diff options
author | Ricardo Wurmus <ricardo.wurmus@mdc-berlin.de> | 2018-08-16 16:47:42 +0200 |
---|---|---|
committer | Ricardo Wurmus <rekado@elephly.net> | 2018-08-16 17:04:13 +0200 |
commit | cea4d360d4b21c1dc27c9ec676bc08830f600c61 (patch) | |
tree | b75b9bd16bbb45260127e506f6bb74fc77e05ae7 /gnu/packages/cran.scm | |
parent | fbdf05b1fcc12233c39db3f90a029df1ff47824d (diff) | |
download | guix-cea4d360d4b21c1dc27c9ec676bc08830f600c61.tar.gz |
gnu: Add r-rootsolve.
* gnu/packages/cran.scm (r-rootsolve): New variable.
Diffstat (limited to 'gnu/packages/cran.scm')
-rw-r--r-- | gnu/packages/cran.scm | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm index 3665e3582e..411e5a9820 100644 --- a/gnu/packages/cran.scm +++ b/gnu/packages/cran.scm @@ -4813,3 +4813,37 @@ receiver operating characteristic (ROC curves). The area under the curve (AUC) can be compared with statistical tests based on U-statistics or bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves.") (license license:gpl3+))) + +(define-public r-rootsolve + (package + (name "r-rootsolve") + (version "1.7") + (source + (origin + (method url-fetch) + (uri (cran-uri "rootSolve" version)) + (sha256 + (base32 + "08ic6ggcc5dw4nv9xsqkm3vnvswmxyhnqnv1rdjv1h2gy1ivpcq8")))) + (properties `((upstream-name . "rootSolve"))) + (build-system r-build-system) + (native-inputs `(("gfortran" ,gfortran))) + (home-page "https://cran.r-project.org/web/packages/rootSolve/") + (synopsis "Tools for the analysis of ordinary differential equations") + (description + "This package provides routines to find the root of nonlinear functions, +and to perform steady-state and equilibrium analysis of @dfn{ordinary +differential equations} (ODE). It includes routines that: + +@enumerate +@item generate gradient and jacobian matrices (full and banded), +@item find roots of non-linear equations by the Newton-Raphson method, +@item estimate steady-state conditions of a system of (differential) equations + in full, banded or sparse form, using the Newton-Raphson method, or by + dynamically running, +@item solve the steady-state conditions for uni- and multicomponent 1-D, 2-D, + and 3-D partial differential equations, that have been converted to ordinary + differential equations by numerical differencing (using the method-of-lines + approach). +@end enumerate\n") + (license license:gpl2+))) |