summary refs log tree commit diff
path: root/gnu/packages/machine-learning.scm
blob: cfeb1daf63b3afbebdb3730fa813821b3a1f21bc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
;;; GNU Guix --- Functional package management for GNU
;;; Copyright © 2015 Ricardo Wurmus <rekado@elephly.net>
;;;
;;; This file is part of GNU Guix.
;;;
;;; GNU Guix is free software; you can redistribute it and/or modify it
;;; under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 3 of the License, or (at
;;; your option) any later version.
;;;
;;; GNU Guix is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with GNU Guix.  If not, see <http://www.gnu.org/licenses/>.

(define-module (gnu packages machine-learning)
  #:use-module ((guix licenses) #:prefix license:)
  #:use-module (guix packages)
  #:use-module (guix utils)
  #:use-module (guix download)
  #:use-module (guix build-system gnu)
  #:use-module (gnu packages)
  #:use-module (gnu packages boost)
  #:use-module (gnu packages compression)
  #:use-module (gnu packages gcc)
  #:use-module (gnu packages maths)
  #:use-module (gnu packages python)
  #:use-module (gnu packages xml))

(define-public libsvm
  (package
    (name "libsvm")
    (version "3.20")
    (source
     (origin
       (method url-fetch)
       (uri (string-append
             "https://github.com/cjlin1/libsvm/archive/v"
             (string-delete #\. version) ".tar.gz"))
       (file-name (string-append name "-" version ".tar.gz"))
       (sha256
        (base32
         "1jpjlql3frjza7zxzrqqr2firh44fjb8fqsdmvz6bjz7sb47zgp4"))))
    (build-system gnu-build-system)
    (arguments
     `(#:tests? #f ;no "check" target
       #:phases (modify-phases %standard-phases
                  (delete 'configure)
                  (replace
                   'install
                   (lambda* (#:key outputs #:allow-other-keys)
                     (let* ((out (assoc-ref outputs "out"))
                            (bin (string-append out "/bin/")))
                       (mkdir-p bin)
                       (for-each (lambda (file)
                                   (copy-file file (string-append bin file)))
                                 '("svm-train"
                                   "svm-predict"
                                   "svm-scale")))
                     #t)))))
    (home-page "http://www.csie.ntu.edu.tw/~cjlin/libsvm/")
    (synopsis "Library for Support Vector Machines")
    (description
     "LIBSVM is a machine learning library for support vector
classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and
distribution estimation (one-class SVM).  It supports multi-class
classification.")
    (license license:bsd-3)))

(define-public python-libsvm
  (package (inherit libsvm)
    (name "python-libsvm")
    (build-system gnu-build-system)
    (arguments
     `(#:tests? #f ;no "check" target
       #:make-flags '("-C" "python")
       #:phases
       (modify-phases %standard-phases
         (delete 'configure)
         (replace
          'install
          (lambda* (#:key inputs outputs #:allow-other-keys)
            (let ((site (string-append (assoc-ref outputs "out")
                                       "/lib/python"
                                       (string-take
                                        (string-take-right
                                         (assoc-ref inputs "python") 5) 3)
                                       "/site-packages/")))
              (substitute* "python/svm.py"
                (("../libsvm.so.2") "libsvm.so.2"))
              (mkdir-p site)
              (for-each (lambda (file)
                          (copy-file file (string-append site (basename file))))
                        (find-files "python" "\\.py"))
              (copy-file "libsvm.so.2"
                         (string-append site "libsvm.so.2")))
            #t)))))
    (inputs
     `(("python" ,python)))
    (synopsis "Python bindings of libSVM")))

(define-public randomjungle
  (package
    (name "randomjungle")
    (version "2.1.0")
    (source
     (origin
       (method url-fetch)
       (uri (string-append
             "http://www.imbs-luebeck.de/imbs/sites/default/files/u59/"
             "randomjungle-" version ".tar_.gz"))
       (sha256
        (base32
         "12c8rf30cla71swx2mf4ww9mfd8jbdw5lnxd7dxhyw1ygrvg6y4w"))))
    (build-system gnu-build-system)
    (arguments
     `(#:configure-flags
       (list (string-append "--with-boost="
                            (assoc-ref %build-inputs "boost")))
       #:phases
       (modify-phases %standard-phases
         (add-before
          'configure 'set-CXXFLAGS
          (lambda _
            (setenv "CXXFLAGS" "-fpermissive ")
            #t)))))
    (inputs
     `(("boost" ,boost)
       ("gsl" ,gsl)
       ("libxml2" ,libxml2)
       ("zlib" ,zlib)))
    (native-inputs
     `(("gfortran" ,gfortran-4.8)))
    (home-page "http://www.imbs-luebeck.de/imbs/de/node/227/")
    (synopsis "Implementation of the Random Forests machine learning method")
    (description
     "Random Jungle is an implementation of Random Forests.  It is supposed to
analyse high dimensional data.  In genetics, it can be used for analysing big
Genome Wide Association (GWA) data.  Random Forests is a powerful machine
learning method.  Most interesting features are variable selection, missing
value imputation, classifier creation, generalization error estimation and
sample proximities between pairs of cases.")
    (license license:gpl3+)))