

x3 dy dx =

∫ e

1

x3 lnx dx

=

∫ e

1

lnx d
x4

4

=
x4 lnx

4

]e
1

−
∫ e

1

x4

4
d lnx

= e4 −
∫ e

1

x3

4
dx

= e4 − x4

16

]e
1

=
15e4 + 1

16

16. Set up iterated integrals for both orders of integration. Then evaluate
the double integral using the easier order and explain why it’s easier.

I =

∫∫
D

y2exy dA, D is bounded by y = x, y = 4, x = 0

=⇒ I =

∫ 4

0

∫ 4

x

y2exy dy dx =

∫ 4

0

∫ y

0

y2exy dx dy

Since y2exy is simply an exponential function of x, it would be easier to
evaluate

I =

∫ 4

0

∫ y

0

y2exy dx dy

=

∫ 4

0

[
y3exy

]x=y
x=0

dy

=

∫ 4

0

y3ey
2

dy =

∫ 4

0

y2 d
ey

2

2

=
y2ey

2

2

]4
0

−
∫ 4

0

ey
2

2
dy2

= 8e16 −
∫ 16

0

ez

2
dz

= 8e16 − ez

2

]16
0

=
15e16

2
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31. Find the volume of the solid bounded by the cylinder x2 + y2 = 1 and
the plane y = z in the first octant.∫ 1

0

∫ √1−x2
0

y dy dx =

∫ 1

0

1− x2

2
dx =

1

3

15.4 Double Integrals in Polar Coordinates

13. Evaluate the given integral by changing to polar coordinates.

I =

∫∫
R

arctan
y

x
dA, where R = {(x, y) | 1 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x}

In polar coordinates,

R = [1, 2]×
[
0,
π

4

]
thus

I =

∫ π/4

0

∫ 2

1

arctan
r sin θ

r cos θ
r dr dθ

=

∫ π/4

0

∫ 2

1

arctan tan θr dr dθ

=

∫ π/4

0

∫ 2

1

θr dr dθ

=

∫ π/4

0

3θ

2
dr dθ

=
3π2

64

−2 2

−2

−1

1

2

θ

r

r = 1
r = 2 cos θ

17. Use a double integral to find
the area of the region inside C1 :
(x − 1)2 + y2 = 1 and outside
C0 : x2 + y2 = 1.

In polar coordinates C1 has the
equation r = 2 cos θ and the equa-
tion of C0 is r = 1. Therefore the
given region is within 1 ≤ r ≤ 2 cos θ,
whereas θ ∈ [−π, π].
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Since on [−π, π], 2 cos θ ≥ 1 ⇐⇒ −π/3 ≤ θ ≤ π/3, the area of the given
region is ∫ π/3

−π/3

∫ 2 cos θ

1

r dr dθ =

∫ π/3

−π/3

4 cos2 θ − 1

2
dθ

=

∫ π/3

−π/3

(
2 cos2 θ − 1 +

1

2

)
dθ

=

∫ π/3

−π/3

(
cos 2θ +

1

2

)
dθ

=

[
sin 2θ + θ

2

]π/3
−π/3

=

√
3

2
+
π

3

15.5 Applications of Double Integrals

5. Find the mass and center of mass of the lamina that occupies the region
triangular D with vertices (0, 0), (2, 1), (0, 3) and has the given density
function ρ(x, y) = x+ y.

m =

∫∫
D

(x+ y) dA

=

∫ 2

0

∫ 3−x

x/2

(x+ y) dy dx

=

∫ 2

0

36− 9x2

8
dx

= 9− 3 = 6

x̄ =

∫∫
D

x(x+ y)

m
dA ȳ =

∫∫
D

y(x+ y)

m
dA

=

∫ 2

0

∫ 3−x

x/2

x2 + xy

6
dy dx =

∫ 2

0

∫ 3−x

x/2

xy + y2

6
dy dx

=

∫ 2

0

12x− 3x3

16
dx =

∫ 2

0

6− 3x

4
dx

=
3

4
=

3

2
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15.6 Surface Area

7. Find the area of the part of the hyperbolic paraboloid z = y2 − x2 that
lies between the cylinders x2 + y2 = 1 and x2 + y2 = 4.

