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1 Basic Probability 1
1. Problems regarding de Morgan’s law

(a) Consider rolling a six-sided die, whereA = {2, 4, 6} ⇐⇒ AC = {1, 3, 5}
B = {4, 5, 6} ⇐⇒ BC = {1, 2, 3}

=⇒

(A ∪B)C = {2, 4, 5, 6}C = {1, 3} = AC ∩BC

(A ∩B)C = {4, 6}C = {1, 2, 3, 5} = AC ∪BC

(b) By de Morgan’s law,

P
(
AC ∩BC

)
= P

(
(A ∪B)C

)
= 1− P

(
A ∪

(
AC ∩B

))
= 1− P (A)− P

(
AC ∩B

)
(since A ∩

(
AC ∩B

)
= ∅)

= 1− P (A)− P
(
(A ∩B) ∪

(
AC ∩B

))
+ P (A ∩B)

(since (A ∩B) ∩
(
AC ∩B

)
= ∅)

= 1− P (A)− P (B) + P (A ∩B)

(c) Consider events A and B such that P (A) = 1/2, P (A ∪ B) = 3/4,
P
(
BC

)
= 5/8.
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P
(
AC ∩B

)
= P (A ∪B)− P (A) = 3

4 −
1
2 = 1

4
P
(
AC ∩BC

)
= P

(
(A ∪B)C

)
= P (Ω)− P (A ∪B) = 1− 3

4 = 1
4

P
(
A ∩BC

)
= P

(
BC

)
− P

(
(A ∪B)C

)
= 5

8 −
1
4 = 3

8
P (A ∩B) = P (A)− P

(
A ∩BC

)
= 1

2 −
3
8 = 1

8
P
(
AC ∪BC

)
= P

(
(A ∩B)C

)
= P (Ω)− P (A ∩B) = 1− 1

8 = 7
8

2. A four-sided die is rolled repeatedly, until the first time (if ever) that an
even number is obtained. What is the sample space for this experiment?

Let the outcome be a n-dimensional vector, whose elements are values of
each roll in chronological order. The sample space would then be

Ω = {v ∈ {1, 3}m × {2, 4} | m ∈ N}

3. A ball is drawn at random from a box containing 6 red balls, 4 white balls,
and 5 blue balls.

Let Ω be the sample space then n(Ω) = 6 + 4 + 5 = 15. Let the R, W and
B be the event where a red, white and blue ball is drawn respectively, each
of these events are mutually exclusive. Suppose each ball is equally likely to
be drawn, we get


n(R) = 6
n(W ) = 4
n(B) = 5

=⇒



P (R) = n(R)
n(Ω) = 2

5

P (W ) = n(W )
n(Ω) = 4

15

P (B) = n(B)
n(Ω) = 1

3

(a) For a ball that is not red to be drawn, the probability is

P
(
RC
)

= P (Ω)− P (R) = 1− 2
5 = 3

5

(b) For a ball that is either red or white to be drawn, the probability is

P (R ∪W ) = P (R) + P (W ) = 2
5 + 4

15 = 2
3
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4. Given P (Ca) = 0.8, P (Cb) = 0.6 and P (Ca ∩ Cb) = 0.5.
We can easily prove that P (Ca∪Cb) = P (Ca)+P (Cb)−P (Ca∩Cb) (similar

to what we did in exercise 1.b). Thus the probability that the student will
get at least one offer from these two companies is 0.8 + 0.6− 0.5 = 0.9.
5. Let G and C be the events that the selected student is a genius and is a
chocolate lover, respectively, then P (G) = 0.6, P (C) = 0.7 and P (G ∩ C) =
0.4. The probability that a randomly selected student is neither a genius nor
a chocolate lover is

P
(
(G ∪ C)C

)
= 1− P (G)− P (C) + P (G ∩ C) = 1− 0.6− 0.7 + 0.4 = 0.1

6. First, consider Rick’s choice of entrance. We denote the outcome that he
chooses each gate as RA, RB, RC and RD, then P{RA} = 1/3 and P{RB} =
P{RC} = P{RD} = 2/9. The sample space is ΩR = {RA, RB, RC , RD}.

Similarly, denote Brenda’s and Ali’s choices as BY and AX respectively,
where X, Y (and later Z) are one of the four entrances ω = {A,B,C,D},
we get 

P{BA} = P{BB} = P{BC} = P{BD} = 1
4

P{AA} = P{AB} = 2
35

P{AC} = 2
7

P{AD} = 3
5

The sample spaces of these two models are ΩB = {BA, BB, BC , BD} and
ΩA = {AA, AB, AC , AD}.

Now consider the probability model of the choices of the three friends.
The sample space is Ω = ΩR×ΩB×ΩA. Since the three friends chooses their
entrance independently, for all v = 〈RZ , BY , AX〉 in Ω,

P{v} = P{RZ} · P{BY } · P{AX}

(a) The event that at least two friends choose entrance B is

a = (ΩR×{BB}×{AB})∪ ({RB}×ΩB ×{AB})∪ ({RB}×{BB}×ΩA)

Notice that

(ΩR × {BB} × {AB}) ∩ ({RB} × ΩB × {AB})
= (ΩR × {BB} × {AB}) ∩ ({RB} × ΩB × {AB}) ∩ ({RB} × {BB} × ΩA)
= {RB, BB, AB}
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Therefore the probability of this event is

P (a) = P (ΩA × {BB} × {AB})
+ P ({RB} × ΩB × {AB})
− P{RB, BB, AB}
+ P ({RB} × {BB} × ΩA)
− P{RB, BB, AB}
= P{BB} · P{AB}
+ P{RB} · P{AB}
+ P{RB} · P{BB}
− 2 · P{RB} · P{BB} · P{AB}

= 1
4 ·

2
35 + 2

9 ·
2
35 + 2

9 ·
1
4 −

2
9 ·

1
4 ·

2
35 = 8

105

(b) The only four cases where all friends choose the same entrance are
{〈RX , BX , AX〉 | X = ω}. Hence the probability of this event is

P (b) =
∑
X∈ω

P{RX} · P{BX} · P{AX}

= 1
3 ·

1
4 ·

2
35 + 2

9 ·
1
4 ·

2
35 + 2

9 ·
1
4 ·

2
7 + 2

9 ·
1
4 ·

3
5 = 2

35

7. We roll two fair six-sided dice.

(a) The event that doubles are rolled has six outcomes, thus its probability
is 6/36 = 1/6.

(b) Among the six outcomes where the result is four or less ({(1, 1), (1, 2),
(1, 3), (2, 1), (2, 2), (3, 1)}), there are two that are doubles, hence the
probability would then be 1/3.

(c) Let ω = {1, 2, 3, 4, 5, 6}, the sample space is Ω = ω2. For one die roll is a
six, the event is C = ({6}×ω)∪ (ω×{6}). Since ({6}×ω)∩ (ω×{6}) =
{(6, 6)},

P (C) = P ({6} × ω) + P (ω × {6})− P{(6, 6)}

= n({6} × ω) + n(ω × {6})− n{(6, 6)}
n(Ω)

= 6 + 6− 1
36 = 11

36
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8. A baby rolls two six-sided dice. Assumed that the dice are fair. Let ω =
{1, 2, 3, 4, 5, 6}, the sample space is Ω = ω2.

