summary refs log tree commit diff
path: root/gnu/packages/patches
diff options
context:
space:
mode:
authorBen Woodcroft <donttrustben@gmail.com>2017-12-14 18:45:21 +1000
committerBen Woodcroft <donttrustben@gmail.com>2017-12-14 22:50:19 +1000
commit8a6cd65a2a66107b5a1ae12138a9af0002f55983 (patch)
tree45dc80b4bc741f5bc5c6b57353e85bc8f19ab68a /gnu/packages/patches
parent4e0b3583eab7dd67c2e13ad614e48f8d31c59c90 (diff)
downloadguix-8a6cd65a2a66107b5a1ae12138a9af0002f55983.tar.gz
gnu: python-scikit-learn: Patch test non-determinism.
* gnu/packages/patches/python-scikit-learn-fix-test-non-determinism.patch:
New file.
* gnu/packages/machine-learning.scm (python-scikit-learn)[source]: Use it.
* gnu/local.mk (dist_patch_DATA): Add it.
Diffstat (limited to 'gnu/packages/patches')
-rw-r--r--gnu/packages/patches/python-scikit-learn-fix-test-non-determinism.patch25
1 files changed, 25 insertions, 0 deletions
diff --git a/gnu/packages/patches/python-scikit-learn-fix-test-non-determinism.patch b/gnu/packages/patches/python-scikit-learn-fix-test-non-determinism.patch
new file mode 100644
index 0000000000..90328cc0eb
--- /dev/null
+++ b/gnu/packages/patches/python-scikit-learn-fix-test-non-determinism.patch
@@ -0,0 +1,25 @@
+This patch stops a test sometimes failing because of non-determinism.  See
+https://github.com/scikit-learn/scikit-learn/pull/9542
+
+From ff9f6db6e8b59c2b3528c8137ed4054f57c1d7c4 Mon Sep 17 00:00:00 2001
+From: Hanmin Qin <qinhanmin2005@sina.com>
+Date: Sun, 13 Aug 2017 22:13:49 +0800
+Subject: [PATCH] add random_state
+
+---
+ sklearn/tests/test_kernel_ridge.py | 2 +-
+ 1 file changed, 1 insertion(+), 1 deletion(-)
+
+diff --git a/sklearn/tests/test_kernel_ridge.py b/sklearn/tests/test_kernel_ridge.py
+index 4750a096ac6..979875870b6 100644
+--- a/sklearn/tests/test_kernel_ridge.py
++++ b/sklearn/tests/test_kernel_ridge.py
+@@ -10,7 +10,7 @@
+ from sklearn.utils.testing import assert_array_almost_equal
+ 
+ 
+-X, y = make_regression(n_features=10)
++X, y = make_regression(n_features=10, random_state=0)
+ Xcsr = sp.csr_matrix(X)
+ Xcsc = sp.csc_matrix(X)
+ Y = np.array([y, y]).T