∫∫
D

√
1 +

(
∂(y2 − x2)

∂x

)2

+

(
∂(y2 − x2)

∂y

)2

dA

=

∫∫
D

√
1 + 4x2 + 4y2 dA

=

∫ 2π

0

∫ 2

1

r
√

1 + 4r2 cos2 θ + 4r2 sin2 θ dr dθ

=

∫ 2

1

π
√

1 + 4r2 dr2

=

∫ 4

1

π
√

1 + 4t dt

=π

[
(1 + 4t)1.5

6

]4
1

=
171.5 − 51.5

6
π

16 Vector Calculus

16.2 Line Integrals

12. Evaluate the integral, where C is the given curve.

I =

∫
C

(x2 + y2 + z2) ds, C : x = t, y = cos 2t, z = sin 2t, 0 ≤ t ≤ 2π

I =

∫ 2π

0

(x2 + y2 + z2)

√(
dx

dt

)2

+

(
dz

dt

)2

+

(
dz

dt

)2

dt

=

∫ 2π

0

(t2 + cos2 2t+ sin2 2t)

√(
dt

dt

)2

+

(
d cos 2t

dt

)2

+

(
d sin 2t

dt

)2

dt

=

∫ 2π

0

(t2 + 1)
√

2 dt =
8π
√

2

3
+ 2π

√
2
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15. With C is the line segment from (1, 0, 0) to (4, 1, 2), x = 3t+ 1, y = t,
z = 2t, whereas 0 ≤ t ≤ 1 and

J =

∫
C

z2 dx+ x2 dy + y2 dz

=

∫ 1

0

z2
dx

dt
dt+ x2

dy

dt
dt+ y2

dz

dt
dt

=

∫ 1

0

(x2 + 2y2 + 3z2) dt

=

∫ 1

0

(9t2 + 6t+ 1 + 2t2 + 12t2) dt

=

∫ 1

0

(23t2 + 6t+ 1) dt

=

[
23t3

3
+ 3t2 + t

]1
0

=
35

3

39. Find the work done by the force field F(x, y) = 〈x, y + 2〉 is moving an
object along an arch of the cycloid r(t) = 〈t− sin t, 1− cos t〉, 0 ≤ t ≤ 2π.

W =

∫
C

F · dr

=

∫ 2π

0

F · dr

dt
dt

=

∫ 2π

0

〈x, y + 2〉 ·
〈

dx

dt
,
dy

dt

〉
dt

=

∫ 2π

0

〈t− sin t, 3− cos t〉 · 〈1− cos t, sin t〉 dt

=

∫ 2π

0

(t− t cos t+ 2 sin t) dt

=

[
t2

2
− t sin t− 3 cos t

]2π
0

= 2π2

16.3 The Fundamental Theorem for Line Integral

19. Show that the line integral is independent from any path C from (1, 0)
to (2, 1) and evaluate the integral.∫

C

2x

ey
dx+

(
2y − x2

ey

)
dy =

∫
C

(
2x

ey
ı̂ + 2ŷ− x2

ey
̂

)
· d(x̂ı + ŷ)
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Since on R2

∂

∂y

2x

ey
=
−2x

ey
=

∂

∂x

(
2y − x2

ey

)
the function

F(x, y) =
2x

ey
ı̂ + 2ŷ− x2

ey
̂

is conservative and thus the given line integral is independent from path.
Let f be a differentiable of (x, y) that ∇f = F. One function satisfying

this is

f(x, y) = y2 +
x2

ey

By the fundamental theorem for line integrals,∫
C

F · dr = f(2, 1)− f(1, 0) =
4

e

16.4 Green’s Theorem

6. Use Green’s Theorem to evaluate the line integral along the given posi-
tively oriented rectangle with vertices (0, 0), (5, 0), (5, 2) and (0, 2).∫

C

cos y dx+ x2 sin y dy =

∫ 5

0

∫ 2

0

(
∂x2 sin y

∂x
− ∂ cos y

∂y

)
dy dx

=

∫ 5

0

∫ 2

0

(2x sin y + sin y) dy dx

=

∫ 5

0

(2x+ 1)(1− cos 2) dx

= 30− 30 cos 2

−1 1

0.2

0.4

0.6

0.8

1

x

y r = cosx
r = 0

12. Use Green’s Theorem to evalu-
ate the line integral along the path
C including the curve y = cosx from
(−π/2, 0) to (π/2, 0) and the line seg-
ment connecting these two points.