(a) There are six outcomes where the result of seven:

A = {(m, 7−m) | m ∈ ω}

hence this event’s probability is

P (A) = n(A)
n(Ω) = 6

36 = 1
6

(b) There are two outcomes where the result of eleven: B = {(5, 6), (6, 5)},
thus P (B) = 1/18. As A and B are disjoint, the probability of not getting
a sum of seven or eleven is

P
(
(A ∪B)C

)
= P (Ω)− P (A ∪B)
= 1− (P (A) + P (B))

= 1− 1
6 −

1
18 = 7

9

9. Given n(Ω) = 25, n(C) = 9, n(D) = 8 and n
(
(C ∪D)C

)
= 10.

By the Venn diagram, a = C ∩ DC, b = C ∩ D and c = CC ∩ D. Let
E = C ∪D and d = EC, n(d) = 10 and n(E) = n(Ω) − n(d) = 15. Assume
that the boy fairly randomly selected,

P (E) = n(E)
n(Ω) = 15

25 = 3
5

P (a) = P
(
(D ∩ d)C

)
= 1− P (D ∩ d) = 1− P (D)− P (d)

= 1− n(D) + n(d)
n(Ω) = 1− 8 + 10

25 = 7
25

P (c) = P
(
(C ∩ d)C

)
= 1− P (C ∩ d) = 1− P (C)− P (d)

= 1− n(C) + n(d)
n(Ω) = 1− 9 + 10

25 = 6
25

P (b) = n(b)
n(Ω) = n(E)− n(a)− n(c)

n(Ω) = P (E)− P (a)− P (c)

= 3
5 −

7
25 −

6
25 = 2

25
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10.

(a) Venn diagram:

5

0

A B

C

2

15 8

1227

4

21

(b) The number of tourists who had not visited Burundi:

n
(
BC

)
= n(Ω)− n(B) = 27− 8 = 19

(c) The number of tourists who had not visited Cameroon unless they had
visited all three countries:

n
(
(A ∩B) ∪ CC

)
= n(Ω)− n(C) + n(A ∩B ∩ C) = 27− 12 + 2 = 17

(d) For the randomly selected tourist to have visited at least two countries,
that person must not visited only one country. Thus the event can be
denoted as

d = Ω \ ((A \B \ C) ∪ (B \ C \ A) ∪ (C \ A \B))

Since the selection is random, the event’s probability can be calculated
as

P (d) = 1− n((A \B \ C) ∪ (B \ C \ A) ∪ (C \ A \B))
n(Ω) = 1− 21

27 = 2
9
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2 Basic Probability 2
1. Let A be the event that the chosen transistor is defective, B be the event
that the chosen one is partially defective and C be the event that the chosen
one is acceptable. A, B and C are disjoint and A ∪B ∪ C = Ω, thus

n(Ω) = n(A) + n(B) + n(C) = 5 + 10 + 25 = 40

The probability that the chosen transistor does not immediately fail is
P
(
AC
)

= 1− P (A) = 1− n(A)/n(Ω) = 1− 5/40 = 7/8.
Given this condition, the probability the chosen transistor is acceptable

is

P
(
C|AC

)
=
P
(
C ∩ AC

)
P (AC) = P (C)

7/8 = 8n(C)
7n(Ω) = 8 · 25

7 · 40 = 5
7

2. Denote the outcomes of tossing a coin as H (head) and T (tail).

(a) Consider tossing a coin n times, the sample space is Ω = {H,T}n. Let
A be the event of getting at least a head, AC would then be getting all
tails ({T}n). Suppose the chance of getting head and tail are equal,

P
(
AC
)

=
n
(
AC
)

n(Ω) = 1
2n =⇒ P (A) = 1− P

(
AC
)

= 2n − 1
2n

(b) For n = 4, P (A) = 24 − 1
24 = 15

16.

(c) Consider rolling a six-sided die n times, the sample space is

Ω = {1, 2, 3, 4, 5, 6}n

Let B be the event of getting a six, BC = {1, 2, 3, 4, 5}n. Therefore the
probability of B is

P (B) = 1− P
(
BC

)
= 1−

n
(
BC

)
n(Ω) = 1− 5n

6n

For n = 4, P (B) = 671/1296.

(d) For P (B) = 0.99,

1−
(5

6

)n
= 0.99 ⇐⇒

(5
6

)n
= 0.01 ⇐⇒ n = log5/6 0.01 ≈ 25
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3. Let B be the event that the woman rides the bicycle to work, BC would
be that she ride the scooter. Let L be that she is late,

P (B) = 0.7
P
(
BC

)
= 0.3

P (L|B) = 0.03
P
(
L|BC

)
= 0.02

(a) By Total Probability Theorem, the probability the woman is late for
work is

P (L) = P (B)·P (L|B)+P
(
BC

)
·P
(
L|BC

)
= 0.7·0.03+0.3·0.02 = 0.027

(b) The probability she is not late for work is

P
(
LC
)

= 1− P (L) = 1− 0.027 = 0.973

Since the woman is expected to be on time roughly 223 days a year, she
goes to work 223/P

(
LC
)
≈ 229 days a year.

4. Consider flipping the coin twice, the sample space is

Ω = {(H,H), (H,T ), (T,H), (T, T )}

where H stands for head and T stands for tail.
Denote getting a head from the first flip as H1 and getting a head from

the second one as H2. Assume that P (H1) = P (H2) = 0.6. It is obvious that
these two events are independent, or in other words

P (H1 ∩H2) = P (H1) · P (H2)

Similarly,

P{(H,T )} = P
(
H1 ∩HC

2

)
= P (H1) · (1− P (H2)) = 0.24

P{(T,H)} = P
(
HC

1 ∩H2
)

= (1− P (H1)) · P (H2) = 0.24

Therefore if Minh and Nam flip the coin twice for both head and tail and
choose K-pop when they get a head first and US music otherwise, the genre
would be chosen equally even.
5. Place three maths, two history and four biology book on a shelf.

(a) There would be (3 + 2 + 4)! = 362880 ways to do it without any further
restriction.
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(b) If each subject needs to stay together, there are 3!2!4!3! = 1728 ways.

(c) If only biology books must stay together, we can do it in 4!(3 + 2 + 1)!
or 17280 ways.

6. Seat six people around a table.

(a) If they can sit anywhere, there are 6!/6 = 120 arrangements.

(b) If two particular people must sit next to each other, there are 2 · 5!/5 or
48 arrangements; thus if those two cannot sit side-by-side, the figure is
120− 48 = 72.

7. Let ω be the set of cards in a standard 52-card deck. Shuffle the deck an
draw seven cards, the sample space of this probability model is Ω =

(
ω
7

)
,

n(Ω) =
(

52
7

)
.

