diff options
author | Ricardo Wurmus <rekado@elephly.net> | 2021-05-04 07:09:50 +0200 |
---|---|---|
committer | Ricardo Wurmus <rekado@elephly.net> | 2021-05-04 07:27:43 +0200 |
commit | aa9a94bba9a5705c6a4bfb19268dc616b7f4f7d3 (patch) | |
tree | e7aa63d71acf922f52c95348fe75d0cecce98864 | |
parent | b9fb13b28437a254683273094f189396a6e1421d (diff) | |
download | guix-aa9a94bba9a5705c6a4bfb19268dc616b7f4f7d3.tar.gz |
gnu: r-abn: Update to 2.5-0.
* gnu/packages/cran.scm (r-abn): Move from here... * gnu/packages/bioconductor.scm (r-abn): ...to here; update to 2.5-0. [propagated-inputs]: Add r-rgraphviz.
-rw-r--r-- | gnu/packages/bioconductor.scm | 38 | ||||
-rw-r--r-- | gnu/packages/cran.scm | 35 |
2 files changed, 38 insertions, 35 deletions
diff --git a/gnu/packages/bioconductor.scm b/gnu/packages/bioconductor.scm index c1454f25e8..da6650b191 100644 --- a/gnu/packages/bioconductor.scm +++ b/gnu/packages/bioconductor.scm @@ -10996,6 +10996,44 @@ optionally include the physical locations or genetic map distances of each SNP on the plot.") (license license:gpl3))) +;; This is a CRAN package, but it depends on r-rgraphviz, which is a +;; Bioconductor package. +(define-public r-abn + (package + (name "r-abn") + (version "2.5-0") + (source + (origin + (method url-fetch) + (uri (cran-uri "abn" version)) + (sha256 + (base32 + "1fqmhw0mhdl6az1gpg0byvx5snhz1pl3fqikhyfjcjrc9xbsq8yw")))) + (build-system r-build-system) + (inputs + `(("gsl" ,gsl))) + (propagated-inputs + `(("r-lme4" ,r-lme4) + ("r-nnet" ,r-nnet) + ("r-rcpp" ,r-rcpp) + ("r-rcpparmadillo" ,r-rcpparmadillo) + ("r-rgraphviz" ,r-rgraphviz) + ("r-rjags" ,r-rjags))) + (home-page "https://r-bayesian-networks.org/") + (synopsis "Modelling multivariate data with additive bayesian networks") + (description + "Bayesian network analysis is a form of probabilistic graphical models +which derives from empirical data a directed acyclic graph, DAG, describing +the dependency structure between random variables. An additive Bayesian +network model consists of a form of a DAG where each node comprises a +@dfn{generalized linear model} (GLM). Additive Bayesian network models are +equivalent to Bayesian multivariate regression using graphical modelling, they +generalises the usual multivariable regression, GLM, to multiple dependent +variables. This package provides routines to help determine optimal Bayesian +network models for a given data set, where these models are used to identify +statistical dependencies in messy, complex data.") + (license license:gpl2+))) + (define-public r-pathview (package (name "r-pathview") diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm index 35c35e6716..d5b71d65d3 100644 --- a/gnu/packages/cran.scm +++ b/gnu/packages/cran.scm @@ -8037,41 +8037,6 @@ mutual information, and chi-squared statistic of independence. In addition there are functions for discretizing continuous random variables.") (license license:gpl3+))) -(define-public r-abn - (package - (name "r-abn") - (version "2.3-0") - (source - (origin - (method url-fetch) - (uri (cran-uri "abn" version)) - (sha256 - (base32 - "17vdrqm6qp5aijg00ah2imj3pqr6cl5r43hgg8dijbrbhznarci6")))) - (build-system r-build-system) - (inputs - `(("gsl" ,gsl))) - (propagated-inputs - `(("r-lme4" ,r-lme4) - ("r-nnet" ,r-nnet) - ("r-rcpp" ,r-rcpp) - ("r-rcpparmadillo" ,r-rcpparmadillo) - ("r-rjags" ,r-rjags))) - (home-page "https://r-bayesian-networks.org/") - (synopsis "Modelling multivariate data with additive bayesian networks") - (description - "Bayesian network analysis is a form of probabilistic graphical models -which derives from empirical data a directed acyclic graph, DAG, describing -the dependency structure between random variables. An additive Bayesian -network model consists of a form of a DAG where each node comprises a -@dfn{generalized linear model} (GLM). Additive Bayesian network models are -equivalent to Bayesian multivariate regression using graphical modelling, they -generalises the usual multivariable regression, GLM, to multiple dependent -variables. This package provides routines to help determine optimal Bayesian -network models for a given data set, where these models are used to identify -statistical dependencies in messy, complex data.") - (license license:gpl2+))) - (define-public r-acd (package (name "r-acd") |