1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
|
;;; GNU Guix --- Functional package management for GNU
;;; Copyright © 2015, 2016, 2020, 2021, 2022, 2023, 2024 Ricardo Wurmus <rekado@elephly.net>
;;; Copyright © 2015 Federico Beffa <beffa@fbengineering.ch>
;;; Copyright © 2016 Ben Woodcroft <donttrustben@gmail.com>
;;; Copyright © 2016 Hartmut Goebel <h.goebel@crazy-compilers.com>
;;; Copyright © 2016, 2022-2024 Efraim Flashner <efraim@flashner.co.il>
;;; Copyright © 2016-2020, 2022 Marius Bakke <marius@gnu.org>
;;; Copyright © 2019 Tobias Geerinckx-Rice <me@tobias.gr>
;;; Copyright © 2019, 2021, 2022, 2023 Maxim Cournoyer <maxim.cournoyer@gmail.com>
;;; Copyright © 2019 Giacomo Leidi <goodoldpaul@autistici.org>
;;; Copyright © 2020 Pierre Langlois <pierre.langlois@gmx.com>
;;; Copyright © 2020, 2021, 2022, 2023, 2024 Vinicius Monego <monego@posteo.net>
;;; Copyright © 2021 Greg Hogan <code@greghogan.com>
;;; Copyright © 2021 Roel Janssen <roel@gnu.org>
;;; Copyright © 2021 Paul Garlick <pgarlick@tourbillion-technology.com>
;;; Copyright © 2021 Arun Isaac <arunisaac@systemreboot.net>
;;; Copyright © 2021, 2023 Felix Gruber <felgru@posteo.net>
;;; Copyright © 2022 Malte Frank Gerdes <malte.f.gerdes@gmail.com>
;;; Copyright © 2022 Guillaume Le Vaillant <glv@posteo.net>
;;; Copyright © 2022 Paul A. Patience <paul@apatience.com>
;;; Copyright © 2022 Wiktor Żelazny <wzelazny@vurv.cz>
;;; Copyright © 2022 Eric Bavier <bavier@posteo.net>
;;; Copyright © 2022 Antero Mejr <antero@mailbox.org>
;;; Copyright © 2022 jgart <jgart@dismail.de>
;;; Copyright © 2023, 2024 Troy Figiel <troy@troyfigiel.com>
;;;
;;; This file is part of GNU Guix.
;;;
;;; GNU Guix is free software; you can redistribute it and/or modify it
;;; under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 3 of the License, or (at
;;; your option) any later version.
;;;
;;; GNU Guix is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with GNU Guix. If not, see <http://www.gnu.org/licenses/>.
(define-module (gnu packages python-science)
#:use-module ((guix licenses) #:prefix license:)
#:use-module (gnu packages)
#:use-module (gnu packages base)
#:use-module (gnu packages bioinformatics)
#:use-module (gnu packages boost)
#:use-module (gnu packages build-tools)
#:use-module (gnu packages check)
#:use-module (gnu packages chemistry)
#:use-module (gnu packages cpp)
#:use-module (gnu packages crypto)
#:use-module (gnu packages databases)
#:use-module (gnu packages digest)
#:use-module (gnu packages gcc)
#:use-module (gnu packages geo)
#:use-module (gnu packages image)
#:use-module (gnu packages image-processing)
#:use-module (gnu packages machine-learning)
#:use-module (gnu packages maths)
#:use-module (gnu packages mpi)
#:use-module (gnu packages pcre)
#:use-module (gnu packages perl)
#:use-module (gnu packages pkg-config)
#:use-module (gnu packages python)
#:use-module (gnu packages python-build)
#:use-module (gnu packages python-crypto)
#:use-module (gnu packages python-check)
#:use-module (gnu packages python-web)
#:use-module (gnu packages python-xyz)
#:use-module (gnu packages simulation)
#:use-module (gnu packages sphinx)
#:use-module (gnu packages statistics)
#:use-module (gnu packages time)
#:use-module (gnu packages xdisorg)
#:use-module (gnu packages xml)
#:use-module (gnu packages xorg)
#:use-module (guix packages)
#:use-module (guix gexp)
#:use-module (guix download)
#:use-module (guix git-download)
#:use-module (guix utils)
#:use-module (guix build-system python)
#:use-module (guix build-system pyproject))
(define-public python-scipy
(package
(name "python-scipy")
(version "1.12.0")
(source
(origin
(method url-fetch)
(uri (pypi-uri "scipy" version))
(sha256
(base32 "18rn15wg3lp58z204fbjjhy0h79c53yg3c4qqs9h3liniamspxab"))))
(build-system pyproject-build-system)
(arguments
(list
#:phases
#~(modify-phases %standard-phases
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
;; Step out of the source directory to avoid interference.
(with-directory-excursion "/tmp"
(invoke "python" "-c"
(string-append
"import scipy; scipy.test('fast', parallel="
(number->string (parallel-job-count))
", verbose=2)"))))))
(add-after 'check 'install-doc
(lambda* (#:key outputs #:allow-other-keys)
;; FIXME: Documentation cannot be built because it requires
;; a newer version of pydata-sphinx-theme, which currently
;; cannot build without internet access:
;; <https://github.com/pydata/pydata-sphinx-theme/issues/628>.
;; Keep the phase for easy testing.
(let ((sphinx-build (false-if-exception
(search-input-file input "bin/sphinx-build"))))
(if sphinx-build
(let* ((doc (assoc-ref outputs "doc"))
(data (string-append doc "/share"))
(docdir (string-append
data "/doc/"
#$(package-name this-package) "-"
#$(package-version this-package)))
(html (string-append docdir "/html")))
(with-directory-excursion "doc"
;; Build doc.
(invoke "make" "html"
;; Building the documentation takes a very long time.
;; Parallelize it.
(string-append "SPHINXOPTS=-j"
(number->string (parallel-job-count))))
;; Install doc.
(mkdir-p html)
(copy-recursively "build/html" html)))
(format #t "sphinx-build not found, skipping~%"))))))))
(propagated-inputs
(append
(if (supported-package? python-jupytext) ; Depends on pandoc.
(list python-jupytext)
'())
(list python-matplotlib
python-mpmath
python-mypy
python-numpy
python-numpydoc
python-pydata-sphinx-theme
python-pydevtool
python-pythran
python-rich-click
python-sphinx
python-threadpoolctl
python-typing-extensions)))
(inputs (list openblas pybind11-2.10))
(native-inputs
(list gfortran
;; XXX: Adding gfortran shadows GCC headers, causing a compilation
;; failure. Somehow also providing GCC works around it ...
gcc
meson-python
pkg-config
python-click
python-cython-0.29.35
python-doit
python-hypothesis
python-pooch
python-pycodestyle
python-pydevtool
python-pytest
python-pytest-cov
python-pytest-timeout
python-pytest-xdist))
(home-page "https://scipy.org/")
(synopsis "The Scipy library provides efficient numerical routines")
(description "The SciPy library is one of the core packages that make up
the SciPy stack. It provides many user-friendly and efficient numerical
routines such as routines for numerical integration and optimization.")
(license license:bsd-3)))
(define-public python-scikit-allel
(package
(name "python-scikit-allel")
(version "1.3.5")
(source
(origin
(method url-fetch)
(uri (pypi-uri "scikit-allel" version))
(sha256
(base32 "1vg88ng6gd175gzk39iz1drxig5l91dyx398w2kbw3w8036zv8gj"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags
'(list "-k"
(string-append
;; AttributeError: 'Dataset' object has no attribute 'asstr'
"not test_vcf_to_hdf5"
" and not test_vcf_to_hdf5_exclude"
" and not test_vcf_to_hdf5_rename"
" and not test_vcf_to_hdf5_group"
" and not test_vcf_to_hdf5_ann"
;; Does not work with recent hmmlearn
" and not test_roh_mhmm_0pct"
" and not test_roh_mhmm_100pct"))
#:phases
'(modify-phases %standard-phases
(add-before 'check 'build-ext
(lambda _
(invoke "python" "setup.py" "build_ext" "--inplace"))))))
(propagated-inputs
(list python-dask
python-numpy))
(native-inputs
(list python-cython
;; The following are all needed for the tests
htslib
python-h5py
python-hmmlearn
python-numexpr
python-pytest
python-scipy
python-setuptools-scm
python-zarr))
(home-page "https://github.com/cggh/scikit-allel")
(synopsis "Explore and analyze genetic variation data")
(description
"This package provides utilities for exploratory analysis of large scale
genetic variation data.")
(license license:expat)))
(define-public python-scikit-fem
(package
(name "python-scikit-fem")
(version "9.0.1")
(source (origin
(method git-fetch) ; no tests in PyPI
(uri (git-reference
(url "https://github.com/kinnala/scikit-fem")
(commit version)))
(file-name (git-file-name name version))
(sha256
(base32
"1r1c88rbaa7vjfnljbzx8paf36yzpy33bragl99ykn6i2srmjrd4"))))
(build-system pyproject-build-system)
(propagated-inputs (list python-meshio python-numpy python-scipy))
(native-inputs
(list python-autograd
python-pyamg
python-pytest
python-shapely))
(home-page "https://scikit-fem.readthedocs.io/en/latest/")
(synopsis "Library for performing finite element assembly")
(description
"@code{scikit-fem} is a library for performing finite element assembly.
Its main purpose is the transformation of bilinear forms into sparse matrices
and linear forms into vectors.")
(license license:bsd-3)))
(define-public python-scikit-fuzzy
(package
(name "python-scikit-fuzzy")
(version "0.4.2")
(source
(origin
(method url-fetch)
(uri (pypi-uri "scikit-fuzzy" version))
(sha256
(base32 "0bp1n771fj44kdp7a00bcvfwirvv2rc803b7g6yf3va7v0j29c8s"))))
(build-system python-build-system)
(arguments '(#:tests? #f)) ;XXX: not compatible with newer numpy.testing
(native-inputs
(list python-nose))
(propagated-inputs
(list python-networkx python-numpy python-scipy))
(home-page "https://github.com/scikit-fuzzy/scikit-fuzzy")
(synopsis "Fuzzy logic toolkit for SciPy")
(description
"This package implements many useful tools for projects involving fuzzy
logic, also known as grey logic.")
(license license:bsd-3)))
(define-public python-scikit-image
(package
(name "python-scikit-image")
(version "0.22.0")
(source
(origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/scikit-image/scikit-image")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32 "10fzyq2w1ldvfkmj374l375yrx33xrlw39xc9kmk8fxfi77jpykd"))))
(build-system pyproject-build-system)
(arguments
(list
#:phases
#~(modify-phases %standard-phases
(add-before 'build 'change-home-dir
(lambda _
;; Change from /homeless-shelter to /tmp for write permission.