(a) Let A be the event that exactly three of the drawn ones are aces,

n(A) =
(

4
3

)(
48
4

)
=⇒ P (A) = n(A)

n(Ω) = 9
1547

(b) Let K be the event that exactly two of the drawn ones are kings,

n(K) =
(

4
2

)(
48
5

)
=⇒ P (K) = n(K)

n(Ω) = 594
7735

(c) The probability that exactly three aces and two kings are drawn is

n(A ∩K) =
(

4
3

)(
4
2

)(
44
2

)
=⇒ P (A ∩K) = n(A ∩K)

n(Ω) = 1419
8361535

Thus probability that either exactly three aces or two kings are drawn is

P (A ∪K) = P (A) + P (K)− P (A ∩K) = 137868
1672307

8. Let M be the event that a red marble is picked and C be the event of
getting head from tossing the coin, we have

P (M |C) = 0.6
P
(
M |CC

)
= 0.2

P (C) = P
(
CC

)
= 0.5
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(a) By Total Probability Theorem, the probability a red marble is picked is

P (M) = P (C) · P (M |C) + P
(
CC

)
· P

(
M |CC

)
= 0.4

(b) The probability that a blue marble is picked is

P
(
MC

)
= 1− P (M) = 0.6

(c) The probability of getting a head if the red marble is picked is

P (C|M) = P (C ∩M)
P (M) = P (C) · P (M |C)

P (M) = 0.5 · 0.6
0.4 = 0.75

9. Consider n random people and their birthdays, assuming that all 366
birthdays are equally likely∗. The size of the sample space is n(Ωn) = 366n.

Let An be the event that no two of these n people to celebrate their
birthday on the same day, n(An) = ∏n−1

i=0 (366 − i). Thus the probability of
this is

P (An) = n(An)
n(Ωn) =

n−1∏
i=1

366− i
366

Since P (A23) < 0.5 < P (A22), n needs to be at least 23 for the probability
to be less than 0.5.
10. The reasoning is not correct because:

• If he is not to be released, the answer from the guard will be both of
other prisoners, and everyones’ fate will be known.

• Otherwise, in case the guard only gives one name, our protagonist will
sure be released.

∗If you are wondering how one could be equally likely to be born on the leap day,
then well, the distribution of birthdays on other days is in fact not uniform either. Don’t
complicate it, don’t drive yourself insane!
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3 Discrete Random Variable 1

A Discrete Random Variable and PMF
1. Consider a fair coin.
(a) Toss it twice and let X be the number of heads, X would be a binomial

random variable

X : Ω→ {0, 1, 2}
ω 7→ x

whose probability mass function is

pX(x) =
(

2
x

)
· 0.5x · 0.52−x = 1

2x!(2− x)!

Therefore PMF of X for each case is

pX(0) = pX(2) = 1
2 · 0!2! = 1

4
pX(1) = 1

2 · 1!1! = 1
2

(b) Toss it thrice and let Y be the number of heads, Y would be a binomial
random variable

Y : Ω→ {0, 1, 2, 3}
ω 7→ y

whose probability mass function is

pY (y) =
(

3
y

)
· 0.5y · 0.53−y = 3

4y!(3− y)!

Therefore PMF of Y for each case is

pY (0) = pY (3) = 3
4 · 0!3! = 1

8
pY (1) = pY (2) = 3

4 · 1!2! = 3
8

2. Toss a pair of fair siz-sided dice and let X be the sum of the points

X : Ω→ [2, 12] ∩ Z
ω 7→ x

with Ω = S2 = {1, 2, 3, 4, 5, 6}2 =⇒ n(Ω) = 36.
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(a) X is a random variable whose PMF is

pX(2) = P{(1, 1)} = 1
36

pX(3) = P{(1, 2), (2, 1)} = 1
18

pX(4) = P{(1, 3), (2, 2), (3, 1)} = 1
12

pX(5) = P{(1, 4), (2, 3), (3, 2), (4, 1)} = 1
9

pX(6) = P{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} = 5
36

pX(7) = P{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} = 1
6

pX(8) = P{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} = 5
36

pX(9) = P{(3, 6), (4, 5), (5, 4), (6, 3)} = 1
9

pX(10) = P{(4, 6), (5, 5), (6, 4)} = 1
12

pX(11) = P{(5, 6), (6, 5)} = 1
18

pX(12) = P{(6, 6)} = 1
36

(b) The graph of pX(x):

2 4 6 8 10 12

5 · 10−2

0.1

0.15

x

p X
(x

)
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3. Denote the event of winning, tying and losing the first game as A2, A1 and
A0 respectively, we get P (A2) = P (A1) = 0.2 and P (A0) = 0.6. Similarly, let
B2, B1 and B0 in that order be the event MIT soccer team winning, tying
and losing the second game, we get P (B2) = P (B1) = 0.35 and P (B0) = 0.3.

Let A and B be the random variable satisfying

A =


2 if A2

1 if A1

0 if A0

=⇒

pA(2) = pA(1) = 0.2
pA(0) = 0.6

B =


2 if B2

1 if B1

0 if B0

=⇒

pB(2) = pB(1) = 0.35
pB(0) = 0.3

then the number of points the team earns over the weekend is X = A+B.
Since the outcome of the two games are independent,

pX(0) = pA(0) · pB(0) = 0.18
pX(1) = pA(0) · pB(1) + pA(1) · pB(0) = 0.27
pX(2) = pA(0) · pB(2) + pA(1) · pB(1) + pA(2) · pB(0) = 0.34
pX(3) = pA(1) · pB(2) + pA(2) · pB(1) = 0.14
pX(4) = pA(2) · pB(2) = 0.07

B Expectation of Random Variables
4. Given a random variable

X =


−2 with probability of 1/3
3 with probability of 1/2
1 with probability of 1/6

E[X] =
∑

x∈{−2,1,3}
xpX(x) = 1

E[2X + 5] =
∑

x∈{−2,1,3}
(2x+ 5)pX(x) = 7

E
[
X2
]

=
∑

x∈{−2,1,3}
x2pX(x) = 6

5. Consider the genders of the three children, and assume that both genders†
are equally likely.
†You SJWs really need to calm down. This is just a mathematical problem.
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Let X be the number of girls, X is a binomial random variable whose
probability mass function is

pX(x) =
(

3
x

)
· 0.5x · 0.53−x = 3

4x!(3− x)!

=⇒ E[X] =
3∑

x=0

3x
4x!(3− x)! = 3

2

6. Consider rolling a fair six-sided die, the sample space is Ω = {1, 2, 3, 4, 5, 6}.
Let X be a random variable given by

X(ω) =


−1 if ω ∈ {1, 2, 3}
2 if ω ∈ {4, 5}
8 if ω = 6

=⇒



pX(−1) = 3
6 = 1

2
pX(2) = 2

6 = 1
3

pX(8) = 1
6

=⇒ E[X] = −1
2 + 2

3 + 4
3 = 3

2

Practically, this means that at the end of the day, it is very unlikely that
the house will win.
7. Let X be the prize in dollars on a randomly chosen lottery ticket, its PMF
is

pX(100) = 5
10 000 = 1

2 000
pX(25) = 20

10 000 = 1
5 000

pX(5) = 200
10 000 = 1

500
pX(0) = 10 000− 200− 20− 5

10 000 = 391
400

Thus the expected value for a ticket’s value in dollars is

E[X] =
∑
x

x · pX(x) = 13
200

or 6.5 cents.
8. Let X be the prize in dollars on a randomly chosen raffle ticket, its PMF
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is

pX(1998) = pX(999) = 1
5000

pX(498) = 2
5000 = 1

2500
pX(98) = 5

5000 = 1
1000

pX(−2) = 5000− 5− 2− 1− 1
5000 = 4991

5000
Thus the expected value in dollars to get when buying a ticket is

E[X] =
∑
x

x · pX(x) = −11
10

or to lose $1.1.

C Variance and Standard Deviation
9. Given the outcome X from rolling a fair six-sided die.

