Labwork 1

I. Matlab introduction

1. Vector

Exercise 1:

Define a row vector x , one row, five column with value $=(1,2,3,4,5)$; find the value $x(3)+x(2)=$?

Exercise 2:

Define a column vector $\mathrm{x}=(1,2,3,4,5)$;
Transpose this vector?

2. Matrix

Exercise 1

a. Define matrix $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ by two approaches: Define element by element and used the function zeros
b. Change the diagonal of A to 1 without define the matrix again
c. Using the same procedure, change A to $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1\end{array}\right]$
d. Define $\mathrm{B}=\mathrm{A}$ transposed
e. Calculate $\mathrm{A}+\mathrm{B}, \mathrm{A}-\mathrm{B}, \mathrm{A} * \mathrm{~B}$ and $\mathrm{A} . * \mathrm{~B}$. Give remark about the results of $A * B$ and $A . * B$
f. Reduce the size of A to 2×2 by removing row 3 and column 3 of the original matrix. Do the same for B but remove row 1 and column 1. Hint: use the operator "."
g. What's the difference $\mathrm{A}(1: 3)$ and $\mathrm{A}(1: 3,1)$ or $\mathrm{A}(:, 1)$?

3. Function

Exercise 1

Write a function that calculates the mean of a vector.
Application: vector $\mathrm{x}=1: 3: 100$

4. if else structure

Exercise 1

Electricity bill: In Vietnam, the electricity price varies with the number kWh , e.g the first 50 kWh will be cheaper than the next 50 kWh . In particular:

- From 0 to $50 \mathrm{kWh}: 1.484$ VND / kWh
- From 51 to $100 \mathrm{kWh}: 1.533$ VND / kWh
- From 101 to 200 kWh: 1.786 VND / kWh
- From 201 to 300 kWh: 2.242 VND / kWh
- From 301 to 400 kWh: 2.503 VND / kWh

Write a script to calculate the price of electricity with input is the number of kWh

5. For loop

Exercise 1:
Write a script to calculate these sums:
a. $1^{2}+2^{2}+3^{2}+\ldots+1000^{2}$
b. $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots-\frac{1}{1003}$
c. Prove that: $\frac{1}{1^{2} \cdot 3^{2}}+\frac{1}{3^{2} \cdot 5^{2}}+\frac{1}{5^{2} \cdot 7^{2}}+\ldots=\frac{\pi^{2}-8}{16}$

Exercise 2:

Write a script to calculate:
a. Combination of a set $\left(C_{n}^{k}=\frac{n!}{k!(n-k)!}\right)$
b. Permutation of a set $\left(A_{n}^{k}=\frac{n!}{(n-k)!}\right)$

Hint: write a function to calculate the factorial of a number first, then use the function to write the required script)
6. While loop

Exercise 1:

Doubling time of an investment: write a script to calculate hold long it will take for our bank investment to double. Suppose that the interest rate is 10% per year and all the interest is added to the initial investment.

7. Graphic

Exercise 1:

a. Draw the graph of a linear function $\mathrm{y}=\mathrm{x}+1$ in the range of $\mathrm{x}=-5$ to $\mathrm{x}=5$. Hint: consult help to know how to use the function linspace and plot.
b. Change the color and the pattern of the line using plot function (Hint: the option for colors and patterns can be found in the help sections)
c. Plot the line $y=-x+2$ on the same plot.
d. Add title, legend and labels for each axis.

II. Matlab-numerical method

1. Bisection method

Given an M-file to implement the bisection method:
function [root,fx,ea,iter]=bisection(func, xl, xu,es, maxit)
\% bisect: root location zeroes
\% [root, fx,ea, iter]=bisect (func,xl,xu,es,maxit,p1,p2,...) :
\% uses bisection method to find the root of func
\% input:
\% func = name of function

```
% xl, xu = lower and upper guesses
% es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by func
% output:
% root = real root
% fx = function value at root
% ea = approximate relative error (%)
% iter = number of iterations
if nargin<3,error('at least 3 input arguments required'),end
test = func(xl)*func(xu);
if test>0,error('no sign change'),end
if nargin<4||isempty(es), es=0.0001;end
if nargin<5||isempty(maxit), maxit=50;end
iter = 0; xr = xl; ea = 100;
while (1)
xrold = xr;
xr = (xl + xu)/2;
iter = iter + 1;
if xr ~= 0,ea = abs((xr - xrold)/xr) * 100;end
test = func(xl)*func(xr);
if test < 0
xu = xr;
elseif test > 0
xl = xr;
else
ea = 0;
end
if ea <= es || iter >= maxit,break,end
end
root = xr;
fx = func(xr);
```


Exercise 1

Use the function file above to find the square root of 2, taking 1 and 2 as initial values of x_{1} and x_{u}. Continue bisecting until the maximum error is less than 0.05

Exercise 2

Use the function file above to Determine the positive real root of $\boldsymbol{\operatorname { l n }}\left(\mathbf{x}^{2}\right)=\mathbf{0 . 7}$ using three iterations of the bisection method, with initial guesses of $x_{1}=0.5$ and $x_{u}=2$

2. Newton Raphson method

Newton's method may be used to solve a general equation $\mathrm{f}(\mathrm{x})=0$ by repeating the assignment

$$
\mathrm{x} \text { becomes } x-\frac{f(x)}{f^{\prime}(x)}
$$

where $f^{\prime}(\mathrm{x})$ (i.e., $\mathrm{d} f / \mathrm{d} x$) is the first derivative of $\mathrm{f}(\mathrm{x})$. The process continues until successive approximations to x are close enough

Suppose that $f(x)=x^{3}+x-3$
that is, we want to solve the equation $x^{3}+x-3=0$ (another way of stating the problem is to say we want to find the zero of $f(x)$). We have to be able to differentiate $f(x)$, which is quite easy here:
$f^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+1$. We could write inline objects for both $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}^{\prime}(\mathrm{x})$, but for this example we will use function M-files instead.

Here is a structure plan to implement Newton's method:

1. Input starting value $x 0$ and required relative error e
2. While relative error $\left|\left(x_{k}-x_{k-1}\right) / x_{k}\right| \geq e$, repeat up to, say, $k=20$:

$$
\begin{aligned}
& x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right) \\
& \text { Print } x_{k+1} \text { and } f\left(x_{k+1}\right)
\end{aligned}
$$

3. Stop

Exercise 1

Use the Editor to create and save (in the current MATLAB directory) the function file f.m as follows:

```
function y = f(x)
    y = x^3 + x - 3;
```

Then create and save another function file df.m:

```
function y = df(x)
y = 3* x^2 + 1;
```

Now write a separate script file, newtgen.m (in the same directory), that will stop either when the relative error in x is less than 10^{-8} or after, say, 20 steps.

Exercise 2

Determine the positive root of $f(x)=x^{10}-1$ using the Newton Raphson method and an initial guess of $\mathrm{x}=0.5$

Use a simple plot (Matlab) of the first few iterations (helpful in providing insight) to prove that after the first poor prediction, the technique is converging on the true root of 1 , but at a very slow rate.