(setenv "HOME" "/tmp")))
(replace 'check
(lambda* (#:key tests? test-flags #:allow-other-keys)
(when tests?
(with-directory-excursion "/tmp"
(apply invoke "pytest" "-v" "--doctest-modules"
(append test-flags (list #$output))))))))))
;; See requirements/ for the list of build and run time requirements.
;; NOTE: scikit-image has an optional dependency on python-pooch, however
;; propagating it would enable many more tests that require online data.
(propagated-inputs
(list python-cloudpickle
python-dask
python-imageio
python-lazy-loader
python-matplotlib
python-networkx
python-numpy
python-pillow
python-pythran
python-pywavelets
python-scipy
python-tifffile))
(native-inputs
(list meson-python
python-cython
python-numpydoc
python-packaging
python-pytest
python-pytest-localserver
python-wheel))
(home-page "https://scikit-image.org/")
(synopsis "Image processing in Python")
(description
"Scikit-image is a collection of algorithms for image processing.")
(license license:bsd-3)))
(define-public python-scikit-optimize
(package
(name "python-scikit-optimize")
(version "0.9.0")
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/scikit-optimize/scikit-optimize")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"0hsq6pmryimxc275yrcy4bv217bx7ma6rz0q6m4138bv4zgq18d1"))
(patches
;; These are for compatibility with more recent versions of
;; numpy and scikit-learn.
(search-patches "python-scikit-optimize-1148.patch"
"python-scikit-optimize-1150.patch"))
(modules '((guix build utils)))
(snippet
;; Since scikit-learn 1.3 max_features no longer supports
;; 'auto', which is identical to 'sqrt'
'(substitute* '("skopt/learning/forest.py"
"skopt/learning/tests/test_forest.py")
(("max_features=['\"]auto['\"]")
"max_features='sqrt'")))))
(build-system pyproject-build-system)
(propagated-inputs
(list python-joblib
python-matplotlib
python-numpy
python-pyaml
python-scikit-learn
python-scipy))
(native-inputs
(list python-pytest))
(home-page "https://scikit-optimize.github.io/")
(synopsis "Sequential model-based optimization toolbox")
(description "Scikit-Optimize, or @code{skopt}, is a simple and efficient
library to minimize (very) expensive and noisy black-box functions. It
implements several methods for sequential model-based optimization.
@code{skopt} aims to be accessible and easy to use in many contexts.")
(license license:bsd-3)))
(define-public python-tdda
(package
(name "python-tdda")
(version "2.0.9")
(source
(origin
(method url-fetch)
(uri (pypi-uri "tdda" version))
(sha256
(base32 "1xs91s8b7cshjcqw88qsrjh10xly799k5rf2ycawqfz2mw8sy3br"))))
(build-system pyproject-build-system)
(arguments
'(#:phases (modify-phases %standard-phases
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(invoke "tdda" "test")))))))
(native-inputs (list python-numpy python-pandas))
(home-page "https://www.stochasticsolutions.com")
(synopsis "Test-driven data analysis library for Python")
(description
"The TDDA Python module provides command-line and Python API support
for the overall process of data analysis, through tools that peform
reference testing, constraint discovery for data, automatic inference
of regular expressions from text data and automatic test generation.")
(license license:expat))) ; MIT License
(define-public python-trimesh
(package
(name "python-trimesh")
(version "4.0.10")
(source
(origin
(method git-fetch) ; no tests in PyPI
(uri (git-reference
(url "https://github.com/mikedh/trimesh")
(commit version)))
(file-name (git-file-name name version))
(sha256
(base32 "0ry04qaw0pb3hkxv4gmna87jwk97aqangd21wbr2dr4xshmkbyyb"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags
#~(list "-k" (string-append
;; XXX: When more optional modules are available review
;; disabled tests once again.
;;
;; Disable tests requiring optional, not packed modules.
"not test_material_round"
" and not test_bezier_example"
" and not test_discrete"
" and not test_dxf"
" and not test_layer"
" and not test_multi_nodupe"
" and not test_obj_roundtrip"
" and not test_roundtrip"
" and not test_scene"
" and not test_slice_onplane"
" and not test_svg"
" and not test_svg"))
#:phases
#~(modify-phases %standard-phases
(add-after 'unpack 'fix-build
(lambda _
(substitute* "trimesh/resources/templates/blender_boolean.py.tmpl"
(("\\$MESH_PRE")
"'$MESH_PRE'")))))))
(native-inputs
(list python-coveralls
python-pyinstrument
python-pytest
python-pytest-cov))
(propagated-inputs
(list python-chardet
python-colorlog
python-httpx
python-jsonschema
python-lxml
python-networkx
python-numpy
python-pillow
;; python-pycollada ; not packed yet, optional
;; python-pyglet ; not packed yet, optional
python-requests
python-rtree
python-scipy
python-setuptools
python-shapely
;; python-svg-path ; not packed yet, optional
python-sympy
python-xxhash))
(home-page "https://github.com/mikedh/trimesh")
(synopsis "Python library for loading and using triangular meshes")
(description
"Trimesh is a pure Python library for loading and using triangular meshes
with an emphasis on watertight surfaces. The goal of the library is to provide
a full featured and well tested Trimesh object which allows for easy
manipulation and analysis, in the style of the Polygon object in the Shapely
library.")
(license license:expat)))
(define-public python-meshzoo
(package
(name "python-meshzoo")
(version "0.9.4")
(source
(origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/diego-hayashi/meshzoo")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32 "107byfppbq16fqyp2hw7ydcvvahspzq0hzvlvzqg2zxi1aigbr68"))))
(build-system pyproject-build-system)
(propagated-inputs
(list python-numpy))
(native-inputs (list python-flit-core python-matplotlib python-pytest))
(home-page "https://github.com/diego-hayashi/meshzoo")
(synopsis "Mesh generator for simple geometries")
(description
"@code{meshzoo} is a mesh generator for finite element or finite
volume computations for simple domains like regular polygons, disks,
spheres, cubes, etc.")
(license license:gpl3+)))
(define-public python-pyamg
(package
(name "python-pyamg")
(version "5.0.1")
(source (origin
(method url-fetch)
(uri (pypi-uri "pyamg" version))
(modules '((guix build utils)))
(snippet
;; Delete autogenerated files, regenerate in a phase.
#~(begin
(for-each
(lambda (file)
(delete-file (string-append "pyamg/amg_core/" file)))
'("air_bind.cpp"
"evolution_strength_bind.cpp"
"graph_bind.cpp"
"krylov_bind.cpp"
"linalg_bind.cpp"
"relaxation_bind.cpp"
"ruge_stuben_bind.cpp"
"smoothed_aggregation_bind.cpp"
"tests/bind_examples_bind.cpp"))))
(sha256
(base32
"0l3dliwynxyjvbgpmi2k8jqvkkw6fc00c8w69h6swhrkfh0ql12z"))))
(arguments
(list
#:test-flags
;; Test installed package in order to find C++ modules.
#~(list "--pyargs" "pyamg.tests")
#:phases
#~(modify-phases %standard-phases
;; Regenerate the autogenerated files.
(add-after 'unpack 'amg-core-bind-them
(lambda _
;; bindthem.py heavily depends on location to produce *_bind.cpp
;; file, make it available in tests as well.
(copy-file "pyamg/amg_core/bindthem.py"
"pyamg/amg_core/tests/bindthem.py")
(with-directory-excursion "pyamg/amg_core"
(substitute* "bindthem.py"
(("/usr/bin/env python3") (which "python3")))
(invoke "sh" "generate.sh"))
(with-directory-excursion "pyamg/amg_core/tests"
(invoke "python" "bindthem.py" "bind_examples.h")))))))
(build-system pyproject-build-system)
(native-inputs
(list pybind11
python-cppheaderparser
python-pytest
python-pyyaml
python-setuptools-scm))
(propagated-inputs (list python-numpy python-scipy))
(home-page "https://github.com/pyamg/pyamg")
(synopsis "Algebraic Multigrid Solvers in Python")
(description "PyAMG is a Python library of Algebraic Multigrid
(AMG) solvers. It features implementations of:
@itemize
@item Ruge-Stuben (RS) or Classical AMG
@item AMG based on Smoothed Aggregation (SA)
@item Adaptive Smoothed Aggregation (αSA)
@item Compatible Relaxation (CR)
@item Krylov methods such as CG, GMRES, FGMRES, BiCGStab, MINRES, etc.
@end itemize")
(license license:expat)))
(define-public python-tspex
(package
(name "python-tspex")
(version "0.6.2")
(source (origin
(method url-fetch)
(uri (pypi-uri "tspex" version))
(sha256
(base32
"0x64ki1nzhms2nb8xpng92bzh5chs850dvapr93pkg05rk22m6mv"))))
(build-system python-build-system)
(propagated-inputs
(list python-matplotlib python-numpy python-pandas python-xlrd))
(home-page "https://apcamargo.github.io/tspex/")
(synopsis "Calculate tissue-specificity metrics for gene expression")
(description
"This package provides a Python package for calculating
tissue-specificity metrics for gene expression.")
(license license:gpl3+)))
(define-public python-pandas
(package
(name "python-pandas")
(version "1.5.3")
(source
(origin
(method url-fetch)
(uri (pypi-uri "pandas" version))
(sha256
(base32 "1cdhngylzh352wx5s3sjyznn7a6kmjqcfg97hgqm5h3yb9zgv8vl"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags
'(list "--pyargs" "pandas"
"-n" (number->string (parallel-job-count))
"-m" "not slow and not network and not db"
"-k"
(string-append
;; TODO: Missing input
"not TestS3"
" and not s3"
;; No module named 'pandas.io.sas._sas'
" and not test_read_expands_user_home_dir"
" and not test_read_non_existent"
;; Unknown failures
" and not test_switch_options"
;; Crashes
" and not test_bytes_exceed_2gb"
;; get_subplotspec() returns None; possibly related to
;; https://github.com/pandas-dev/pandas/issues/54577
" and not test_plain_axes"
;; This test fails when run with pytest-xdist
;; (see https://github.com/pandas-dev/pandas/issues/39096).
" and not test_memory_usage"))
#:phases
#~(modify-phases %standard-phases
(add-after 'unpack 'patch-build-system
(lambda _
(substitute* "pyproject.toml"
;; Not all data files are distributed with the tarball.
