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1 Curve Fitting Problems
3. From the given table, we define the two vectors

octave> x = [0.00000 0.78540 1.57080 2.35620 ...
> 3.14159 3.92699 4.71239 5.49779 6.28319];
octave> fx = [0.00000 0.70711 1.00000 0.70711 ...
> 0.00000 -0.70711 -1.00000 -0.70711 0.00000];

(a) f(3.00000) and f(4.50000) can be interpolated by

octave> points = [3.00000 4.50000];
octave> linear = interp1 (x, fx, points)
linear =

0.12748 -0.92080

To further illustrate this, we can then plot these point along with the
linearly interpolated line: plot (points, linear, "o", x, fx)
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(b) For convenience purposes, we define a thin wrapper around interp1

octave> interpolate = @(X, method) interp1 (
> x, fx, X, method, "extrap");

Anonymous function had to be used because named functions somehow
do not support closure. Now we can use interpolate (points, method)
to approximate f(3.00000) and f(4.50000) and obtain the table below

method nearest cubic spline

f(3.00000) 0 0.13528 0.14073
f(4.50000) -1 -0.96943 -0.97745

Next, we use some plots to better visualize these interpolation methods.

octave> interplot = @(mark, line, method) plot (
> mark, interpolate (mark, method), "o",
> line, interpolate (line, method));
octave> B = linspace (x(1), x(end));
octave> interplot (points, B, "nearest")
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octave> interplot (points, B, "cubic")
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octave> interplot (points, B, "spline")
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One can easily notice while nearest simply chooses the nearest neighbor,
cubic and spline both try to smoothen the curve. This leads to the
fact that nearest’s approximations strays from linear’s in the opposite
dirrection when compared to the other two’s. It also explains why cubic’s
and spline’s results are quite close to each other.

(c) Since we are already extrapolating (by providing the extrap argument
to interp1), interpolating for f(10) is rather straightforward:

octave> interpolate (10, "spline")
ans = 1.4499
octave> C = linspace (0, 10);
octave> interplot (10, C, "spline")
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octave> interpolate (10, "linear")
ans = 3.3463
octave> interplot (10, C, "linear")
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From the existing data, we can make a guess that f is a cubic function
and regression fits quite well:

octave> p = polyfit (x, fx, 3)
p =

0.084488 -0.796282 1.681694 -0.043870
octave> polyval (p, 10)
ans = 21.633
octave> plot (x, fx, "o", C, polyval (p, C))
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In all these cases, due to the missing data, the value of f at 10 tends
to go wild, i.e. far away from the given data in fx. If anything, the
interpolated/extrapolated ones looks more harmonic, while regression
simply fit the curve into the function of the given form. It is not obvious
that either technique is better is this case, since the amount of given data
is too small.
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