E[X] = 1 + 2 + 3 + 4 + 5 + 6
6 = 7

2

=⇒ var(X) = E
[
(X − E[X])2

]
=
∑
x

(x− 7
2)2

6 = 35
24

=⇒ σX =
√

var(X) =
√

35
24

10. Based on the result of exercise 2,

E[X] = 7, var(X) = 35
6 , σX =

√
35
6

11. Given the integral random variable X with PMF

pX(x) =


1
9 if x ∈ [−4, 4]

0 otherwise

Let S = {−4,−3,−2,−1, 0, 1, 2, 3, 4},

E[X] =
∑
x∈Z

x · pX(x) =
∑
x∈S

x

9 +
∑

x∈Z\S
x · 0 = 0

=⇒ var(X) = E
[
X2
]

=
∑
x∈S

x2

9 = 20
3

15



12. Given the integral random variable X with PMF

pX(x) =


x2

a
if x ∈ [−3, 3]

0 otherwise

(a) Let S = {−3,−2,−1, 0, 1, 2, 3}. Since

∑
x∈Z

pX(x) = 1 ⇐⇒
∑
x∈S

x2

a
+

∑
x∈Z\S

0 = 1 ⇐⇒ a =
∑
x∈S

x2 = 28

=⇒ E[X] =
∑
x∈S

x3

28 = 0

(b) Let Z = (X−E[X])2 = X2, the range of Z is {z2 | z ∈ Z}. For all z > 9,
it is trivial that pZ(z) = 0. Otherwise,

pZ(0) = P (Z = 0) = P (X = 0) = pX(0) = 02

28 = 0

pZ(1) = P (X = ±1) = pX(−1) + pX(1) = (−1)2

28 + 12

28 = 1
14

pZ(4) = P (X = ±2) = pX(−2) + pX(2) = (−2)2

28 + 22

28 = 2
7

pZ(9) = P (X = ±3) = pX(−3) + pX(3) = (−3)2

28 + 32

28 = 9
14

(c) The variance of X is

var(X) = E
[
(X − E[X])2

]
= E[Z] = 1 · 1

14 + 4 · 2
7 + 9 · 9

14 = 7

16



4 Discrete Random Variable 2

A Conditional PMF and Expectation
1. Compute conditional PMF:

(a) Let X be the roll if a fair six-sided die and A be the event that the roll is
an number greater or equal to 4, we have A = {X ≥ 4} and P (A) = 0.5,
thus

pX|A(x) = P ({X = x} ∩ {X ≥ 4})
P (A)

For x ∈ {1, 2, 3}, {X = x} ∩ {X ≥ 4} = ∅ so pX|A(x) = 0/0.5 = 0.
For x ∈ {4, 5, 6}, {X = x} ∩ {X ≥ 4} = {x},

pX|A(x) = 1/6
0.5 = 1

3

(b) Let X represent number of heads from the three-time toss of a fair coin
and B = {X ≥ 2}, P (B) =

(
3
2

)
0.53 +

(
3
3

)
0.53 = 0.5.

pX|B(x) = P ({X = x} ∩B)
P (B) = P ({X = x} ∩ {X ≥ 2})

0.5

=⇒



pX|B(0) = pX|B(1) = 0

pX|B(2) =

(
3
2

)
0.53

0.5 = 3
4

pX|B(3) =

(
3
3

)
0.53

0.5 = 1
4

(c) Let X be the roll of a pair of fair dice and C = {X = 7}. As shown in
the previous section, P (C) = 1/6 and thus

pX|C(x) =

1 if x = 7
0 if x 6= 7

2. Consider the destination of the message and denote the event it arrives at
Liberty City, Chicago and San Fierro as B, C and F respectively, we have
B ∪ C ∪ F = Ω. The expected transit time is

E[X] = P (B)E[X|B] + P (C)E[X|C] + P (F )E[X|F ]
= 0.5 · 0.05 + 0.3 · 0.1 + 0.2 · 0.3 = 0.115
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3. Let V and T be respectively the speed (in mph) and time (in hours) Alyssa
get to class. Denote the event she walk to class as W , P (W ) = 0.6,E[V |W ] = 5

E
[
V |WC

]
= 30

=⇒


E[T |W ] = 2

5
E
[
T |WC

]
= 1

15
(a) The expected value of Alyssa’s speed is

E[V ] = P (W )E[V |W ] + P
(
WC

)
E
[
V |WC

]
= 0.6 · 5 + (1− 0.6)30 = 15

(b) The expected value of the time Alyssa she takes to get to class is

E[T ] = P (W )E[T |W ] +P
(
WC

)
E
[
T |WC

]
= 0.6 · 25 + (1− 0.6) 1

15 = 4
15

4. With X being the number of tries until the program works correctly
and p being the probability each try succeed, we have range(X) = N∗ and
pX(x) = (1− p)x−1p. The mean of X is

E[X] =
∑
x∈N∗

x · pX(x)

=
∑
x∈N∗

x(1− p)x−1p

= −p
∑
x∈N∗

d(1− p)x
dp

= −p d
dp

∑
x∈N

(1− p)x − 1


= −p d
dp

(
1
p
− 1

)

= 1
p

Similarly,
E
[
X2
]

= p
∑
x∈N∗

x2(1− p)x−1

= −p d
dp

1− p
p

∑
x∈N∗

x(1− p)x−1p


= −p d

dp

(
1
p2 −

1
p

)

= 2
p2 −

1
p

18



Therefore the variance of X is

var(X) = E
[
X2
]
− (E[X])2 = 1

p2 −
1
p

B Joint PMF and independent variables
5. Consider two independent coin tosses, each with a 3/4 probability of a
head, and let X be the number of heads obtained, X is a binomial random
variable.

E[X] = 0pX(0) + 1pX(1) + 2pX(2) =
(

2
1

)
3
4

(
1− 3

4

)
+ 2

(
2
2

)(3
4

)2
= 3

2

6. LetX be the number of red traffic lights Alyssa encounters,X is a binomial
random variable whose PMF is

pX(x) =
(

4
x

)
0.54

The mean of X is

E[X] = 1
16

4∑
x=0

x

(
4
x

)
= 2

The variance of X is

var(X) = E
[
X2
]
− (E[X])2 = 1

16

4∑
x=0

x2
(

4
x

)
− 4 = 1

7. Let Xi be 1 if the ith person gets his or her own hat and 0 otherwise, then
for all positive integer i ≤ n

E[Xi] = pXi
(1) = (n− 1)!

n! = 1
n

since if we fix one hat to its owner, there are (n − 1)! arrangements for the
rest. Due to the linearity property of expectation,

E[X] = E
[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] = 1

8. Consider four independent rolls of a six-sided die. Let X and Y be the
number of ones and twos obtained respectively, both are binomial random
variables:

pX(k) = pY (k) =
(

4
k

)(1
6

)k (5
6

)4−k
=
(

4
k

)
54−k

1296
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Given Y = y, X is the number of ones in the remaining 4− y rolls, each
of which can take the values other than two equally likely:

pX|Y (x|y) =
(

4− y
x

)(1
5

)x (4
5

)4−y−x
=
(

4− y
k

)
44−y−x

625

Thus the joint PMF of X and Y is

pX,Y (x, y) = pY (y)pX|Y (x|y) =
(

4
x

)(
4− y
k

)
54−x44−y−x

810 000

9. Given the joint PMF of two discrete random variables X and Y

pX,Y (x, y) =

c(2x+ y) where (x, y) ∈ {0, 1, 2} × {0, 1, 2, 3}
0 otherwise

(a) Consider all cases:

∑
x

∑
y

pX,Y (x, y) = 1 ⇐⇒
2∑

x=0

3∑
y=0

c(2x+ y) = 1

⇐⇒
2∑

x=0
c(8x+ 6) = 1

⇐⇒ c(24 + 18) = 1

⇐⇒ c = 1
42

(b) P (X = 2, Y = 1) = (2 · 2 + 1)/42 = 5/42.