(("--strict-data-files ") "")
;; Unknown property "asyncio_mode"
(("asyncio_mode = \"strict\"") ""))))
(add-after 'unpack 'patch-which
(lambda* (#:key inputs #:allow-other-keys)
(substitute* "pandas/io/clipboard/__init__.py"
(("^WHICH_CMD = .*")
(string-append "WHICH_CMD = \""
(search-input-file inputs "/bin/which")
"\"\n")))))
(add-before 'check 'prepare-x
(lambda _
(system "Xvfb &")
(setenv "DISPLAY" ":0")
;; xsel needs to write a log file.
(setenv "HOME" "/tmp")))
;; The compiled libraries are only in the output at this point,
;; but they are needed to run tests.
;; FIXME: This should be handled by the pyargs pytest argument,
;; but is not for some reason.
(add-before 'check 'pre-check
(lambda* (#:key inputs outputs #:allow-other-keys)
(copy-recursively
(string-append (site-packages inputs outputs)
"/pandas/_libs")
"pandas/_libs"))))))
(propagated-inputs
(list python-jinja2
python-matplotlib
python-numpy
python-openpyxl
python-pytz
python-dateutil
python-xlrd
python-xlsxwriter))
(inputs
(list which xclip xsel))
(native-inputs
(list python-cython-0.29.35
python-beautifulsoup4
python-lxml
python-html5lib
python-pytest
python-pytest-mock
python-pytest-xdist
;; Needed to test clipboard support.
xorg-server-for-tests))
(home-page "https://pandas.pydata.org")
(synopsis "Data structures for data analysis, time series, and statistics")
(description
"Pandas is a Python package providing fast, flexible, and expressive data
structures designed to make working with structured (tabular,
multidimensional, potentially heterogeneous) and time series data both easy
and intuitive. It aims to be the fundamental high-level building block for
doing practical, real world data analysis in Python.")
(license license:bsd-3)))
(define-public python-pandas-stubs
(package
(name "python-pandas-stubs")
;; The versioning follows that of Pandas and uses the date of the
;; python-pandas-stubs release. This is the latest version of
;; python-pandas-stubs for python-pandas 1.5.3.
(version "1.5.3.230321")
(source
(origin
;; No tests in the PyPI tarball.
(method git-fetch)
(uri (git-reference
(url "https://github.com/pandas-dev/pandas-stubs")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32 "1blwlq5053pxnmx721zdd6v8njiybz4azribx2ygq33jcpmknda6"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags #~(list "-k"
(string-append
;; The python-pyarrow package in Guix is not built
;; with ORC integration, causing these tests to
;; fail.
"not test_orc"
" and not test_orc_path"
" and not test_orc_buffer"
" and not test_orc_columns"
" and not test_orc_bytes"))
#:phases '(modify-phases %standard-phases
(add-before 'check 'prepare-x
(lambda _
(system "Xvfb &")
(setenv "DISPLAY" ":0")
;; xsel needs to write a log file.
(setenv "HOME"
(getcwd)))))))
(propagated-inputs (list python-types-pytz))
;; Add python-fastparquet to native inputs once it has been packaged. Its
;; tests will be skipped for now.
(native-inputs (list python-lxml
python-matplotlib
python-odfpy
python-pandas
python-poetry-core
python-pyarrow
python-pyreadstat
python-pytest
python-scipy
python-sqlalchemy
python-tables
python-tabulate
python-xarray
;; Needed to test clipboard support.
which
xclip
xorg-server-for-tests
xsel))
(home-page "https://pandas.pydata.org")
(synopsis "Type annotations for pandas")
(description
"This package contains public type stubs for @code{python-pandas},
following the convention of providing stubs in a separate package, as
specified in @acronym{PEP, Python Enhancement Proposal} 561. The stubs cover
the most typical use cases of @code{python-pandas}. In general, these stubs
are narrower than what is possibly allowed by @code{python-pandas}, but follow
a convention of suggesting best recommended practices for using
@code{python-pandas}.")
(license license:bsd-3)))
(define-public python-pandarallel
(package
(name "python-pandarallel")
(version "1.6.5")
(source
(origin
(method git-fetch) ; no tests in PyPI
(uri (git-reference
(url "https://github.com/nalepae/pandarallel/")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32 "0r2wlxlwp4wia0vm15k4cp421mwa20k4k5g2ml01inprj8bl1p0p"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags #~(list "-n" (number->string (parallel-job-count)))))
(propagated-inputs
(list python-dill
python-pandas
python-psutil))
(native-inputs
(list python-mkdocs-material
python-numpy
python-pytest
python-pytest-cov
python-pytest-xdist))
(home-page "https://nalepae.github.io/pandarallel/")
(synopsis "Tool to parallelize Pandas operations across CPUs")
(description
"@code{pandarallel} allows any Pandas user to take advantage of their
multi-core computer, while Pandas uses only one core. @code{pandarallel} also
offers nice progress bars (available on Notebook and terminal) to get an rough
idea of the remaining amount of computation to be done.")
(license license:bsd-3)))
(define-public python-pandera
(package
(name "python-pandera")
(version "0.17.2")
(source
(origin
;; No tests in the PyPI tarball.
(method git-fetch)
(uri (git-reference
(url "https://github.com/unionai-oss/pandera")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32 "1mnqk583z90k1n0z3lfa4rd0ng40v7hqfk7phz5gjmxlzfjbxa1x"))
(modules '((guix build utils)))
;; These tests require PySpark and Modin. We need to remove the entire
;; directory, since the conftest.py in these directories contain
;; imports. (See: https://github.com/pytest-dev/pytest/issues/7452)
(snippet '(begin
(delete-file-recursively "tests/pyspark")
(delete-file-recursively "tests/modin")))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags '(list "-k"
(string-append
;; Mypy functionality is experimental and relying
;; on pandas-stubs can lead to false
;; positives. These tests currently fail.
"not test_python_std_list_dict_generics"
" and not test_python_std_list_dict_empty_and_none"
" and not test_pandas_modules_importable"))))
;; Pandera comes with a lot of extras. We test as many as possible, but do
;; not include all of them in the propagated-inputs. Currently, we have to
;; skip the pyspark and io tests due to missing packages python-pyspark
;; and python-frictionless.
(propagated-inputs (list python-hypothesis ;strategies extra
python-multimethod
python-numpy
python-packaging
python-pandas
python-pandas-stubs ;mypy extra
python-pydantic
python-scipy ;hypotheses extra
python-typeguard-4
python-typing-inspect
python-wrapt))
(native-inputs (list python-dask ;dask extra
python-fastapi ;fastapi extra
python-geopandas ;geopandas extra
python-pyarrow ;needed to run fastapi tests
python-pytest
python-pytest-asyncio
python-sphinx
python-uvicorn)) ;needed to run fastapi tests
(home-page "https://github.com/unionai-oss/pandera")
(synopsis "Perform data validation on dataframe-like objects")
(description
"@code{python-pandera} provides a flexible and expressive API for
performing data validation on dataframe-like objects to make data processing
pipelines more readable and robust. Dataframes contain information that
@code{python-pandera} explicitly validates at runtime. This is useful in
production-critical data pipelines or reproducible research settings. With
@code{python-pandera}, you can:
@itemize
@item Define a schema once and use it to validate different dataframe types.
@item Check the types and properties of columns.
@item Perform more complex statistical validation like hypothesis testing.
@item Seamlessly integrate with existing data pipelines via function decorators.
@item Define dataframe models with the class-based API with pydantic-style syntax.
@item Synthesize data from schema objects for property-based testing.
@item Lazily validate dataframes so that all validation rules are executed.
@item Integrate with a rich ecosystem of tools like @code{python-pydantic},
@code{python-fastapi} and @code{python-mypy}.
@end itemize")
(license license:expat)))
(define-public python-pyjanitor
(package
(name "python-pyjanitor")
(version "0.26.0")
(source
(origin
;; The build requires the mkdocs directory for the description in
;; setup.py. This is not included in the PyPI tarball.
(method git-fetch)
(uri (git-reference
(url "https://github.com/pyjanitor-devs/pyjanitor")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32 "1f8xbl1k9l2z56bapp7v6bd3016zrk48igcaz6hb553r6yfl7vfx"))))
(build-system pyproject-build-system)
;; Pyjanitor has an extensive test suite. For quick debugging, the tests
;; marked turtle can be skipped using "-m" "not turtle".
(arguments
(list
#:test-flags '(list
"-n" (number->string (parallel-job-count))
;; Tries to connect to the internet.
"-k" "not test_is_connected"
;; PySpark has not been packaged yet.
"--ignore=tests/spark/functions/test_clean_names_spark.py"
"--ignore=tests/spark/functions/test_update_where_spark.py")
#:phases #~(modify-phases %standard-phases
(add-before 'check 'set-env-ci
(lambda _
;; Some tests are skipped if the JANITOR_CI_MACHINE
;; variable is not set.
(setenv "JANITOR_CI_MACHINE" "1"))))))
(propagated-inputs (list python-multipledispatch
python-natsort
python-pandas-flavor
python-scipy
;; Optional imports.
python-biopython ;biology submodule
python-unyt)) ;engineering submodule
(native-inputs (list python-pytest
python-pytest-xdist
;; Optional imports. We do not propagate them due to
;; their size.
python-numba ;speedup of joins
rdkit)) ;chemistry submodule
(home-page "https://github.com/pyjanitor-devs/pyjanitor")
(synopsis "Tools for cleaning and transforming pandas DataFrames")
(description
"@code{pyjanitor} provides a set of data cleaning routines for
@code{pandas} DataFrames. These routines extend the method chaining API
defined by @code{pandas} for a subset of its methods. Originally, this
package was a port of the R package by the same name and it is inspired by the
ease-of-use and expressiveness of the @code{dplyr} package.")
(license license:expat)))
(define-public python-pythran
(package
(name "python-pythran")
(version "0.11.0")
(home-page "https://github.com/serge-sans-paille/pythran")
(source (origin
(method git-fetch)
(uri (git-reference (url home-page) (commit version)))
(file-name (git-file-name name version))
(sha256
(base32 "0cm7wfcyvkp1wmq7n1lyf2d3sj6158jf63bagjpjmfnjwij19n0p"))
(modules '((guix build utils)))
(snippet
'(begin
;; Remove bundled Boost and xsimd.
(delete-file-recursively "third_party")))))
(build-system python-build-system)
(arguments
(list #:phases
#~(modify-phases %standard-phases
(add-after 'unpack 'do-not-install-third-parties
(lambda _
(substitute* "setup.py"
(("third_parties = .*")
"third_parties = []\n"))))
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
;; Remove compiler flag that trips newer GCC:
;; https://github.com/serge-sans-paille/pythran/issues/908
(substitute* "pythran/tests/__init__.py"
(("'-Wno-absolute-value',")
""))
(setenv "HOME" (getcwd))
;; This setup is modelled after the upstream CI system.