Since the curve is negatively ori-
ented, by Green’s Theorem,
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∫
C

(e−x + y2) dx+ (e−y + x2) dy

= −
∫ π/2

−π/2

∫ cosx

0

(
∂

∂x
(e−y + x2)− ∂

∂y
(e−x + y2)

)
dy dx

=

∫ −π/2
π/2

∫ cosx

0

(2x− 2y) dy dx

=

∫ −π/2
π/2

(2x cosx− cos2 x) dx

=
1

2

∫ π/2

−π/2
(cos 2x+ 1) dx−

∫ π/2

−π/2
2x d sinx

=

[
sin 2x

4
+
x

2
− 2x sinx− 2 cosx

]π/2
−π/2

=
π

2

16.5 Curl and Divergence

This section is to aid my revision of Electromagnetism. First, on R3, we define

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

then the curl of vector field F = P ı̂ +Q̂ +Rk̂ is

curlF = ∇× F =

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣
= ı̂

(
∂R

∂y
− ∂Q

∂z

)
+ ̂

(
∂P

∂z
− ∂R

∂x

)
+ k̂

(
∂Q

∂x
− ∂P

∂y

)
If f is a function of three variables that has continuous second-order

partial derivatives, then curl(∇f) = 0.
On the other hand, if curlF = 0 then F is a conservative vector field

(preconditions: P , Q and R must be partially differentiable).
Similarly, the divergence of vector field F is defined as

divF = ∇ · F = ı̂
∂P

∂x
+ ̂

∂Q

∂y
+ k̂

∂R

∂z

Trivially, ∇ · (∇×F) = 0 because the terms cancel in pairs by Clairaut’s
Theorem.
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The cool thing about operators is that they can be weirdly combined, e.g.
div(∇f) = ∇ · ∇f = ∇2f and ∇2F = ∇ · ∇ · F.

Now we are able to write Green’s Theorem in the vector form∮
∂S

F · dr =

∫∫
S

(curlF) · k̂ dA

whereas r(t) = x(t)̂ı + y(t)̂. The outward normal vector to the contour is

given by n(t) =
dy

dt
ı̂ − dx

dt
̂. So we have the second vector form of Green’s

Theorem. ∮
∂S

F · n̂ ds =

∫∫
S

divF dA

16.6 Parametric Surfaces and Their Areas

42. Find the area of the part of the cone z =
√
x2 + y2 that lies between the

plane y = x and the cylinder y = x2.∫ 1

0

∫ x

x2

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)
2

dy dx

=

∫ 1

0

∫ x

x2

√
2 dy dx =

∫ 1

0

(x− x2)
√

2 dy dx

=
1

2
− 1

3
=

1

6

17 Second-Order Differential Equations

17.1 Homogeneous Linear Equations

11. Solve the differential equation.

2
d2y

dt2
+ 2

dy

dt
− y = 0

Since the auxiliary equation 2r2 + 2x − 1 = 0 has two real and distinct

roots
±
√

3− 1

2
, the general solution is

y = c1 exp

√
3− 1

2
t+ c2 exp

−
√

3− 1

2
t

21. Solve the initial value problem.

y′′ − 6y′ + 10y = 0, y(0) = 2, y′′(0) = 3

16



Since the auxiliary equation r2−6x+10 = 0 has two complex roots 3± i,
the general solution is

y = e3x(c1 cosx+ c2 sinx) =⇒ y′ = e3x((3c1 + c2) cosx+ (3c2 − c1) sinx)

As y(0) = 2, c1 = 2. Similarly, from y′(0) = 3, we can obtain 3c1 −
c2 = 3 =⇒ c2 = 3. Thus the solution of the initial value problem is y =
e3x(3 cosx+ 2 sinx).

17.2 Nonhomogeneous Linear Equations

Solve the differential equation or initial-value problem using the method of
undetermined coefficients.

y′′ − 4y′ + 5y = e−x (5)

The auxiliary equation of y′′ − 4y′ + 5y = 0 is r2 − 4r + 5 = 0 with roots
r = 2± i. Hence the solution to the complementary equation is

yc = e2x(c1 cosx+ c2 sinx)

Since G(x) = e−x is an exponential function, we seek a particular solution
of an exponential function as well:

yp = Ae−x =⇒ y′p = −Ae−x =⇒ y′′p = Ae−x

Substituting these into the differential equation, we get

Ae−x − 4Ae−x + 5Ae−x = e−x ⇐⇒ A =
1

10

Thus the general solution of the exponential equation is

y = yc + yp = e2x(c1 cosx+ c2 sinx) +
1

10ex

y′′ + y′ − 2y = x+ sin 2x, y(0) = 1, y′(0) = 0 (10)