(c) Similarly, P (X ≥ 1, Y ≤ 2) = 4/7.

(d) The marginal PMF of X:

pX(x) =
∑
y

pX,Y (x, y) =
3∑
y=0

2x+ y

42 = 4x+ 3
21

(e) The marginal PMF of Y :

pY (y) =
∑
x

pX,Y (x, y) =
2∑

x=0

2x+ y

42 = 2 + y

14

(f) Since pX(2)pY (1) 6= pX,Y (2, 1), the two variables are dependent.
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(g) Given X = 2,

pY |X(y|2) = pX,Y (2, y)
pX(2) = 4 + y

22 =⇒ pY |X(1|2) = 5
22

(h) Given Y = 2,

pX|Y (x|2) = pX,Y (x, 2)
pY (2) = x+ 1

6 =⇒ pX|Y (3|2) = 2
3

10. Given the joint PMF of two discrete random variables X and Y

pX,Y (x, y) =

cxy where (x, y) ∈ {1, 2, 3} × {1, 2, 3}
0 otherwise

(a) Consider all cases:

∑
x

∑
y

pX,Y (x, y) = 1 ⇐⇒
3∑

x=1

3∑
y=1

cxy = 1

⇐⇒ 36c = 1

⇐⇒ c = 1
36

(b) P (X = 2, Y = 3) = 1/6.

(c) Similarly, P (1 ≤ X ≤ 2, Y ≤ 2) = 1/4.

(d) By the result of (e), P (X ≥ 2) = 5/6, P (Y < 2) = P (Y = 1) = P (X =
1) = 1/6 and P (Y = 3) = 1/2.

(e) The marginal PMF of X:

pX(x) =
∑
y

pX,Y (x, y) =
3∑
y=1

xy

36 = x

6

The marginal PMF of Y :

pY (y) =
∑
x

pX,Y (x, y) =
3∑

x=1

xy

36 = y

6

(f) Since pX,Y (x, y) = pX(x)pY (y), X and Y are independent.
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5 Continuous Random Variable 1

A PDF and CDF
1. Given a PDF such that

fX(x) =

cx2 if 0 < x < 3
0 otherwise

(a) By the normalization property,

1 =
∫ ∞
−∞

fX(x) dx =
∫ 3

0
cx2 dx = 9c =⇒ c = 1

9

(b) P (1 < X < 2) =
∫ 2

1

x2

9 dx = 7
27

(c) The CDF of X:

FX(x) =


0 if x ≤ 0
1 if x ≥ 3∫ x

0

t2

9 dt = x3

27 otherwise

(d) P (1 < X ≤ 2) = FX(2)− FX(1) = 8
27 −

1
27 = 7

27
2. Denote the event that the day is sunny as A, P (A) = 2/3.

fX|A(x) =

b if 15 ≤ x ≤ 20
0 otherwise

=⇒
∫ 20

15
b dx = 1 ⇐⇒ b = 1

5

fX|AC(x) =

c if 20 ≤ x ≤ 25
0 otherwise

=⇒
∫ 25

20
c dx = 1 ⇐⇒ c = 1

5

By the total probability theorem,

fX(x) = P (A)fX|A(x) + P
(
AC
)
fX|AC(x) =



2
15 if 15 ≤ x < 20
1
15 if 20 ≤ x < 25

0 otherwise
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3. Given a random variable X with the PDF fX(x) = c

x2 + 1.

(a) By the normalization property,∫ ∞
−∞

c

x2 + 1 dx = 1 ⇐⇒ c arctan x|∞−∞ = 1 ⇐⇒ cπ = 1 ⇐⇒ c = 1
π

(b) The probability that X2 to lie between 1/3 and 1 is

P
(1

3 < X2 < 1
)

= P

(
−1 < X <

−1√
3

)
+ P

(
1√
3
< X < 1

)

= arctan x
π

∣∣∣∣
−1√

3

−1
+ arctan x

π

∣∣∣∣11√
3

= 1
6

(c) The CDF of X:

FX(x) =
∫ x

−∞

1
π (x2 + 1) dt = arctan x

π
+ 1

2

4. Given a random variable X with the CDF

FX(x) =

1− exp(−2x) if x ≥ 0
0 otherwise

(a) Let g be the antiderivative of fX , g is a constant function in (−∞, 0) and
for all positive x

g(x) = g(0) + 1− exp(−2x) =⇒ fX(x) = 2 exp(−2x)

(b) The probability that X > 2 is

P (X > 2) = P (Ω)− P (X ≤ 2) = 1− FX(2) = 1
e4

(c) The probability that −3 < X ≤ 4 is

P (−3 < X ≤ 4) = FX(4)− FX(−3) = 1− 1
e8

5. Given random variable with the following PDF:

fX(x) =


10
x2 if x > 10

0 otherwise
=⇒ FX(x) =

1− 10
x

if x > 10

0 otherwise
(b)
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P (X > 20) = P (Ω)− FX(20) = 1− 1 + 10
20 = 1

2 (a)

Let Y be the number out of six devices that will function for at least 15
hours, Y is a binomial random variable whose PMF is

pY (y) =
(

6
y

)
P y(X ≥ 15)P 6−y(X < 15)

=
(

6
y

)
(1− FX(15))y F 6−y

X (15)

=
(

6
y

)(10
15

)y (
1− 10

15

)6−y

=
(

6
y

)
2y
36

Denote A as the event that at least three out of six devices will function
for at least 15 hours,

P (A) =
6∑
y=3

pY (y) = 656
729 (c)

B Expectation, Variance and STD‡

6. Given a random variable X with the PDF fX(x) = λ
2 exp(−λ|x|).

∫ ∞
−∞

fX(x) dx =
∫ 0

−∞

λ

2 exp(λx) dx+
∫ ∞

0

λ

2 exp(−λx) dx

= 1
2

(∫ 0

−∞
d exp(λx)−

∫ ∞
0

d exp(−λx)
)

= 1− (−1)
2 = 1

Let g(x) = xfX(x), the mean of X is E[X] =
∫ ∞
−∞

g(x) dx. Since g(−x) =
−g(x) for all x, E[X] = 0.

The variance of X can be calculated as var(X) = E [X2]−E2[X] = E [X2]
or var(X) =

∫ ∞
−∞

x2fX(x) dx.