(call-with-output-file ".pythranrc"
(lambda (port)
(format port "[compiler]\nblas=openblas~%")))
(invoke "pytest" "-vv"
(string-append "--numprocesses="
(number->string
(parallel-job-count)))
"pythran/tests/test_cases.py")))))))
(native-inputs
;; For tests.
(list openblas python-pytest python-pytest-xdist))
(propagated-inputs
(list boost xsimd ;headers need to be available
python-beniget python-gast python-numpy python-ply))
(synopsis "Ahead of Time compiler for numeric kernels")
(description
"Pythran is an ahead of time compiler for a subset of the Python
language, with a focus on scientific computing. It takes a Python module
annotated with a few interface descriptions and turns it into a native
Python module with the same interface, but (hopefully) faster.")
(license license:bsd-3)))
(define-public python-pyts
(package
(name "python-pyts")
(version "0.13.0")
(source (origin
(method url-fetch)
(uri (pypi-uri "pyts" version))
(sha256
(base32
"00pdzfkl0b4vhfdm8zas7b904jm2hhivdwv3wcmpik7l2p1yr85c"))))
(build-system pyproject-build-system)
(propagated-inputs
(list python-joblib python-numba python-numpy
python-scikit-learn
python-scipy))
(native-inputs
(list python-pytest python-pytest-cov))
(home-page "https://github.com/johannfaouzi/pyts")
(synopsis "Python package for time series classification")
(description
"This package provides a Python package for time series classification.")
(license license:bsd-3)))
(define-public python-bottleneck
(package
(name "python-bottleneck")
(version "1.3.7")
(source
(origin
(method url-fetch)
(uri (pypi-uri "Bottleneck" version))
(sha256
(base32 "1y410r3scfhs6s1j1jpxig01qlyn2hr2izyh1qsdlsfl78vpwip1"))))
(build-system python-build-system)
(arguments
`(#:phases
(modify-phases %standard-phases
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(invoke "python" "setup.py" "pytest")))))))
(native-inputs
(list python-hypothesis python-pytest python-pytest-runner))
(propagated-inputs
(list python-numpy))
(home-page "https://github.com/pydata/bottleneck")
(synopsis "Fast NumPy array functions written in C")
(description
"Bottleneck is a collection of fast, NaN-aware NumPy array functions
written in C.")
(license license:bsd-2)))
(define-public python-numpoly
(package
(name "python-numpoly")
(version "1.2.11")
(source (origin
(method git-fetch) ;; PyPI is missing some Pytest fixtures
(uri (git-reference
(url "https://github.com/jonathf/numpoly")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"01g21v91f4d66xd0bvap0n6d6485w2fnq1636gx6h2s42550rlbd"))))
(build-system pyproject-build-system)
(propagated-inputs (list python-importlib-metadata python-numpy))
(native-inputs (list python-pytest python-sympy))
(home-page "https://numpoly.readthedocs.io/en/master/")
(synopsis "Polynomials as a numpy datatype")
(description "Numpoly is a generic library for creating, manipulating and
evaluating arrays of polynomials based on @code{numpy.ndarray objects}.")
;; Tests fail with dtype mismatches on 32-bit architectures, suggesting
;; that numpoly only supports 64 bit platforms.
(supported-systems '("x86_64-linux" "aarch64-linux" "powerpc64le-linux"))
(license license:bsd-2)))
(define-public python-baycomp
(package
(name "python-baycomp")
(version "1.0.2")
(source
(origin
(method url-fetch)
(uri (pypi-uri "baycomp" version))
(sha256
(base32 "1c1354a7b3g8slychjgyjxqdm8z40z9kviyl9n4g9kfpdg0p4d64"))))
(build-system python-build-system)
(propagated-inputs
(list python-matplotlib python-numpy python-scipy))
(home-page "https://github.com/janezd/baycomp")
(synopsis "Library for comparison of Bayesian classifiers")
(description
"Baycomp is a library for Bayesian comparison of classifiers. Functions
in the library compare two classifiers on one or on multiple data sets. They
compute three probabilities: the probability that the first classifier has
higher scores than the second, the probability that differences are within the
region of practical equivalence (rope), or that the second classifier has
higher scores.")
(license license:expat)))
(define-public python-fbpca
(package
(name "python-fbpca")
(version "1.0")
(source (origin
(method url-fetch)
(uri (pypi-uri "fbpca" version))
(sha256
(base32
"1lbjqhqsdmqk86lb86q3ywf7561zmdny1dfvgwqkyrkr4ij7f1hm"))))
(build-system python-build-system)
(propagated-inputs
(list python-numpy python-scipy))
(home-page "https://fbpca.readthedocs.io/")
(synopsis "Functions for principal component analysis and accuracy checks")
(description
"This package provides fast computations for @dfn{principal component
analysis} (PCA), SVD, and eigendecompositions via randomized methods")
(license license:bsd-3)))
(define-public python-geosketch
(package
(name "python-geosketch")
(version "1.2")
(source (origin
(method url-fetch)
(uri (pypi-uri "geosketch" version))
(sha256
(base32
"0knch5h0p8xpm8bi3b5mxyaf1ywwimrsdmbnc1xr5icidcv9gzmv"))))
(build-system python-build-system)
(arguments '(#:tests? #false)) ;there are none
(propagated-inputs (list python-fbpca python-numpy python-scikit-learn))
(home-page "https://github.com/brianhie/geosketch")
(synopsis "Geometry-preserving random sampling")
(description "geosketch is a Python package that implements the geometric
sketching algorithm described by Brian Hie, Hyunghoon Cho, Benjamin DeMeo,
Bryan Bryson, and Bonnie Berger in \"Geometric sketching compactly summarizes
the single-cell transcriptomic landscape\", Cell Systems (2019). This package
provides an example implementation of the algorithm as well as scripts
necessary for reproducing the experiments in the paper.")
(license license:expat)))
(define-public python-einops
(package
(name "python-einops")
(version "0.6.1")
(source (origin
(method git-fetch) ;PyPI misses .ipynb files required for tests
(uri (git-reference
(url "https://github.com/arogozhnikov/einops")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"1h8p39kd7ylg99mh620xr20hg7v78x1jnj6vxwk31rlw2dmv2dpr"))))
(build-system pyproject-build-system)
(arguments
(list #:phases #~(modify-phases %standard-phases
(add-after 'unpack 'set-backend
(lambda _
;; Einops supports different backends, but we test
;; only NumPy for availability and simplicity.
(setenv "EINOPS_TEST_BACKENDS" "numpy"))))))
(native-inputs (list jupyter
python-hatchling
python-nbconvert
python-nbformat
python-parameterized
python-pytest))
(propagated-inputs (list python-numpy))
(home-page "https://einops.rocks/")
(synopsis "Tensor operations for different backends")
(description "Einops provides a set of tensor operations for NumPy and
multiple deep learning frameworks.")
(license license:expat)))
(define-public python-xarray
(package
(name "python-xarray")
(version "2023.12.0")
(source (origin
(method url-fetch)
(uri (pypi-uri "xarray" version))
(sha256
(base32
"0cyldwchcrmbm1y7l1ry70kk8zdh7frxci3c6iwf4iyyj34dnra5"))))
(build-system pyproject-build-system)
(arguments
;; This needs a more recent version of python-hypothesis
(list #:test-flags '(list "--ignore=xarray/tests/test_strategies.py")))
(native-inputs
(list python-setuptools-scm python-pytest))
(propagated-inputs
(list python-numpy python-packaging python-pandas))
(home-page "https://github.com/pydata/xarray")
(synopsis "N-D labeled arrays and datasets")
(description "Xarray (formerly xray) makes working with labelled
multi-dimensional arrays simple, efficient, and fun!
Xarray introduces labels in the form of dimensions, coordinates and attributes
on top of raw NumPy-like arrays, which allows for a more intuitive, more
concise, and less error-prone developer experience. The package includes a
large and growing library of domain-agnostic functions for advanced analytics
and visualization with these data structures.")
(license license:asl2.0)))
(define-public python-xarray-einstats
(package
(name "python-xarray-einstats")
(version "0.7.0")
(source (origin
(method git-fetch) ; no tests in PyPI
(uri (git-reference
(url "https://github.com/arviz-devs/xarray-einstats")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"14c424swpdginaz4pm3nmkizxy34x19q6xq3d4spx9s9031f6n3a"))))
(build-system pyproject-build-system)
(native-inputs (list python-einops python-flit-core python-numba
python-pytest))
(propagated-inputs (list python-numpy python-scipy python-xarray))
(home-page "https://einstats.python.arviz.org/en/latest/")
(synopsis "Stats, linear algebra and einops for xarray")
(description
"@code{xarray_einstats} provides wrappers around some NumPy and SciPy
functions and around einops with an API and features adapted to xarray.")
(license license:asl2.0)))
(define-public python-pytensor
(package
(name "python-pytensor")
(version "2.18.1")
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/pymc-devs/pytensor")
(commit (string-append "rel-" version))))
(file-name (git-file-name name version))
(sha256
(base32
"0qa0y13xfm6w7ry7gp0lv84c8blyg34a9ns7ynwqyhf9majq08s5"))))
(build-system pyproject-build-system)
(arguments
(list
#:phases
#~(modify-phases %standard-phases
;; Replace version manually because pytensor uses
;; versioneer, which requires git metadata.
(add-after 'unpack 'versioneer
(lambda _
(with-output-to-file "setup.cfg"
(lambda ()
(display "\
[versioneer]
VCS = git
style = pep440
versionfile_source = pytensor/_version.py
versionfile_build = pytensor/_version.py
tag_prefix =
parentdir_prefix = pytensor-
")))
(invoke "versioneer" "install")
(substitute* "setup.py"
(("versioneer.get_version\\(\\)")
(string-append "\"" #$version "\"")))))
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(setenv "HOME" "/tmp") ; required for most tests
;; Test discovery fails, have to call pytest by hand.
;; test_tensor_basic.py file requires JAX.
(invoke "python" "-m" "pytest" "-vv"
"--ignore" "tests/link/jax/test_tensor_basic.py"
;; Skip benchmark tests.
"-k" (string-append
"not test_elemwise_speed"
" and not test_logsumexp_benchmark"
" and not test_fused_elemwise_benchmark"
" and not test_scan_multiple_output"
" and not test_vector_taps_benchmark"
" and not test_cython_performance")
;; Skip computationally intensive tests.
