Numerical Method: Labwork 2 Report

Nguyễn Gia Phong-BI9-184

Fall 2019

III Polynomial

1.c. At the time of writing, function fzero in Octave have not support the Display option just yet ${ }^{*}$. However, the implementation of this option is rather trivial, thus I made a quick patch (which is also attached at the bug report). Using this, one can easily display all the iterations as followed:
octave:1> fzero (@(x) x.^2 - 9, 0, optimset ('display', 'iter'))
Search for an interval around 0 containing a sign change:
Func-eval 1, how = initial, $a=0, f(a)=-9, \quad b=0, \quad f(b)=-9$
Func-eval 2, how $=$ search, $a=0, \quad f(a)=-9, \quad b=0.099, \quad f(b)=-8.9902$
Func-eval 3, how $=$ search, $a=0, f(a)=-9, \quad b=0.1025, \quad f(b)=-8.98949$
Func-eval 4, how $=$ search, $a=0, f(a)=-9, \quad b=0.095, f(b)=-8.99098$
Func-eval 5, how $=$ search, $a=0, f(a)=-9, \quad b=0.11, \quad f(b)=-8.9879$
Func-eval 6, how $=$ search, $a=0, \quad f(a)=-9, \quad b=0.075, \quad f(b)=-8.99437$
Func-eval 7, how $=$ search, $a=0, f(a)=-9, \quad b=0.15, \quad f(b)=-8.9775$
Func-eval 8, how $=$ search, $a=0, f(a)=-9, \quad b=0, f(b)=-9$
Func-eval 9, how $=$ search, $a=0, f(a)=-9, \quad b=0.35, \quad f(b)=-8.8775$
Func-eval 10, how $=$ search, $a=0, \quad f(a)=-9, \quad b=-0.4, \quad f(b)=-8.84$
Func-eval 11, how $=$ search, $\mathrm{a}=0, \mathrm{f}(\mathrm{a})=-9, \quad \mathrm{~b}=1.1, \mathrm{f}(\mathrm{b})=-7.79$
Func-eval 12, how $=$ search, $a=0, \quad f(a)=-9, \quad b=-4.9, \quad f(b)=15.01$

Search for a a zero in the interval [-4.9, 0]:
Func-eval 13, how = initial, $x=0, f(x)=-9$
Func-eval 14, how = interpolation, $x=-1.83673, \quad f(x)=-5.62641 \quad(N a N \%)$
Func-eval 15, how $=$ interpolation, $x=-3.36837, \quad f(x)=2.3459 \quad(141.7 \%)$
Func-eval 16, how = interpolation, $x=-3.19097, f(x)=1.1823$ (-49.6%)

[^0]```
Func-eval 17, how = interpolation, x = -2.99725, f(x) = -0.0164972 (-101.4%)
Func-eval 18, how = interpolation, }x=-3.00258, f(x)=0.0154927 (193.9%
Func-eval 19, how = interpolation, }x=-3,f(x)=3.07975e-07 (-100.0%
Func-eval 20, how = interpolation, x = -3, f(x) = -7.10543e-15 (-100.0%)
Func-eval 21, how = interpolation, x = -3, f(x) = 5.32907e-15 (169.7%)
Algorithm converged
\(\mathrm{ans}=-3.0000\)
```

To answer the question in part b, (since I believe these parts are linked to each other), the current implementation of fzero search for the second bracket over quantitative chages below if X0 if it is a single scalar, thus $[-4.9,0]$ is gotten and the found solution is negative:
$[-.01+.025-.05+.10-.25+.50-1+2.5-5+10-50+100-500+1000]$

## IV Non-linear Systems

1.a. These statements were used to plot the given functions:

```
ezplot(@(x1, x2) x1 .^ 2 + x1 .* x2 - 10)
hold on
ezplot(@(x1, x2) x2 + 3 .* x1 .* x2 .^ 2 - 57)
```

As shown in the graphs (where $x_{1}^{2}+x_{1} x_{2}=10$ are the blue lines and $x_{2}+3 x_{1} x_{2}=57$ are the yellow ones), the solutions of $\left(x_{1}, x_{2}\right)$ are quite close to $(2,3)$ and $(4.5,-2)$.


I would also like to note that I am personally impressed how gnuplot (which is utilised by Octave) is able to export to TikZ graphics with ease.


[^0]:    *Bug report: https://savannah.gnu.org/bugs/?56954

