Numerical Methods: Linear Programming

Nguyễn Gia Phong-BI9-184

November 8, 2019

Given the production contraints and profits of two grades of heating gas in the table below.

	Product		
Resource	Regular	Premium	Availability
Raw gas $\left(\mathrm{m}^{3} \mathrm{t}^{-1}\right)$	7	11	77
Production time $\left(\mathrm{ht}^{-1}\right)$	10	8	80
Storage (t)	9	6	
Profit $\left(\mathrm{t}^{-1}\right)$	150	175	

(a) Let two nonnegative numbers x_{1} and x_{2} respectively be the quantities in tonnes of regular and premium gas to be produced. The constraints can then be expressed as

$$
\left\{\begin{array}{ll}
7 x_{1}+11 x^{2} & \leq 77 \\
10 x_{1}+8 x_{2} & \leq 80 \\
x_{1} & \leq 9 \\
x_{2} & \leq 6
\end{array} \Longleftrightarrow\left[\begin{array}{cc}
7 & 11 \\
10 & 8 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{c}
77 \\
80 \\
9 \\
6
\end{array}\right]\right.
$$

The total profit is the linear function to be maximized:

$$
\Pi\left(x_{1}, x_{2}\right)=150 x_{1}+175 x_{2}=\left[\begin{array}{l}
150 \\
175
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], A=\left[\begin{array}{cc}7 & 11 \\ 10 & 8 \\ 1 & 0 \\ 0 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{c}77 \\ 80 \\ 9 \\ 6\end{array}\right]$ and $\mathbf{c}=\left[\begin{array}{l}150 \\ 175\end{array}\right]$, the canonical form of the problem is

$$
\max \left\{\mathbf{c}^{\mathrm{T}} \mid A \mathbf{x} \leq b \wedge \mathbf{x} \geq 0\right\}
$$

(b) Due to the absense of linprog in Octave, we instead use GNU GLPK:

```
octave> x = glpk (c, A, b, [], [], "UUUU", "CC", -1)
x =
    4.8889
    3.8889
```

Contraint type UUUU is used because all contraints are inequalities with an upper bound and CC indicates continous values of \mathbf{x}. With the sense of -1 , GLPK looks for the maximization ${ }^{1}$ of $\Pi(4.8889,3.8889)=1413.9$.
The two blank arguments are for the lower and upper bounds of \mathbf{x}, default to zero and infinite respectively. Alternatively we can use the following to obtain the same result
glpk (c, [7 11; 10 8], [77; 80], [], [9 6], "UU", "CC", -1)
(c) Within the constrains, the profit can be calculated using the following function, which takes two meshes of x and y as arguments

```
function z = profit (x, y)
    A = [7 11; 10 8];
    b = [77; 80];
    c = [150; 175];
        [m n] = size (x);
        z = -inf (m, n);
        for s=1 : m
            for t = 1 : n
                r = [x(s, t); y(s, t)];
                if A * r <= b
                z(s, t) = dot (c, r);
            endif
        endfor
    endfor
endfunction
```

Using this, the solution space is then plotted using ezsurf, which color each grid by their relative values (the smallest is dark purple and the largest is bright yellow):

```
ezsurf (@(x1, x2) constraints (x1, x2), [0 9 0 6], 58)
```

[^0]Since the plot is just a part of a plane, we can rotate it for a better view without losing any information about its shape.

[^0]: ${ }^{1}$ I believe minimization was a typo in the assignment, since it is trivial that Π has the minimum value of 0 at $\mathbf{x}=\mathbf{0}$.

