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Given a bar of length L = 0.4 m consisting of homogeneous and isotropic
material with the initial temperature of T0 = 0 ◦C. Suppose it is perfectly
insulated with the exception of the ends with the temperature of Tg = 100 ◦C
and Td = 50 ◦C. The thermal properties of material will be taken constant.

• Specific heat capacity: cp = 900 J
kg ◦C

• Thermal conductivity: λ = 237 W
m ◦C

• Density: ρ = 2700 kg
m3

• Thermal diffusivity: α = λ

ρcp

= 9.753× 10−5 m2

s

The heat transfer in this bar can be described by the following partial
differential equation

∂T

∂t
= α

∂2T

∂x2 (∗)

where the temperature T is a function of postition x and time t.
To solve the problem numerically, we devide space and time into equal

intervals of norms ∆x and ∆t respectively and letM = L/∆x. Consequently,
the spartial coordinate is defined as xi = (i− 1)∆x with i ∈ [1 ..M + 1] and
the temporal one is tn = n∆t with n ∈ N∗. With these definitions1, we denote
T n

i = T (xi, tn). Using numerical methods, we may start approximating the
solutions of (∗).

1I believe i = 0 and n = 0 in the assignment papers are typos since then the domain
of xi would exceed L and t0 would be negative.
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1. The left-hand side of (∗) can be approximated as

∂T

∂t
= T n+1

i − T n
i

∆t

2. Similarly, the right-hand side is expressed in the following form

α
∂2T

∂x2 = α
T n

i+1 − 2T n
i + T n

i−1
∆x2

3. (∗) is therefore reformulated as

T n+1
i − T n

i

∆t = α
T n

i+1 − 2T n
i + T n

i−1
∆x2

4. From the formular above and let β = α
∆t

∆x2 , we get

T n+1
i = T n

i + β
(
T n

i+1 − 2T n
i + T n

i−1

)
5. Boundary conditions:

• ∀n ∈ N∗, T n
1 = T (0, tn) = Tg

• ∀n ∈ N∗, T n
M+1 = T (L, tn) = Td

• ∀i ∈ [2 ..M ], T 1
i = T (xi, 0) = T0

6. From (4) and (5), the temperature at point xi of the bar at time tn is
recursively defined as

T n
i =



T n−1
i + β

(
T n−1

i+1 − 2T n−1
i + T n−1

i−1

)
if 1 < i ≤M ∧ n > 1

Tg if i = 1
Td if i = M + 1
T0 otherwise

Since the temperature only depends on the values in the past, values
within (i, n) ∈ [1 ..M + 1] × [1 .. N ] with any N of choice could be
computed via dynamic programming:

(a) Create a 2-dimensional dynamic array T with one-based index and
size (M + 1)× 1

(b) Initialize T with T 1
1 = Tg, T 1

M+1 = Td and T 1
i = T0 ∀i ∈ [2 ..M ],

where T n
i is element of row i and column n
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(c) For n = 2 to N
• Let T k

1 = Tg

• For i = 2 to M , let T k
i = T k−1

i + β
(
T k−1

i+1 − 2T k−1
i + T k−1

i−1

)
• Let T k

M+1 = Td

(d) Return T n
i

Each iteration in (c) can be written in matrix notation as T k = AT k+1,
where Tn is column n and A is a matrix of size (M + 1)× (M + 1)

A =



1 0 0 · · · 0 0 0
β 1− 2β β · · · 0 0 0
0 β 1− 2β · · · 0 0 0
... ... ... . . . ... ... ...
0 0 0 · · · 1− 2β β 0
0 0 0 · · · β 1− 2β β
0 0 0 · · · 0 0 1


7. Steps (a) to (c) is then implemented in Octave as

function T = heatrans (cp, lambda, rho, Tg, Td, T0, L,
dx, dt, N)

alpha = lambda / rho / cp;
beta = alpha * dt / dx^2;
M = round (L / dx);
side = repelem (beta, M);
A = (diag (repelem (1 - 2*beta, M + 1))

+ diag (side, -1) + diag (side, 1));
A(1, :) = A(end, :) = 0;
A(1, 1) = A(end, end) = 1;

T = repelem (T0, M + 1);
[T(1) T(end)] = deal (Tg, Td);
for k = 2 : N

T(:, k) = A * T(:, k - 1);
end

end

Choosing ∆x = 0.01 m, ∆t = 0.5 s and N = 841, we define

T = heatrans (900, 237, 2700, 100, 50, 0, 0.4,
0.01, 0.5, 841);

then the temperature at point xi at time tn is T(i, n).
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To visualize the heat transfer process, we use mesh to plot a 3D graph:

The temperature can be shown more intuitively using contourf:

The script to reproduce these results along with heatrans.m bun-
dled with this report and this document itself are all licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
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