Numerical Methods: Heat Transfer

Nguyễn Gia Phong-BI9-184

November 17, 2019

Given a bar of length $L=0.4 \mathrm{~m}$ consisting of homogeneous and isotropic material with the initial temperature of $T_{0}=0^{\circ} \mathrm{C}$. Suppose it is perfectly insulated with the exception of the ends with the temperature of $T_{g}=100^{\circ} \mathrm{C}$ and $T_{d}=50^{\circ} \mathrm{C}$. The thermal properties of material will be taken constant.

- Specific heat capacity: $c_{p}=900 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{C}}$
- Thermal conductivity: $\lambda=237 \frac{\mathrm{~W}}{\mathrm{~m}^{\circ} \mathrm{C}}$
- Density: $\rho=2700 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
- Thermal diffusivity: $\alpha=\frac{\lambda}{\rho c_{p}}=9.753 \times 10^{-5} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

The heat transfer in this bar can be described by the following partial differential equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} \tag{*}
\end{equation*}
$$

where the temperature T is a function of postition x and time t.
To solve the problem numerically, we devide space and time into equal intervals of norms Δx and Δt respectively and let $M=L / \Delta x$. Consequently, the spartial coordinate is defined as $x_{i}=(i-1) \Delta x$ with $i \in[1 . . M+1]$ and the temporal one is $t_{n}=n \Delta t$ with $n \in \mathbb{N}^{*}$. With these definitions ${ }^{1}$, we denote $T_{i}^{n}=T\left(x_{i}, t_{n}\right)$. Using numerical methods, we may start approximating the solutions of ($*$).

[^0]1. The left-hand side of $(*)$ can be approximated as

$$
\frac{\partial T}{\partial t}=\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t}
$$

2. Similarly, the right-hand side is expressed in the following form

$$
\alpha \frac{\partial^{2} T}{\partial x^{2}}=\alpha \frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}}
$$

3. (*) is therefore reformulated as

$$
\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t}=\alpha \frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}}
$$

4. From the formular above and let $\beta=\alpha \frac{\Delta t}{\Delta x^{2}}$, we get

$$
T_{i}^{n+1}=T_{i}^{n}+\beta\left(T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}\right)
$$

5. Boundary conditions:

- $\forall n \in \mathbb{N}^{*}, T_{1}^{n}=T\left(0, t_{n}\right)=T_{g}$
- $\forall n \in \mathbb{N}^{*}, T_{M+1}^{n}=T\left(L, t_{n}\right)=T_{d}$
- $\forall i \in[2 . . M], T_{i}^{1}=T\left(x_{i}, 0\right)=T_{0}$

6. From (4) and (5), the temperature at point x_{i} of the bar at time t_{n} is recursively defined as

$$
T_{i}^{n}= \begin{cases}T_{i}^{n-1}+\beta\left(T_{i+1}^{n-1}-2 T_{i}^{n-1}+T_{i-1}^{n-1}\right) & \text { if } 1<i \leq M \wedge n>1 \\ T_{g} & \text { if } i=1 \\ T_{d} & \text { if } i=M+1 \\ T_{0} & \text { otherwise }\end{cases}
$$

Since the temperature only depends on the values in the past, values within $(i, n) \in[1 . . M+1] \times[1 . . N]$ with any N of choice could be computed via dynamic programming:
(a) Create a 2-dimensional dynamic array T with one-based index and size $(M+1) \times 1$
(b) Initialize T with $T_{1}^{1}=T_{g}, T_{M+1}^{1}=T_{d}$ and $T_{i}^{1}=T_{0} \forall i \in[2 . . M]$, where T_{i}^{n} is element of row i and column n
(c) For $n=2$ to N

- Let $T_{1}^{k}=T_{g}$
- For $i=2$ to M, let $T_{i}^{k}=T_{i}^{k-1}+\beta\left(T_{i+1}^{k-1}-2 T_{i}^{k-1}+T_{i-1}^{k-1}\right)$
- Let $T_{M+1}^{k}=T_{d}$
(d) Return T_{i}^{n}

Each iteration in (c) can be written in matrix notation as $T^{k}=A T^{k+1}$, where T_{n} is column n and A is a matrix of size $(M+1) \times(M+1)$

$$
A=\left[\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\beta & 1-2 \beta & \beta & \cdots & 0 & 0 & 0 \\
0 & \beta & 1-2 \beta & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1-2 \beta & \beta & 0 \\
0 & 0 & 0 & \cdots & \beta & 1-2 \beta & \beta \\
0 & 0 & 0 & \cdots & 0 & 0 & 1
\end{array}\right]
$$

7. Steps (a) to (c) is then implemented in Octave as
```
function T = heatrans (cp, lambda, rho, Tg, Td, TO, L,
                    dx, dt, N)
    alpha = lambda / rho / cp;
    beta = alpha * dt / dx^2;
    M = round (L / dx);
    side = repelem (beta, M);
    A = (diag (repelem (1 - 2*beta, M + 1))
        + diag (side, -1) + diag (side, 1));
    A(1, :) = A(end, :) = 0;
    A(1, 1) = A(end, end) = 1;
    T = repelem (TO, M + 1);
    [T(1) T(end)] = deal (Tg, Td);
    for k = 2 : N
        T(:, k) = A * T(:, k - 1);
    end
end
```

Choosing $\Delta x=0.01 \mathrm{~m}, \Delta t=0.5 \mathrm{~s}$ and $N=841$, we define
$\mathrm{T}=$ heatrans $(900,237,2700,100,50,0,0.4$,

$$
0.01,0.5,841) ;
$$

then the temperature at point x_{i} at time t_{n} is $\mathrm{T}(\mathrm{i}, \mathrm{n})$.

To visualize the heat transfer process, we use mesh to plot a 3D graph:

The temperature can be shown more intuitively using contourf:

The script to reproduce these results along with heatrans.m bundled with this report and this document itself are all licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

[^0]: ${ }^{1}$ I believe $i=0$ and $n=0$ in the assignment papers are typos since then the domain of x_{i} would exceed L and t_{0} would be negative.