The auxiliary equation of y′′ + y′ − 2y = 0 is r2 + r − 2 = 0 with roots
r = −2, 1. Thus the solution to the complementary equation is

yc = c1e
x +

c2
e2x

17



We seek a particular solution of the form

yp = Ax+B + C cos 2x+D sin 2x

=⇒ y′p = A− 2C sin 2x+ 2D cos 2x

=⇒ y′′p = −4C cos 2x− 4D sin 2x

Substituting these into the differential equation, we get

(−4C+2D−2C) cos 2x+(−4D−2C−2D) sin 2x+A−2B−2Ax = x+sin 2x

⇐⇒


−4C + 2D − 2C = 0

−4D − 2C − 2D = 1

A− 2B = 0

−2A = 1

⇐⇒


A = −1/2

B = −1/4

C = −1/20

D = −3/20

Thus the general solution of the exponential equation is

y = yc + yp = c1e
x +

c2
e2x
− x

2
− 1

4
− cos 2x

20
− 3 sin 2x

20

=⇒ y′ = c1e
x − 2c2

e2x
− 1

2
+

sin 2x

10
− 3 cos 2x

10

Since y(0) = 1 and y′(0) = 0,
c1 + c2 −

1

4
− 1

20
= 1

c1 − 2c2 −
3

10
= 0

⇐⇒


c1 + c2 =

13

10

c1 − 2c2 =
3

10

⇐⇒


c1 =

29

30

c2 =
1

3

Therefore the solution to the initial value problem is

y =
29ex

30
+

1

3e2x
− x

2
− 1

4
− cos 2x

20
− 3 sin 2x

20

17.3 Applications

3. A spring with a mass of 2 kg has damping constant 14, and a force of 6
N is required to keep the spring stretched 0.5 m beyond its natural length.
The spring is stretched 1 m beyond its natural length and then released with
zero velocity. Find the position of the mass at any time t.

By Hooke’s law,
k(0.5) = 6 ⇐⇒ k = 12

18



By Newton’s second law of motion,

2
d2x

dt2
+ 14

dx

dt
+ 12x = 0

Since the auxiliary equation 2r2 + 14r+ 12 = 0 has two real and distinct
roots r = −6,−1, the general solution is

x =
c1
et

+
c2
e6t

=⇒ dx

dt
=
−c1
et
− 6c2
e6t

From x(0) = 1 and x′(0) = 0 we get{
c1 + c2 = 1

−c1 − 6c2 = 0
⇐⇒

{
c1 = 6/5

c2 = −1/5

Therefore the position at any time t is

x =
6

5et
− c2

5e6t

9 First-Order Differential Equations

9.3 Separable Equations

8. Solve the differential equation.

dy

dθ
=
ey sin2 θ

y sec θ

⇐⇒
∫

y

ey
dy =

∫
sin θ cos θ dθ

⇐⇒
∫
−y de−y =

∫
sin2 θ d sin θ

⇐⇒
∫
e−y dy − y

ey
=

sin3 θ

3

⇐⇒ 1 + y

ey
= C − sin3 θ

3
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9.5 Linear Equations

28. In a damped RL circuit, the generator supplies a voltage of E(t) =
40 sin 60t volts, the inductance is 1 H, the resistance is 10 Ω and I(0) = 1 A.

E − LdI

dt
−RI = 0

⇐⇒ 40

L
sin 60t =

dI

dt
+
RI

L

⇐⇒ 40etR/L

L
sin 60t =

RI

L
etR/L +

dI

dt
etR/L

⇐⇒ 40

L

∫
etR/L sin 60t dt =

∫
dIetR/L (∗)

Let J =
∫
etR/L sin 60t dt,

J =
−1

60

∫
etR/L d cos 60t

=
1

60

∫
cos 60t detR/L − etR/L cos 60t

60

=
R

3600L

∫
etR/L d sin 60t− etR/L cos 60t

60

=
R

3600L
etR/L sin 60t− R

3600L

∫
sin 60t detR/L − etR/L cos 60t

60

=
R

3600L
etR/L sin 60t− R2

3600L2
J − etR/L cos 60t

60

Hence J =
etR/L(RL sin 60t− 60L2 cos 60t)

R2 + 3600L2
and (∗) is equivalent to

40etR/L(R sin 60t− 60L cos 60t)

R2 + 3600L2
= IetR/L − C

⇐⇒ I =
40R sin 60t− 2400L cos 60t

R2 + 3600L2
+

C

etR/L

⇐⇒ I =
sin 60t− 3 cos 60t

5
+

C

et/20

Since I = 1 at t = 0,

1 =
sin 0− 3 cos 0

5
+
C

e0
⇐⇒ C =

8

5

and thus I =
sin 60t− 3 cos 60t

5
+

8

5
exp
−t
20

.

At t = 0.1, I = (sin 6− 3 cos 6)/5 + 1.6e−1/200 ≈ 2.11 A.
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