‡No, not that STD.
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Let h(x) = x2fX(x), we have h(−x) = h(x) for all x and thus

E
[
X2
]

= 2
∫ ∞
−∞

h(x) dx

= 2
∫ ∞

0

λx2

2 exp(−λx) dx

= 2
∫ ∞

0

x2

−2 d exp(−λx)

= 2
∫ ∞

0
exp(−λx) dx

2

2 −
∫ ∞

0
dx2 exp(−λx)

= 2
∫ ∞

0
x exp(−λx) dx

= −2
λ

∫ ∞
0

x d exp(−λx)

= 2
λ

(∫ ∞
0

exp(−λx) dx−
∫ ∞

0
dx exp(−λx)

)
= −2

λ2

∫ ∞
0

d exp(−λx) = 2
λ2

7. Given a random variable X with PDF

fX(x) =

2 exp(−2x) if x > 0
0 otherwise

Since X is exponentially distributed with the parameter λ = 2,

E[X] = σX = 1
λ

= 1
2 , var(X) = 1

λ2 = 1
4

Thus E [X2] = var(X) + E2[X] = 1/2.
8. Given a random variable X with PDF

fX(x) =

a+ bx2 if 0 ≤ x ≤ 1
0 otherwise

By the normalization probability,∫ 1

0

(
a+ bx2

)
dx = 1 ⇐⇒ a+ b

3 = 1

Since E[X] = 3/5,
∫ 1

0

(
ax+ 3x3

)
dx = 3

5 or a/2 + b/4 = 0.6 and thus
a = 0.6 and b = 1.2.
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9. The expectation is

E[X] =
∫ ∞

0

x2

ex
dx

= −
∫ ∞

0
x2 de−x

=
∫ ∞

0
e−x dx2 −

∫ ∞
0

dx
2

ex

=
∫ ∞

0

2x
ex

dx

= −2
∫ ∞

0
x de−x

= 2
∫ ∞

0
e−x dx− 2

∫ ∞
0

d x
ex

= −2
∫ ∞

0
de−x = 2

10. The X is exponentially distributed by the PDF fX(x) = 1
3 exp −x3 .

(a) E[X] = σX = 3 and var(X) = 9.

(b) The CDF of X is FX(x) = 1− exp(−x/3) and thus

P (2 < X ≤ 4) = FX(4)− FX(2) = exp −2
3 − exp −4

3
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6 Continuous Random Variable 2
1. Let X be the time to repair the machine,

fX(x) =


1
2 exp −x2 if x ≥ 0

0 otherwise

=⇒ FX(x) =

1− exp −x2 if x ≥ 0

0 otherwise

(a) P (X > 2) = 1− FX(2) = exp −2
2 = 1

e

(b) Let A = {X > 10} and B = {X > 8}, we have P (B) = exp −8
2 = 1

e4 and

P (A ∩ B) = P (A) = exp −10
2 = 1

e5 . Hence the conditional probability
that a repair exceeding eight hours takes at least 10 hours is

P (A|B) = P (A ∩B)
P (B) = 1

e

2. Denote the event that the day is sunny as A, P (A) = 2/3.

fX|A(x) =

b if 15 ≤ x ≤ 23
0 otherwise

=⇒
∫ 20

15
b dx = 1 ⇐⇒ b = 1

8

fX|AC(x) =

c if 20 ≤ x ≤ 25
0 otherwise

=⇒
∫ 25

20
c dx = 1 ⇐⇒ c = 1

5

By the total probability theorem,

fX(x) = P (A)fX|A(x) + P
(
AC
)
fX|AC(x) =



1
12 if 15 ≤ x < 20
3
20 if 20 ≤ x < 23
1
15 if 23 ≤ x < 25

0 otherwise

3. Let X be the waiting time and A be the event that one arrives at the
station before 7:15, we have P (A) = 0.25, P

(
AC
)

= 0.75.
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fX|A(x) =


1
5 if 0 ≤ x < 5

0 otherwise

fX|AC(x) =


1
15 if 5 ≤ x ≤ 15

0 otherwise

By the total probability theorem,

fX(x) = P (A)fX|A(x) + P
(
AC
)
fX|AC(x) =



1
10 if 0 ≤ x < 5
1
20 if 5 ≤ x < 15

0 otherwise

4. Let X be a random variable with PDF

fX(x) =


x

4 if 1 < x ≤ 3

0 otherwise

and A = {X ≥ 2}.

(a) X has the mean of E[X] =
∫ 3

1

x2

4 dx = 13
6 . The CDF of X is

FX(x) =


0 if x ≤ 1
x2 − 1

8 if 1 < x ≤ 3

1 otherwise

thus P (A) = P (Ω)− P (X < 2) = 1− FX(2) = 5
8.

fX|A(x) = P ({X = x} ∩ A)
P (A) = 8

5P ({X = x} ∩ A)

It is trivial that {X = x}∩A = ∅ if x < 2 and P ({X = x}∩A) = fX(x)
otherwise, so

fX|A(x) =


2x
5 if 2 ≤ x ≤ 3

0 otherwise
=⇒ E[X|A] =

∫ 3

2

2x2

5 dx = 38
15
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(b) Let Y = X2, the Y has the expectation of

E[Y ] = E
[
X2
]

=
∫ 3

1

x3

4 dx = 5

The variance of Y is

var(Y ) = E
[
Y 2
]
− E2[Y ] = E

[
X4
]
− 52 =

∫ 3

1

x5

4 dx− 25 = 16
3

5. Let X be Alyssa’s waiting time and A be the event there is a customer
ahead, then P (A) = P

(
AC
)

= 0.5 and

fX|A(x) =

λ exp(−λx) if x ≥ 0
0 otherwise

=⇒ FX|A(x) =

1− exp(−λx) if x ≥ 0
0 otherwise

pX|AC(x) =

1 if x = 0
0 otherwise

=⇒ FX|AC(x) =

1 if x ≥ 0
0 otherwise

Therefore

FX(x) = P (A)FX|A(x) + P
(
AC
)
FXC(x)

=
{

1− 0.5 exp(−λx) if x ≥ 0
0 otherwise

6. Given the joint PDF of X and Y

fX,Y (x, y) =

cxy if 0 < x < 4 and 1 < y < 5
0 otherwise

(a) By the normalization probability∫ 4

0

∫ 5

1
cxy dy dx = 1 ⇐⇒ 96c = 1 ⇐⇒ c = 1

96

(b) P (1 < X < 2, 2 < Y < 3) =
∫ 2

1

∫ 3

2

xy

96 dy dx = 5
128
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(c) P (X ≥ 3, Y ≤ 2) =
∫ 4

3

∫ 2

1

xy

96 dy dx = 7
128

(d) The marginal PDF of X is fX(x) =
∫ 5

1

xy

96 dy = x

8 and that of Y is

fY (y) =
∫ 4

0

xy

96 dx = y

12.

(e) The region with nonzero probability where X + Y < 3 is {(x, y) ∈ R2 |
0 < x < 2, 1 < y < 3− x}, thus

P (X + Y < 3) =
∫ 2

0

∫ 3−x

1

xy

96 dy dx =
∫ 2

0

x3 − 6x2 + 8x
192 dx = 1

48

(f) Let Cu be the line X + 2Y = u, then the PDF of U = X + 2Y is

fU(u) = P (X + 2Y = u) =
∫
Cu

fX,Y (x, y) ds

where ds is the infinitesimal length of Cu.
Let t satisfy x = u− 2t and y = t we get

fU(u) =
∫ ∞
−∞

fX,Y (u− 2t, t)

√√√√( dx
dt

)2

+
(

dy
dt

)2

dt

=
∫ ∞
−∞

fX,Y (u− 2t, t)
√

5 dt

For u < 2, with x ∈ (0, 4),

0 < u− 2t < 4 =⇒ 2t < u < 2 ⇐⇒ y = t < 1

and thus fX,Y (u − 2t, t) = 0. Similarly, the joint PDF of X and Y also
equals zero when u > 15, so fU(u) = 0 for u ∈ R \ [2, 14].
For u ∈ [2, 6],0 < x < 4

1 < y < 5
⇐⇒

0 < u− 2t < 4
1 < t < 5

⇐⇒ u

2 − 2 ≤ 1 < t <
u

2 < 5

⇐⇒ 1 < t <
u

2

so fU(u) =
√

5
96

∫ u/2

1
(ut− 2t2) dt =

√
5

2304(u3 − 12u+ 16).
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For u ∈ (6, 10),0 < x < 4
1 < y < 5

⇐⇒ 1 < u

2 − 2 < t <
u

2 < 5

⇐⇒ u

2 − 2 < t <
u

2

so fU(u) =
√

5
96

∫ u/2

u/2−2
(ut− 2t2) dt =

√
5

288(u2 − 2u).