"--ignore" "tests/scan/"
"--ignore" "tests/tensor/"
"--ignore" "tests/sandbox/"
"--ignore" "tests/sparse/sandbox/")))))))
(native-inputs (list python-cython
python-pytest
python-pytest-mock
python-versioneer))
(propagated-inputs (list python-cons
python-etuples
python-filelock
python-logical-unification
python-minikanren
python-numba
python-numpy
python-scipy
python-typing-extensions))
(home-page "https://pytensor.readthedocs.io/en/latest/")
(synopsis
"Library for mathematical expressions in multi-dimensional arrays")
(description
"PyTensor is a Python library that allows one to define, optimize, and
efficiently evaluate mathematical expressions involving multi-dimensional
arrays. It is a fork of the Aesara library.")
(license license:bsd-3)))
(define-public python-msgpack-numpy
(package
(name "python-msgpack-numpy")
(version "0.4.8")
(source
(origin
(method url-fetch)
(uri (pypi-uri "msgpack-numpy" version))
(sha256
(base32
"0sbfanbkfs6c77np4vz0ayrwnv99bpn5xgj5fnf2yhhk0lcd6ry6"))))
(build-system python-build-system)
(propagated-inputs
(list python-msgpack python-numpy))
(home-page "https://github.com/lebedov/msgpack-numpy")
(synopsis
"Numpy data serialization using msgpack")
(description
"This package provides encoding and decoding routines that enable the
serialization and deserialization of numerical and array data types provided
by numpy using the highly efficient @code{msgpack} format. Serialization of
Python's native complex data types is also supported.")
(license license:bsd-3)))
(define-public python-ruffus
(package
(name "python-ruffus")
(version "2.8.4")
(source
(origin
(method url-fetch)
(uri (pypi-uri "ruffus" version))
(sha256
(base32
"1ai673k1s94s8b6pyxai8mk17p6zvvyi87rl236fs6ls8mpdklvc"))))
(build-system python-build-system)
(arguments
`(#:phases
(modify-phases %standard-phases
(delete 'check)
(add-after 'install 'check
(lambda* (#:key tests? inputs outputs #:allow-other-keys)
(when tests?
(add-installed-pythonpath inputs outputs)
(with-directory-excursion "ruffus/test"
(invoke "bash" "run_all_unit_tests3.cmd"))))))))
(native-inputs
(list python-pytest))
(home-page "http://www.ruffus.org.uk")
(synopsis "Light-weight computational pipeline management")
(description
"Ruffus is designed to allow scientific and other analyses to be
automated with the minimum of fuss and the least effort.")
(license license:expat)))
(define-public python-statannot
(package
(name "python-statannot")
(version "0.2.3")
(source
(origin
(method url-fetch)
(uri (pypi-uri "statannot" version))
(sha256
(base32
"1f8c2sylzr7lpjbyqxsqlp9xi8rj3d8c9hfh98x4jbb83zxc4026"))))
(build-system python-build-system)
(propagated-inputs
(list python-numpy python-seaborn python-matplotlib python-pandas
python-scipy))
(home-page
"https://github.com/webermarcolivier/statannot")
(synopsis "Add annotations to existing plots generated by seaborn")
(description
"This is a Python package to compute statistical test and add statistical
annotations on an existing boxplots and barplots generated by seaborn.")
(license license:expat)))
(define-public python-unyt
(package
(name "python-unyt")
(version "3.0.1")
(source
(origin
(method url-fetch)
(uri (pypi-uri "unyt" version))
(sha256
(base32 "00900bw24rxgcgwgxp9xlx0l5im96r1n5hn0r3mxvbdgc3lyyq48"))))
(build-system pyproject-build-system)
;; Astropy is an optional import, but we do not include it as it creates a
;; module cycle: astronomy->python-science->astronomy.
(propagated-inputs (list python-h5py ; optional import
python-matplotlib ; optional import
python-numpy
python-sympy))
;; Pint is optional, but we do not propagate it due to its size.
(native-inputs (list python-pint python-pytest))
(home-page "https://unyt.readthedocs.io")
(synopsis "Library for working with data that has physical units")
(description
"@code{unyt} is a Python library working with data that has physical
units. It defines the @code{unyt.array.unyt_array} and
@code{unyt.array.unyt_quantity} classess (subclasses of NumPy’s ndarray class)
for handling arrays and scalars with units,respectively")
(license license:bsd-3)))
(define-public python-upsetplot
(package
(name "python-upsetplot")
(version "0.6.0")
(source
(origin
(method url-fetch)
(uri (pypi-uri "UpSetPlot" version))
(sha256
(base32
"11zrykwnb00w5spx4mnsnm0f9gwrphdczainpmwkyyi50vipaa2l"))
(modules '((guix build utils)))
(snippet
;; Patch for compatibility with newer setuptools:
;; https://github.com/jnothman/UpSetPlot/pull/178
'(substitute* "upsetplot/data.py"
(("import distutils")
"from distutils.version import LooseVersion")
(("if distutils\\.version\\.LooseVersion")
"if LooseVersion")))))
(build-system python-build-system)
(arguments
'(#:phases
(modify-phases %standard-phases
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(invoke "pytest" "-v" "--doctest-modules")))))))
(propagated-inputs
(list python-matplotlib python-pandas))
(native-inputs
(list python-pytest-runner python-pytest-cov))
(home-page "https://upsetplot.readthedocs.io")
(synopsis "Draw UpSet plots with Pandas and Matplotlib")
(description
"This is a Python implementation of UpSet plots by Lex et al.
UpSet plots are used to visualize set overlaps; like Venn diagrams but more
readable.")
(license license:bsd-3)))
(define-public python-vedo
(package
(name "python-vedo")
(version "2022.2.0")
(source
(origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/marcomusy/vedo")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"1hhv4xc4bphhd1zrnf7r6fpf65xvkdqmb1lh51qg1xpv91h2az0h"))))
(build-system python-build-system)
(arguments
`(#:phases
(modify-phases %standard-phases
(add-after 'unpack 'fix-tests
;; These tests require online data.
(lambda _
(substitute* "tests/common/test_actors.py"
(("^st = .*") "")
(("^assert isinstance\\(st\\.GetTexture\\(\\), .*") ""))
(delete-file "tests/common/test_pyplot.py")))
(add-after 'build 'mpi-setup
,%openmpi-setup)
(replace 'check
(lambda* (#:key tests? inputs outputs #:allow-other-keys)
(when tests?
(setenv "HOME" (getcwd))
(add-installed-pythonpath inputs outputs)
(with-directory-excursion "tests"
(for-each (lambda (dir)
(with-directory-excursion dir
(invoke "./run_all.sh")))
'("common" "dolfin"))))))
;; Disable the sanity check, which fails with the following error:
;;
;; ...checking requirements: ERROR: vedo==2022.2.0 DistributionNotFound(Requirement.parse('vtk<9.1.0'), {'vedo'})
(delete 'sanity-check))))
(native-inputs
(list pkg-config
python-pkgconfig))
(propagated-inputs
(list fenics
python-deprecated
python-matplotlib
python-numpy
vtk))
(home-page "https://github.com/marcomusy/vedo")
(synopsis
"Analysis and visualization of 3D objects and point clouds")
(description
"@code{vedo} is a fast and lightweight python module for
scientific analysis and visualization. The package provides a wide
range of functionalities for working with three-dimensional meshes and
point clouds. It can also be used to generate high quality
two-dimensional renderings such as scatter plots and histograms.
@code{vedo} is based on @code{vtk} and @code{numpy}.")
;; vedo is released under the Expat license. Included fonts are
;; covered by the OFL license and textures by the CC0 license.
;; The earth images are in the public domain.
(license (list license:expat
license:silofl1.1
license:cc0
license:public-domain))))
(define-public python-pandas-flavor
(package
(name "python-pandas-flavor")
(version "0.5.0")
(source
(origin
(method url-fetch)
(uri (pypi-uri "pandas_flavor" version))
(sha256
(base32
"0473lkbdnsag3w5x65sxwjlyq0i7z938ssxqwn2cpcml282vksx1"))))
(build-system python-build-system)
(propagated-inputs
(list python-lazy-loader python-packaging python-pandas python-xarray))
(home-page "https://github.com/pyjanitor-devs/pandas_flavor")
(synopsis "Write your own flavor of Pandas")
(description "Pandas 0.23 added a simple API for registering accessors
with Pandas objects. Pandas-flavor extends Pandas' extension API by
@itemize
@item adding support for registering methods as well
@item making each of these functions backwards compatible with older versions
of Pandas
@end itemize")
(license license:expat)))
(define-public python-pingouin
(package
(name "python-pingouin")
(version "0.5.2")
(source
;; The PyPI tarball does not contain the tests.
(origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/raphaelvallat/pingouin")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"0czy7cpn6xx9fs6wbz6rq2lpkb1a89bzxj1anf2f9in1m5qyrh83"))))
(build-system python-build-system)
(arguments
`(#:phases
(modify-phases %standard-phases
(add-after 'unpack 'loosen-requirements
(lambda _
(substitute* '("requirements.txt" "setup.py")
;; Remove sklearn pinning since it works fine with 1.1.2:
;; https://github.com/raphaelvallat/pingouin/pull/300
(("scikit-learn<1\\.1\\.0")
"scikit-learn"))))
;; On loading, Pingouin uses the outdated package to check if a newer
;; version is available on PyPI. This check adds an extra dependency
;; and is irrelevant to Guix users. So, disable it.
(add-after 'unpack 'remove-outdated-check
(lambda _
(substitute* "setup.py"
(("\"outdated\",") ""))
(substitute* "pingouin/__init__.py"
(("^from outdated[^\n]*") "")
(("^warn_if_outdated[^\n]*") ""))))
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(invoke "pytest")))))))
(native-inputs
(list python-pytest python-pytest-cov))
(propagated-inputs
(list python-matplotlib
python-mpmath
python-numpy
python-pandas
python-pandas-flavor
python-scikit-learn
python-scipy
python-seaborn
python-statsmodels
python-tabulate))
(home-page "https://pingouin-stats.org/")
(synopsis "Statistical package for Python")
(description "Pingouin is a statistical package written in Python 3 and
based mostly on Pandas and NumPy. Its features include
@itemize
@item ANOVAs: N-ways, repeated measures, mixed, ancova
@item Pairwise post-hocs tests (parametric and non-parametric) and pairwise
correlations
@item Robust, partial, distance and repeated measures correlations
@item Linear/logistic regression and mediation analysis
@item Bayes Factors
@item Multivariate tests
@item Reliability and consistency
@item Effect sizes and power analysis
@item Parametric/bootstrapped confidence intervals around an effect size or a
correlation coefficient
@item Circular statistics
@item Chi-squared tests
@item Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation,
and more
@end itemize")
(license license:gpl3)))
(define-public python-pyglm
(package
(name "python-pyglm")
(version "2.5.7")
(source
(origin
;; Test files are not included in the archive in pypi.
