summary refs log tree commit diff
path: root/gnu
diff options
context:
space:
mode:
authorLars-Dominik Braun <lars@6xq.net>2021-07-20 10:43:46 +0200
committerLars-Dominik Braun <lars@6xq.net>2021-07-21 13:36:07 +0200
commit2925d8419682ee84cb13781380fefca635e2954a (patch)
tree9f16aa4361930be094bc7d3723c95b55be46b73e /gnu
parentf711ba28d2c9c1a9652cb4437b26a0550b74b757 (diff)
downloadguix-2925d8419682ee84cb13781380fefca635e2954a.tar.gz
gnu: Add r-glinternet.
* gnu/packages/statistics.scm (r-glinternet): New variable.
Diffstat (limited to 'gnu')
-rw-r--r--gnu/packages/statistics.scm24
1 files changed, 24 insertions, 0 deletions
diff --git a/gnu/packages/statistics.scm b/gnu/packages/statistics.scm
index 757c67bcf5..ce9f1bf888 100644
--- a/gnu/packages/statistics.scm
+++ b/gnu/packages/statistics.scm
@@ -6282,3 +6282,27 @@ and functions that facilitate the plotting of missing values and examination of
 imputations.  This allows missing data dependencies to be explored with minimal
 deviation from the common work patterns of @code{ggplot2} and tidy data.")
     (license license:expat)))
+
+(define-public r-glinternet
+  (package
+    (name "r-glinternet")
+    (version "1.0.11")
+    (source
+     (origin
+       (method url-fetch)
+       (uri (cran-uri "glinternet" version))
+       (sha256
+        (base32
+         "1lqph2hj0h826gcfyk290ahkfalpnrd6jzymm60xi2qxia14lzk5"))))
+    (build-system r-build-system)
+    (home-page "http://web.stanford.edu/~hastie/Papers/glinternet_jcgs.pdf")
+    (synopsis "Learning interactions via hierarchical group-lasso regularization")
+    (description "Group-Lasso INTERaction-NET.  Fits linear pairwise-interaction
+models that satisfy strong hierarchy: if an interaction coefficient is estimated
+to be nonzero, then its two associated main effects also have nonzero estimated
+coefficients.  Accommodates categorical variables (factors) with arbitrary
+numbers of levels, continuous variables, and combinations thereof.  Implements
+the machinery described in the paper \"Learning interactions via hierarchical
+group-lasso regularization\" (JCGS 2015, Volume 24, Issue 3).
+Michael Lim & Trevor Hastie (2015)")
+    (license license:gpl2)))