For u ∈ [10, 14],0 < x < 4
1 < y < 5

⇐⇒ 1 < u

2 − 2 < t < 5 ≤ u

2

⇐⇒ u

2 − 2 < t < 5

so fU(u) =
√

5
96

∫ 5

u/2−2
(ut− 2t2) dt =

√
5

2304(348u− u3 − 2128).

7. Given the joint PDF of X and Y

fX,Y (x, y) =

8xy if 0 ≤ y ≤ x ≤ 1
0 otherwise

(a) The marginal PDFs are

fX(x) =


∫ x

0
8xy dy = 4x3 if 0 ≤ x ≤ 1

0 otherwise

fY (y) =


∫ 1

y
8xy dx = 4y − 4y3 if 0 ≤ y ≤ 1

0 otherwise

(b) The conditional PDFs are

fX|Y (x|y) = fX,Y (x, y)
fY (y) =


2x

1− y2 if 0 ≤ y ≤ x ≤ 1

0 otherwise

fY |X(y|x) = fX,Y (x, y)
fX(x) =


2y
x2 if 0 ≤ y ≤ x ≤ 1

0 otherwise
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(c) The conditional expectations are

E[X|Y = y] =
∫ ∞
−∞

xfX|Y (x|y) dx

=


∫ 1

y

2x2

1− y2 dx = 2x2 + 2x+ 2
3x+ 3 if 0 ≤ y ≤ 1

0 otherwise

E[Y |X = x] =
∫ ∞
−∞

yfY |X(y|x) dy

=


∫ x

0

2y2

x2 dy = 2x
3 if 0 ≤ x ≤ 1

0 otherwise

(d) It is trivial that given X = x ∈ R \ [0, 1], var(Y |X = x) = 0. Otherwise,

var(Y |X = x) = E
[
Y 2|X = x

]
− E2[Y |X = x]

=
∫ x

0

2y3

x2 dy −
(2x

3

)2
= x2

2 −
4x2

9 = x2

16

8. Given the joint PDF of X and Y

fX,Y (x, y) =

exp(−x− y) if x ≥ 0 and y ≥ 0
0 otherwise

The marginal PDFs are

fX(x) =


∫ ∞

0
exp(−x− y) dy = exp(−x) if x ≥ 0

0 otherwise

fY (y) =


∫ ∞

0
exp(−x− y) dx = exp(−y) if y ≥ 0

0 otherwise

It is noticeable that X and Y are independent, thus fX|Y (x|y) = fX(x)
and fY |X(y|x) = fY (y).
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7 Continuous Random Variable 3

A PDF and CDF
1. Given Z ∼ N (0, 1).

(a) P (Z > 1.2) = 1− Φ(1.2) = 1− 0.8849 = 0.1101

(b) P (−2 < Z < 2) = Φ(2)− Φ(−2) = 2Φ(2)− 1 = 2 · 0.9772− 1 = 0.9544

(c) P (−1.2 < Z < 1) = Φ(1) + Φ(1.2)− 1 = 0.8413 + 0.8849− 1 = 0.7262

2. Given X ∼ N (4, 9). Let Y = X − 4
3 , Y is a standard normal random

variable and FX(x) = Φ
(
x− 4

3

)
.

(a) P (X > 6) = 1− FX(6) = 1− Φ
(6− 4

3

)
≈ 1− Φ(0.67) = 0.2514

(b) P (X > 1) = 1− FX(6) = 1− Φ
(1− 4

3

)
= 1− Φ(−1) = Φ(1) = 0.8413

3. Let X be the annual snowfall in inches and Y = X − 60
20 , we have Y ∼

N (0, 1) and FX(x) = Φ
(
x− 60

20

)
. The probability that snowfall will be at

least 80 inches is

P (X ≥ 80) = 1−FX(80) = 1−Φ
(80− 60

20

)
= 1−Φ(1) = 1−0.8413 = 0.1587

4. Let X be the number of customers arriving during an one-hour period, X
is a Poisson random variable whose PMF is

pX(x) = 24x
e24x! , x ∈ N

=⇒ P (X < 15) =
14∑
x=0

pX(x) =
14∑
x=0

24x
e24x! ≈ 0.019825332823463673

B Covariance and Correlation Coefficient
5. Given the joint PMF of X and Y

pX,Y (x, y) =

c(2x+ y) where x ∈ {0, 1, 2} and y ∈ {0, 1, 2, 3}
0 otherwise
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By the normalization property,
2∑

x=0

3∑
y=0

c(2x+ y) = 1 ⇐⇒ c = 1
42

(a) The maginal PMFs are

pX(x) =
3∑
y=0

pX,Y (x, y) =


4x+ 3

21 if x ∈ {0, 1, 2}

0 otherwise

pY (y) =
2∑

x=0
pX,Y (x, y) =


y + 2

14 if y ∈ {0, 1, 2, 3}

0 otherwise

Therefore we can compute these expectations:

E[X] =
2∑

x=0
xpX(x) =

2∑
x=0

4x2 + 3x
21 = 29

21

E[Y ] =
3∑
y=0

ypY (y) =
3∑
y=0

y2 + 2y
14 = 13

7

E[XY ] =
2∑

x=0

3∑
y=0

xypX,Y (x, y) =
2∑

x=0

3∑
y=0

2x2y + xy2

42 = 17
7

(b) The variances of these variables can be calculated as

var(X) = E
[
X2
]
− E2[X] = 230

21
var(Y ) = E

[
Y 2
]
− E2[Y ] = 25

7
where

E
[
X2
]

=
2∑

x=0
x2pX(x) =

2∑
x=0

4x3 + 3x2

21 = 17
7

E
[
Y 2
]

=
3∑
y=0

y2pY (y) =
3∑
y=0

y3 + 2y2

14 = 32
7

(c) cov(X, Y ) = E[XY ]− E[X]E[Y ] = −20
147 so

ρ(X, Y ) = cov(X, Y )√
var(X)var(Y )

≈ −0.027
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6. Given the joint PDF of X and Y as followed

fX,Y (x, y) =

c(2x+ y) where (x, y) ∈ (2, 6)× (0, 5)
0 otherwise

By the normalization property,∫ 6

2

∫ 5

0
c(2x+ y) dy dx = 1 ⇐⇒ c = 1

210
(a) The maginal PMFs are

fX(x) =
∫ 5

0
fX,Y (x, y) dy =


4x+ 5

84 if 2 < x < 6

0 otherwise

fY (y) =
∫ 6

2
fX,Y (x, y) dx =


2y + 16

105 if 0 < y < 5

0 otherwise

Therefore we can compute these expectations:

E[X] =
∫ 6

2
xfX(x) dx =

∫ 6

1

4x2 + 5x
84 dx = 268

63

E[Y ] =
∫ 5

0
yfY (y) dy =

∫ 5

0

2y2 + 16y
105 dy = 170

63

E[XY ] =
∫ 6

2

∫ 5

0
xyfX,Y (x, y) dy dx =

∫ 6

2

∫ 5

0

2x2y + xy2

210 dy dx = 80
7

(b) The variances of these variables can be calculated as

var(X) = E
[
X2
]
− E2[X] = 5036

3969
var(Y ) = E

[
Y 2
]
− E2[Y ] = 16225

7938
where

E
[
X2
]

=
∫ 6

2
x2fX(x) =

∫ 6

2

4x3 + 5x2

84 = 1220
63

E
[
Y 2
]

=
∫ 5

0
y2fY (y) =

∫ 5

0

2y3 + 16y2

105 = 1175
126

(c) cov(X, Y ) = E[XY ]− E[X]E[Y ] = −200
3969 so

ρ(X, Y ) = cov(X, Y )√
var(X)var(Y )

≈ −0.0313
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C Derived Distribution
7. With X being uniform on [0, 1], by the normalization property, fX(x) = 1
=⇒ FX(x) = x on this interval. Given Y =

√
X,

FY (y) = P (Y ≤ y) = P
(√

X ≤ y
)

= FX
(
y2
)

= y2 =⇒ fy(y) = dFY
dy = 2y

if 0 < Y < 1, otherwise fY (y) = 0.
8. Let X be the speed in miles per hour,

fX(x) =


1
30 if 30 ≤ x ≤ 60

0 otherwise
=⇒ FX(x) =


0 if x < 30
x

30 − 1 if 30 ≤ x < 60

1 otherwise

then the duration of the trip is Y = 180/X. Where 3 ≤ Y ≤ 6,

FY (y) = P
(180
X
≤ y

)
= P

(
X ≥ 180

y

)
= 1− FX

(
180
y

)
= 2− 6

y

=⇒ fY (y) = dFY
dy = 6

y2

Otherwise, it is obvious that fY (y) = 0.
9.§ Let A be the event that one arrives at the station before 7:15, we have
P (A) = 0.25 and P

(
AC
)

= 0.75. The probability that X = x is 0.05 for all
x ∈ [0, 20) and is 0 otherwise, thus

FX|A(x) =


0 if x < 0∫ x

0 0.05 dt
0.25 = 0.05x

0.25 if 0 ≤ x < 5

1 otherwise

FX|AC(x) =


0 if x < 5∫ x

5 0.05 dt
0.25 = 0.05x− 0.25

0.75 if 5 ≤ x < 20

1 otherwise
§IMHO this is a really poor example to demonstrate the usefulness of this method.
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With Y = 5−X if A and Y = 20−X otherwise,

FY (y) = P (Y ≤ y)
= 1− P (Y > y)
= P (A)P (5−X > y|A) + P

(
AC
)
P
(
20−X > y|AC

)
= 1− 0.25P (X < 5− y|A)− 0.75P

(
X < 20− y|AC

)
= 1− 0.25FX|A(5− y)− 0.75FX|AC(20− y)

=



0 if y < 0
1− 0.05(5− y)− 0.05(20− y) + 0.25 = 0.1y if 0 ≤ y < 5
1− 0.05(20− y) + 0.25 = 0.05y + 0.25 if 5 ≤ y < 15
1 otherwise

=⇒ fY (y) = dFY
dy =


0.1 if 0 ≤ y < 5
0.05 if 5 ≤ y < 15
0 otherwise
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9 Limit Theorem
1. Let S100 = ∑100

i=1 Xi, M100 = S100/100 is the sample mean. We have

Z100 = S100 − 100 · 10
4
√

100
= 2.5M100 − 25

Since 100 is large, we can use the approximation P (Z100 ≤ z) ≈ Φ(z):

P (S100 ≤ 900) = P (M100 ≤ 9) = P (2.5M100 − 25 ≤ 22.5− 25)
= P (Zn ≤ −2.5) ≈ Φ(−2.5) = 1− Φ(2.5) = 0.0062

2. Let X be the weight of a box in lbs, and denote

Z49 =
∑49
i=1 Xi − 49 · 205

15
√

49
= S49

105 −
287
3

Since 49 is large, we can use the following approximation to compute the
probability that all 49 boxes can be safely loaded onto the freight elevator
and transported

P (S49 ≤ 9800) = P
(
Z49 ≤

−7
3

)
≈ 1− Φ

(7
3

)
= 0.0099

3. Let X be the number of tickets to be purchased by a student, and denote

Z100 =
∑100
i=1 Xi − 100 · 2.4

2
√

100
= S100

20 − 12

Since 100 is large, we can use the following approximation to compute
the probability that all 100 students will be able to purchase the tickets they
desire from the 250 that is left:

P (S100 ≤ 250) = P (Z100 ≤ 0.5) ≈ Φ(0.5) = 0.6915

4. Let X be the time in minutes to complete one problem, and denote

Z40 =
∑40
i=1 Xi − 40 · 5

2
√

40
= S40 − 200

4
√

10

Since 40 is large, we can use the following approximation to compute the
probability that all 40 problems within 3 hours

P (S40 ≤ 180) = P

Z49 ≤ −
√

5
2

 ≈ 1− Φ(1.58) = 0.0571
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5. Let X be the size in MB of an image and denote

Z80 =
∑80
i=1 Xi − 80 · 0.6

0.4
√

80
= 5S40 − 240

8
√

5
Since 80 is large, we can use the following formula to approximate the

probability that the total size is between 47 and 56 MB

P (47 ≤ S80 ≤ 56) = P

(√
5
−8 ≤ Z49 ≤

√
5
)
≈ Φ(2.23)− 1 + Φ(0.28) = 0.5974

6. After 11 weeks, the station is supplied

74 000 + 47 000 · 11 = 591 000 (gallons)

Let X be the gasoline consumption in gallons a week and denote

Z11 =
∑11
i=1 Xi − 11 · 50 000

10 000
√

11
= S11 − 550 000

10 000
√

11
While 11 is not exactly large, for the ease of calculation, we still use the

approximation P (Z11 ≤ z) ≈ Φ(z).

(a) The probability that the remain will be below 20 000 gallons is

P (591 000− S11 < 20 000) = P (S11 > 571 000) = P

(
Z11 >

21
10
√

11

)
≈ 1− Φ(0.63) = 0.2643

(b) Let w be the weekly delivery satisfying the probability that below 20 000
gallons will be remained is 0.5%, we have

P (74 000 + 11w − S11 < 20 000) = 0.005
⇐⇒ P (S11 > 54 000 + 11w) = 0.005

⇐⇒ P

(
Z11 >

11w − 496 000
10 000

√
11

)
= 0.005

⇐⇒ 1− Φ
(

11w − 496 000
10 000

√
11

)
= 0.005

⇐⇒ Φ
(

11w − 496 000
10 000

√
11

)
= 0.995

⇐⇒ 11w − 496 000
10 000

√
11

= 2.57

⇐⇒ w = 52840
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