(method git-fetch)
(uri (git-reference
(url "https://github.com/Zuzu-Typ/PyGLM")
(commit version)
;; Checkout the bundled `glm` submodule. PyGLM uses the
;; currently unreleased GLM_EXT_matrix_integer feature. Can
;; maybe unbundle once glm@0.9.9.9 is released.
(recursive? #t)))
(file-name (git-file-name name version))
(sha256
(base32
"08v0cgkwsf8rxscx5g9c5p1dy38rvak2fy3q6hg985if1nj6d9ks"))))
(build-system python-build-system)
(home-page "https://github.com/Zuzu-Typ/PyGLM")
(synopsis "OpenGL Mathematics library for Python")
(description "PyGLM is a Python extension library which brings the OpenGL
Mathematics (GLM) library to Python.")
(license license:zlib)))
(define-public python-distributed
(package
(name "python-distributed")
(version "2023.7.0")
(source
(origin
;; The test files are not included in the archive on pypi
(method git-fetch)
(uri (git-reference
(url "https://github.com/dask/distributed")
(commit version)))
(file-name (git-file-name name version))
(sha256
(base32
"0b93fpwz7kw31pkzfyihpkw8mzbqshzd6rw5vcwld7n3z2aaaxxb"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags
'(list "-x" "-m"
(string-append "not slow"
" and not flaky"
" and not gpu"
" and not ipython"
" and not avoid_ci")
"-k"
(string-append
;; These fail because they require network access,
;; specifically access to 8.8.8.8.
"not "
(string-join
(list
"TestClientSecurityLoader.test_security_loader"
"test_BatchedSend"
"test_allowed_failures_config"
"test_async_context_manager"
"test_async_with"
"test_client_repr_closed_sync"
"test_client_is_quiet_cluster_close"
"test_close_closed"
"test_close_fast_without_active_handlers"
"test_close_grace_period_for_handlers"
"test_close_loop_sync"
"test_close_properly"
"test_close_twice"
"test_compression"
"test_connection_pool"
"test_connection_pool_close_while_connecting"
"test_connection_pool_detects_remote_close"
"test_connection_pool_outside_cancellation"
"test_connection_pool_remove"
"test_connection_pool_respects_limit"
"test_connection_pool_tls"
"test_counters"
"test_dashboard_host"
"test_dashboard_link_cluster"
"test_dashboard_link_inproc"
"test_deserialize_error"
"test_dont_override_default_get"
"test_ensure_no_new_clients"
"test_errors"
"test_fail_to_pickle_target_2"
"test_failure_doesnt_crash"
"test_file_descriptors_dont_leak"
"test_finished"
"test_freeze_batched_send"
"test_get_client_functions_spawn_clusters"
"test_host_uses_scheduler_protocol"
"test_identity_inproc"
"test_identity_tcp"
"test_large_packets_inproc"
"test_locked_comm_drop_in_replacement"
"test_locked_comm_intercept_read"
"test_locked_comm_intercept_write"
"test_mixing_clients_different_scheduler"
"test_multiple_listeners"
"test_no_dangling_asyncio_tasks"
"test_plugin_exception"
"test_plugin_internal_exception"
"test_plugin_multiple_exceptions"
"test_ports"
"test_preload_import_time"
"test_queue_in_task"
"test_quiet_client_close"
"test_rebalance_sync"
"test_repr_localcluster"
"test_require_encryption"
"test_rpc_default"
"test_rpc_inproc"
"test_rpc_message_lifetime_default"
"test_rpc_message_lifetime_inproc"
"test_rpc_message_lifetime_tcp"
"test_rpc_serialization"
"test_rpc_tcp"
"test_rpc_tls"
"test_rpc_with_many_connections_inproc"
"test_rpc_with_many_connections_tcp"
"test_scheduler_file"
"test_security_dict_input_no_security"
"test_security_loader"
"test_security_loader_ignored_if_explicit_security_provided"
"test_security_loader_ignored_if_returns_none"
"test_send_after_stream_start"
"test_send_before_close"
"test_send_before_start"
"test_send_recv_args"
"test_send_recv_cancelled"
"test_sending_traffic_jam"
"test_serializers"
"test_server"
"test_server_comms_mark_active_handlers"
"test_shutdown"
"test_shutdown_localcluster"
"test_teardown_failure_doesnt_crash_scheduler"
"test_tell_workers_when_peers_have_left"
"test_threadpoolworkers_pick_correct_ioloop"
"test_tls_listen_connect"
"test_tls_temporary_credentials_functional"
"test_variable_in_task"
"test_worker_preload_text"
"test_worker_uses_same_host_as_nanny"
"test_nanny_timeout") ; access to 127.0.0.1
" and not ")
;; These fail because it doesn't find dask[distributed]
" and not test_quiet_close_process"
;; There is no distributed.__git_revision__ property.
" and not test_git_revision"
;; The system monitor did not return a dictionary containing
;; "host_disk_io.read_bps".
" and not test_disk_config"
;; These fail because the exception text format
;; appears to have changed.
" and not test_exception_text"
" and not test_worker_bad_args"
;; These time out
" and not test_nanny_timeout"
;; These tests are rather flaky
" and not test_quiet_quit_when_cluster_leaves"
" and not multiple_clients_restart"
" and not test_steal_twice"))
#:phases
#~(modify-phases %standard-phases
(add-after 'unpack 'versioneer
(lambda _
;; Our version of versioneer needs setup.cfg. This is adapted
;; from pyproject.toml.
(with-output-to-file "setup.cfg"
(lambda ()
(display "\
[versioneer]
VCS = git
style = pep440
versionfile_source = distributed/_version.py
versionfile_build = distributed/_version.py
tag_prefix =
parentdir_prefix = distributed-
")))
(invoke "versioneer" "install")
(substitute* "setup.py"
(("versioneer.get_version\\(\\)")
(string-append "\"" #$version "\"")))))
(add-after 'unpack 'fix-pytest-config
(lambda _
;; This option is not supported by our version of pytest.
(substitute* "pyproject.toml"
(("--cov-config=pyproject.toml.*") ""))))
(add-after 'unpack 'fix-references
(lambda* (#:key outputs #:allow-other-keys)
(substitute* '("distributed/comm/tests/test_ucx_config.py"
"distributed/tests/test_client.py"
"distributed/tests/test_queues.py"
"distributed/tests/test_variable.py"
"distributed/cli/tests/test_tls_cli.py"
"distributed/cli/tests/test_dask_spec.py"
"distributed/cli/tests/test_dask_worker.py"
"distributed/cli/tests/test_dask_scheduler.py")
(("\"dask-scheduler\"")
(format #false "\"~a/bin/dask-scheduler\"" #$output))
(("\"dask-worker\"")
(format #false "\"~a/bin/dask-worker\"" #$output)))))
(add-before 'check 'pre-check
(lambda _
(setenv "DISABLE_IPV6" "1")
;; The integration tests are all problematic to some
;; degree. They either require network access or some
;; other setup. We only run the tests in
;; distributed/tests.
(for-each (lambda (dir)
(delete-file-recursively
(string-append "distributed/" dir "/tests")))
(list "cli" "comm" "dashboard" "deploy" "diagnostics"
"http" "http/scheduler" "http/worker"
"protocol" "shuffle"))))
;; We need to use "." here.
(replace 'check
(lambda* (#:key tests? test-flags #:allow-other-keys)
(when tests?
(apply invoke "python" "-m" "pytest" "." "-vv" test-flags)))))))
(propagated-inputs
(list python-click
python-cloudpickle
python-cryptography
python-dask
python-msgpack
python-psutil
python-pyyaml
python-setuptools
python-sortedcontainers
python-tblib
python-toolz
python-tornado-6
python-urllib3
python-zict))
(native-inputs
(list python-importlib-metadata
python-pytest
python-pytest-timeout
python-flaky
python-versioneer))
(home-page "https://distributed.dask.org")
(synopsis "Distributed scheduler for Dask")
(description "Dask.distributed is a lightweight library for distributed
computing in Python. It extends both the @code{concurrent.futures} and
@code{dask} APIs to moderate sized clusters.")
(license license:bsd-3)))
(define-public python-modin
(package
(name "python-modin")
(version "0.15.1")
(source
(origin
;; The archive on pypi does not include all required files.
(method git-fetch)
(uri (git-reference
(url "https://github.com/modin-project/modin")
(commit version)))
(file-name (git-file-name name version))
(sha256
(base32
"0nf2pdqna2vn7vq7q7b51f3cfbrxfn77pyif3clibjsxzvfm9k03"))))
(build-system python-build-system)
(arguments
`(#:phases
(modify-phases %standard-phases
(add-after 'unpack 'make-files-writable
(lambda _
(for-each make-file-writable (find-files "."))))
(add-after 'unpack 'loosen-requirements
(lambda _
(substitute* "setup.py"
;; Don't depend on a specific version of Pandas.
(("pandas==")
"pandas>="))))
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(setenv "MODIN_ENGINE" "dask")
(invoke "python" "-m" "pytest"
"modin/pandas/test/test_concat.py")
(setenv "MODIN_ENGINE" "python")
(invoke "python" "-m" "pytest"
"modin/pandas/test/test_concat.py")))))))
(propagated-inputs
(list python-cloudpickle
python-dask
python-distributed
python-numpy
python-packaging
python-pandas))
(native-inputs
(list python-coverage
python-jinja2
python-lxml
python-matplotlib
python-msgpack
python-openpyxl
python-psutil
python-pyarrow
python-pytest
python-pytest-benchmark
python-pytest-cov
python-pytest-xdist
python-scipy
python-sqlalchemy
python-tables
python-tqdm
python-xarray
python-xlrd))
(home-page "https://github.com/modin-project/modin")
(synopsis "Make your pandas code run faster")
(description
"Modin uses Ray or Dask to provide an effortless way to speed up your
pandas notebooks, scripts, and libraries. Unlike other distributed DataFrame
libraries, Modin provides seamless integration and compatibility with existing
pandas code.")
(license license:asl2.0)))
(define-public python-numpy-groupies
(package
(name "python-numpy-groupies")
(version "0.9.14")
(source
(origin
(method url-fetch)
(uri (pypi-uri "numpy_groupies" version))
(sha256
(base32 "000qz0z78rs3l6y0dd2vzvd2lx3mczm2762whwsdnhz6c35axdq1"))))
(build-system python-build-system)
(native-inputs
(list python-pytest
python-pytest-runner
python-numba
python-numpy))
(home-page "https://github.com/ml31415/numpy-groupies")
(synopsis "Tools for group-indexing operations: aggregated sum and more")
(description
"This package provides optimized tools for group-indexing operations:
aggregated sum and more.")
