Discrete Mathematics: Algorithm

Nguyễn Gia Phong-BI9-184
December 10, 2019

1 Problem 3

The program coin.c takes an integer n from stdin and print the least coin exchange of n cents to stdout.

2 Problem 4

The program schedule.c take an integer n and n integral time intervals from stdin and print to stdout the chosen talks intervals in chronological order.

3 Problem 5

search.c contains two searching implementations, linear search (lsearch) and binary search (bsearch).

It is trivial that lsearch has nmemb or $\Theta(n)$ time complexity.
For binary_search (which is wrapped by bsearch), the time complexity (in term of number of comparisons) is can be seen as

$$
\begin{aligned}
T(n) & =T\left(\frac{n}{2}\right)+\Theta(1) \\
& =T\left(\frac{n}{2}\right)+\Theta\left(n^{\log _{2} 1}\right)
\end{aligned}
$$

since mid = (lo + high) / 2).

By the master theorem ${ }^{11}$

$$
T(n)=\Theta\left(n^{\log _{2} 1} \lg n\right)=\Theta(\lg n)
$$

4 Copying

This report along with the source files are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

[^0]
[^0]: ${ }^{1}$ Let $a \geq 1$ and $b>1$ be constants, and let $T(n)$ be defined on the nonnegative integers by the recurrence

 $$
 T(n)=a T\left(\frac{n}{b}\right)+\Theta\left(n^{\log _{b} a}\right)
 $$

 where n / b is interpreted as either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$, then

 $$
 T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)
 $$