(license license:bsd-3)))
(define-public python-plotnine
(package
(name "python-plotnine")
(version "0.10.1")
(source
(origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/has2k1/plotnine")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32 "0lg53wcm00lj8zbb4q9yj4a0n0fqaqq7c7vj18bda0k56gg0fpwl"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags
;; XXX: Check for any new failing tests during next update cycle.
;; These all fail because the images are considered to be too different,
;; though they really do look fine.
'(list "-k"
(string-append "not TestThemes"
(string-join (list
;; Image tests
"test_adjust_text"
"test_annotation_logticks_coord_flip_discrete"
"test_annotation_logticks_faceting"
"test_arrow"
"test_aslabeller_dict_0tag"
"test_caption_simple"
"test_continuous_x"
"test_continuous_x_fullrange"
"test_coord_trans_backtransforms"
"test_coord_trans_se_false"
"test_custom_shape"
"test_datetime_scale_limits"
"test_dir_v_ncol"
"test_discrete_x"
"test_discrete_x_fullrange"
"test_facet_grid_drop_false"
"test_facet_grid_expression"
"test_facet_grid_space_ratios"
"test_facet_wrap"
"test_facet_wrap_expression"
"test_facet_wrap_label_both"
"test_label_context_wrap2vars"
"test_labeller_cols_both_grid"
"test_labeller_cols_both_wrap"
"test_labeller_towords"
"test_missing_data_discrete_scale"
"test_ribbon_facetting"
"test_stack_non_linear_scale"
"test_uneven_num_of_lines"
;; Missing optional modules
"test_non_linear_smooth"
"test_non_linear_smooth_no_ci")
" and not "
'prefix)))
#:phases '(modify-phases %standard-phases
(add-before 'check 'pre-check
(lambda* (#:key inputs outputs #:allow-other-keys)
;; The data files are referenced by the tests but they are not
;; installed.
(copy-recursively "plotnine/data"
(string-append (site-packages inputs
outputs)
"/plotnine/data"))
;; Matplotlib needs to be able to write its configuration file
;; somewhere.
(setenv "MPLCONFIGDIR" "/tmp")
(setenv "TZ" "UTC")
(setenv "TZDIR"
(search-input-directory inputs "share/zoneinfo")))))))
(propagated-inputs (list python-adjusttext
python-matplotlib
python-mizani
python-numpy
python-patsy
python-scipy
python-statsmodels))
(native-inputs (list python-geopandas
python-mock
python-pandas
python-pytest
python-pytest-cov
tzdata-for-tests))
(home-page "https://github.com/has2k1/plotnine")
(synopsis "Grammar of Graphics for Python")
(description
"Plotnine is a Python implementation of the Grammar of Graphics.
It is a powerful graphics concept for creating plots and visualizations in a
structured and declarative manner. It is inspired by the R package ggplot2
and aims to provide a similar API and functionality in Python.")
(license license:expat)))
(define-public python-pyvista
(package
(name "python-pyvista")
(version "0.42.3")
(source
;; The PyPI tarball does not contain the tests.
;; (However, we don't yet actually run the tests.)
(origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/pyvista/pyvista")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32 "1qxq0y0hc72hb60w3qq48fma8l6ffz7bdm75ymn1020bvfqrm1s4"))))
(build-system python-build-system)
(propagated-inputs
(list python-imageio
python-matplotlib
python-meshio
python-numpy
python-pillow
python-pooch
python-scooby
vtk))
(arguments
'(#:phases
(modify-phases %standard-phases
;; Disable tests for now because they require several modules
;; currently unpackaged in Guix.
(delete 'check)
;; Disable the sanity check, which fails with the following error:
;;
;; ...checking requirements: ERROR: pyvista==0.42.3 DistributionNotFound(Requirement.parse('vtk'), {'pyvista'})
(delete 'sanity-check))))
(home-page "https://docs.pyvista.org/")
(synopsis "3D plotting and mesh analysis through VTK")
(description
"PyVista is...
@itemize
@item @emph{Pythonic VTK}: a high-level API to the Visualization
Toolkit (VTK);
@item mesh data structures and filtering methods for spatial datasets;
@item 3D plotting made simple and built for large/complex data geometries.
@end itemize
This package provides a Pythonic, well-documented interface exposing VTK's
powerful visualization backend to facilitate rapid prototyping, analysis, and
visual integration of spatially referenced datasets.")
(license license:expat)))
(define-public python-simplespectral
(package
(name "python-simplespectral")
(version "1.0.0")
(source
(origin
(method url-fetch)
(uri (pypi-uri "SimpleSpectral" version))
(sha256
(base32 "0qh3xwdv9cwcqdamvglrhm586p4yaq1hd291py1fvykhk2a2d4w6"))))
(build-system python-build-system)
(propagated-inputs
(list python-numpy python-scipy))
(home-page "https://github.com/xmikos/simplespectral")
(synopsis "FFT module for Python")
(description
"This package provides a simplified @code{scipy.signal.spectral} module
to do spectral analysis in Python.")
(license license:expat)))
(define-public python-traittypes
(package
(name "python-traittypes")
(version "0.2.1")
(source
(origin
(method url-fetch)
(uri (pypi-uri "traittypes" version))
(sha256
(base32 "1mlv93irdrgxrhnhq3ksi9585d55bpi4mv9dha4p8gkkjiia4vxy"))))
(build-system python-build-system)
(arguments
'(#:phases
(modify-phases %standard-phases
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
;; This one test fails because it doesn't raise an expected
;; exception.
(invoke "pytest" "-vv" "-k" "not test_bad_values")))))))
(propagated-inputs (list python-traitlets))
(native-inputs
(list python-numpy
python-pandas
python-nose
python-pytest
python-xarray))
(home-page "https://github.com/jupyter-widgets/traittypes")
(synopsis "Trait types for NumPy, SciPy and friends")
(description "The goal of this package is to provide a reference
implementation of trait types for common data structures used in the scipy
stack such as numpy arrays or pandas and xarray data structures. These are
out of the scope of the main traitlets project but are a common requirement to
build applications with traitlets in combination with the scipy stack.")
(license license:bsd-3)))
(define-public python-aplus
(package
(name "python-aplus")
(version "0.11.0")
(source
(origin
(method url-fetch)
(uri (pypi-uri "aplus" version))
(sha256
(base32 "1rznc26nlp641rn8gpdngfp79a3fji38yavqakxi35mx2da04msg"))))
(build-system python-build-system)
(home-page "https://github.com/xogeny/aplus")
(synopsis "Promises/A+ for Python")
(description "This package is an implementation of the Promises/A+
specification and test suite in Python.")
(license license:expat)))
(define-public python-climin
(package
(name "python-climin")
(version "0.1a1")
(source (origin
(method url-fetch)
(uri (pypi-uri "climin" version))
(sha256
(base32
"1wpjisd5zzi5yvjff02hnxn84822k8sdxvvd33lil2x79wdb36rv"))))
(build-system python-build-system)
(native-inputs (list python-nose))
(propagated-inputs (list python-numpydoc python-numpy python-scipy))
(home-page "https://github.com/BRML/climin")
(synopsis "Optimization for machine learning")
(description
"@command{climin} is a Python package for optimization,
heavily biased to machine learning scenarios. It works on top of
@command{numpy} and (partially) @command{gnumpy}.")
(license license:bsd-3)))
(define-public python-paramz
(package
(name "python-paramz")
(version "0.9.5")
(source (origin
(method url-fetch)
(uri (pypi-uri "paramz" version))
(sha256
(base32
"16hbh97kj6b1c2gw22rqnr3w3nqkszh9gj8vgx738gq81wf225q9"))))
(build-system python-build-system)
(propagated-inputs (list python-decorator python-numpy python-scipy
python-six))
(home-page "https://github.com/sods/paramz")
(synopsis "The Parameterization Framework")
(description
"@command{paramz} is a lightweight parameterization framework
for parameterized model creation and handling. Its features include:
@itemize
@item Easy model creation with parameters.
@item Fast optimized access of parameters for optimization routines.
@item Memory efficient storage of parameters (only one copy in memory).
@item Renaming of parameters.
@item Intuitive printing of models and parameters.
@item Gradient saving directly inside parameters.
@item Gradient checking of parameters.
@item Optimization of parameters.
@item Jupyter notebook integration.
@item Efficient storage of models, for reloading.
@item Efficient caching.
@end itemize")
(license license:bsd-3)))
(define-public python-gpy
(package
(name "python-gpy")
(version "1.10.0")
(source (origin
(method url-fetch)
(uri (pypi-uri "GPy" version))
(sha256
(base32
"1yx65ajrmqp02ykclhlb0n8s3bx5r0xj075swwwigiqaippr7dx2"))
(snippet
#~(begin (use-modules (guix build utils))
(substitute* "GPy/models/state_space_main.py"
(("collections\\.Iterable") "collections.abc.Iterable"))))))
(build-system python-build-system)
(arguments
`(#:phases (modify-phases %standard-phases
(add-before 'check 'remove-plotting-tests
;; These fail
(lambda _
(delete-file "GPy/testing/plotting_tests.py"))))))
(native-inputs (list python-cython python-nose python-climin))
(propagated-inputs (list python-numpy python-paramz python-scipy
python-six))
(home-page "https://sheffieldml.github.io/GPy/")
(synopsis "The Gaussian Process Toolbox")
(description
"@command{GPy} is a Gaussian Process (GP) framework written in
Python, from the Sheffield machine learning group. GPy implements a range of
machine learning algorithms based on GPs.")
(license license:bsd-3)))
(define-public python-pyfma
(package
(name "python-pyfma")
(version "0.1.6")
(source (origin
(method git-fetch) ;for tests
(uri (git-reference
(url "https://github.com/nschloe/pyfma")
(commit version)))
(file-name (git-file-name name version))
(sha256
(base32
"12i68jj9n1qj9phjnj6f0kmfhlsd3fqjlk9p6d4gs008azw5m8yn"))))
(build-system pyproject-build-system)
(propagated-inputs (list python-numpy))
(native-inputs (list pybind11 python-pytest))
(home-page "https://github.com/nschloe/pyfma")
(synopsis "Fused multiply-add for Python")
(description "@code{pyfma} provides an implementation of fused
multiply-add which computes @code{(x*y) + z} with a single rounding.
This is useful for dot products, matrix multiplications, polynomial
evaluations (e.g., with Horner's rule), Newton's method for evaluating
functions, convolutions, artificial neural networks etc.")
(license license:expat)))
(define-public python-pydicom
(package
(name "python-pydicom")
(version "2.4.4")
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/pydicom/pydicom")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"0ksyyc1hbhyqy289a2frn84ss29fb7czirx3dkxx56f4ia33b4c8"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags
;; Skip tests that require networking.
#~(list "-k" (string-append
"not test_jpeg_ls_pixel_data.py"
" and not test_gdcm_pixel_data.py"
" and not test_pillow_pixel_data.py"
" and not test_rle_pixel_data.py"
" and not Test_JPEG_LS_Lossless_transfer_syntax"
" and not test_numpy_pixel_data.py"
" and not test_data_manager.py"
" and not test_handler_util.py"
" and not test_overlay_np.py"
" and not test_encoders_pydicom.py"
" and not test_encaps.py"
" and not test_reading_ds_with_known_tags_with_UN_VR"
" and not TestDatasetOverlayArray"
" and not TestReader"
" and not test_filewriter.py"))))
(native-inputs (list python-pytest))
(inputs (list gdcm libjpeg-turbo))
(propagated-inputs (list python-numpy python-pillow))
(home-page "https://github.com/pydicom/pydicom")
(synopsis "Python library for reading and writing DICOM data")
(description "@code{python-pydicom} is a Python library for reading and
writing DICOM medical imaging data. It can read, modify and write DICOM
data.")
(license license:expat)))
(define-public python-deepdish
(package
(name "python-deepdish")
(version "0.3.7")
(source (origin
(method url-fetch)
(uri (pypi-uri "deepdish" version))
(sha256
(base32
"1wqzwh3y0mjdyba5kfbvlamn561d3afz50zi712c7klkysz3mzva"))))
(arguments
;; XXX: The project may no longer be compatible with the version of
;; numpy packed in Guix.
;; See: https://github.com/uchicago-cs/deepdish/issues/50.
;;
;; However, there is a maintained fork that appears to be a good
;; replacement: https://github.com/portugueslab/flammkuchen.
;;
;; Disable few failing tests to pass the build.
(list #:test-flags
#~(list "-k" (string-append "not test_pad"
" and not test_pad_repeat_border"
" and not test_pad_repeat_border_corner"
" and not test_pad_to_size"))
#:phases #~(modify-phases %standard-phases
(add-after 'unpack 'dont-vendor-six
(lambda _
(delete-file "deepdish/six.py")
(substitute* "deepdish/io/hdf5io.py"
(("from deepdish import six") "import six"))
(substitute* "deepdish/io/ls.py"
(("from deepdish import io, six, __version__")
"from deepdish import io, __version__
import six
")))))))
(build-system pyproject-build-system)
(native-inputs (list python-pandas))
(propagated-inputs (list python-numpy python-scipy python-six
python-tables))
(home-page "https://github.com/uchicago-cs/deepdish")
(synopsis "Python library for HDF5 file saving and loading")
(description
"Deepdish is a Python library to load and save HDF5 files.
The primary feature of deepdish is its ability to save and load all kinds of
data as HDF5. It can save any Python data structure, offering the same ease
of use as pickling or @code{numpy.save}, but with the language
interoperability offered by HDF5.")
(license license:bsd-3)))
(define-public python-simple-pid
(package
(name "python-simple-pid")
(version "1.0.1")
(source (origin
(method url-fetch)
(uri (pypi-uri "simple-pid" version))
(sha256
(base32
"094mz6rmfq1h0gpns5vlxb7xf9297hlkhndw7g9k95ziqfkv7mk0"))))
(build-system python-build-system)
(arguments
'(#:phases
(modify-phases %standard-phases
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(invoke "python" "-m" "unittest" "discover" "tests/")))))))
(home-page "https://github.com/m-lundberg/simple-pid")
(synopsis "Easy to use PID controller")
(description "This package provides a simple and easy-to-use @acronym{PID,
proportional-integral-derivative} controller.")
(license license:expat)))
(define-public python-opt-einsum
(package
(name "python-opt-einsum")
(version "3.3.0")
(source (origin
(method url-fetch)
(uri (pypi-uri "opt_einsum" version))
(sha256
(base32
"0jb5lia0q742d1713jk33vlj41y61sf52j6pgk7pvhxvfxglgxjr"))))
(build-system python-build-system)
(arguments
'(#:phases
(modify-phases %standard-phases
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(invoke "pytest" "-vv")))))))
(propagated-inputs (list python-numpy))
(native-inputs (list python-pytest python-pytest-cov python-pytest-pep8))
(home-page "https://github.com/dgasmith/opt_einsum")
(synopsis "Optimizing numpys einsum function")
(description
"Optimized einsum can significantly reduce the overall execution time of
einsum-like expressions by optimizing the expression's contraction order and
dispatching many operations to canonical BLAS, cuBLAS, or other specialized
routines. Optimized einsum is agnostic to the backend and can handle NumPy,
Dask, PyTorch, Tensorflow, CuPy, Sparse, Theano, JAX, and Autograd arrays as
well as potentially any library which conforms to a standard API. See the
documentation for more information.")
(license license:expat)))
(define-public python-vaex-core
(package
(name "python-vaex-core")
(version "4.13.0")
(source
(origin
(method url-fetch)
(uri (pypi-uri "vaex-core" version))
(sha256
(base32 "0ni862x5njhfsldjy49xmasd34plrs7yrmkyss6z1b6sgkbw9fsb"))
(modules '((guix build utils)))
(snippet
;; Remove bundled libraries
'(for-each delete-file-recursively
(list "vendor/boost"
"vendor/pcre"
"vendor/pybind11")))))
(build-system python-build-system)
(arguments
`(#:tests? #false ;require vaex.server and others, which require vaex-core.
#:phases
(modify-phases %standard-phases
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(invoke "pytest" "-vv" )))))))
(inputs
(list boost pcre pybind11-2.3))
(propagated-inputs
(list python-aplus
python-blake3
python-click ;XXX for dask
python-cloudpickle
python-dask
python-filelock
python-frozendict
python-future
python-nest-asyncio
python-numpy
python-pandas
python-progressbar2
python-pyarrow
python-pydantic
python-pyyaml
python-requests
python-rich
python-six
python-tabulate))
(native-inputs
(list python-pytest python-cython))
(home-page "https://www.github.com/maartenbreddels/vaex")
(synopsis "Core of Vaex library for exploring tabular datasets")
(description "Vaex is a high performance Python library for lazy
Out-of-Core DataFrames (similar to Pandas), to visualize and explore big
tabular datasets. This package provides the core modules of Vaex.")
(license license:expat)))
(define-public python-salib
(package
(name "python-salib")
(version "1.4.7")
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/SALib/SALib")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"18xfyzircsx2q2lmfc9lxb6xvkxicnc83qzghd7df1jsprr5ymch"))))
(build-system pyproject-build-system)
(propagated-inputs (list python-matplotlib
python-multiprocess
python-numpy
python-pandas
python-scipy))
(native-inputs (list python-hatchling python-pytest python-pytest-cov))
(home-page "https://salib.readthedocs.io/en/latest/")
(synopsis "Tools for global sensitivity analysis")
(description "SALib provides tools for global sensitivity analysis. It
contains Sobol', Morris, FAST, DGSM, PAWN, HDMR, Moment Independent and
fractional factorial methods.")
(license license:expat)))
(define-public python-pylems
(package
(name "python-pylems")
(version "0.6.0")
(source (origin
(method url-fetch)
(uri (pypi-uri "PyLEMS" version))
(sha256
(base32
"074azbyivjbwi61fs5p8z9n6d8nk8xw6fmln1www13z1dccb3740"))))
(build-system python-build-system)
(propagated-inputs (list python-lxml))
(home-page "https://github.com/LEMS/pylems")
(synopsis
"Python support for the Low Entropy Model Specification language (LEMS)")
(description
"A LEMS simulator written in Python which can be used to run
NeuroML2 models.")
(license license:lgpl3)))
(define-public python-pynetdicom
(package
(name "python-pynetdicom")
(version "2.0.2")
(source (origin
(method url-fetch)
(uri (pypi-uri "pynetdicom" version))
(sha256
(base32
"0farmgviaarb3f4xn751card3v0lza57vwgl5azxxq65p7li44i3"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags
;; Tests takes about 10-15min to complete.
;; Skip tests that require networking.
#~(list "-k" (string-append
" not TestFindSCP"
" and not TestQRGetServiceClass"
" and not TestQRMoveServiceClass"
" and not TestStoreSCP"
" and not test_ae.py"
" and not test_echoscp.py"
" and not test_qrscp_echo.py"
" and not test_storescp.py"
" and not test_pr_level_patient"
" and not test_pr_level_series"
" and not test_scp_cancelled"))))
(native-inputs (list python-pyfakefs python-pytest))
(propagated-inputs (list python-pydicom python-sqlalchemy))
(home-page "https://github.com/pydicom/pynetdicom")
(synopsis "Python implementation of the DICOM networking protocol")
(description
"@code{pynetdicom} is a Python package that implements the DICOM
networking protocol. It allows the easy creation of DICOM
@acronym{SCUs,Service Class Users} and @acronym{SCPs,Service Class
Providers}.")
(license license:expat)))
(define-public python-pynrrd
(package
(name "python-pynrrd")
(version "1.0.0")
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/mhe/pynrrd")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"09gdyi4kbi3512ydgqxkgr4j7b9a95qh83fk2n9s41bns4id9xj7"))))
(build-system python-build-system)
(propagated-inputs
(list python-nptyping python-numpy python-typing-extensions))
(home-page "https://github.com/mhe/pynrrd")
(synopsis "Python module for reading and writing NRRD files")
(description
"@code{pynrrd} is a Python module for reading and writing @acronym{NRRD,
Nearly Raw Raster Data} files (format designed to support scientific
visualization and image processing involving N-dimensional raster data) into
and from numpy arrays.")
(license license:expat)))
(define-public python-libneuroml
(package
(name "python-libneuroml")
(version "0.4.1")
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/NeuralEnsemble/libNeuroML.git")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"0mrm4rd6x1sm6hkvhk20mkqp9q53sl3lbvq6hqzyymkw1iqq6bhy"))))
(build-system pyproject-build-system)
(propagated-inputs (list python-lxml python-six))
(native-inputs (list python-pytest python-numpy python-tables))
(home-page "https://libneuroml.readthedocs.org/en/latest/")
(synopsis
"Python library for working with NeuroML descriptions of neuronal models")
(description
"This package provides a Python library for working with NeuroML descriptions of
neuronal models")
(license license:bsd-3)))
;;;
;;; Avoid adding new packages to the end of this file. To reduce the chances
;;; of a merge conflict, place them above by existing packages with similar
;;; functionality or similar names.
;;;
|