diff options
author | Timotej Kapus <tk1713@ic.ac.uk> | 2018-10-28 12:49:52 +0000 |
---|---|---|
committer | MartinNowack <martin.nowack@gmail.com> | 2019-04-04 20:37:41 +0100 |
commit | 572d644e8de439fe59f5598fc902d71b60cf8a85 (patch) | |
tree | 2b6a06d02c2854efc7f916121ef950c75438e325 /tools | |
parent | b1f34f8d0ff890511e16fc322abf3ca08000b950 (diff) | |
download | klee-572d644e8de439fe59f5598fc902d71b60cf8a85.tar.gz |
Clean klee-stats, StatsTracker and cmake
Diffstat (limited to 'tools')
-rwxr-xr-x | tools/klee-stats/klee-stats | 185 |
1 files changed, 78 insertions, 107 deletions
diff --git a/tools/klee-stats/klee-stats b/tools/klee-stats/klee-stats index 901cab55..38d8f750 100755 --- a/tools/klee-stats/klee-stats +++ b/tools/klee-stats/klee-stats @@ -1,4 +1,4 @@ -#!/usr/bin/env python +#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # ===-- klee-stats --------------------------------------------------------===## @@ -12,24 +12,18 @@ """Output statistics logged by Klee.""" -# use '/' to mean true division and '//' to mean floor division -from __future__ import division -from __future__ import print_function - import os -import re import sys import argparse import sqlite3 -from operator import itemgetter try: - from tabulate import TableFormat, Line, DataRow, tabulate + from tabulate import TableFormat, Line, DataRow, tabulate, _table_formats except: print('Error: Package "tabulate" required for table formatting. ' - 'Please install it using "pip" or your package manager.', + 'Please install it using "pip" or your package manager.' + 'You can still use -grafana and -to-csv without tabulate.', file=sys.stderr) - exit(1) Legend = [ ('Instrs', 'number of executed instructions'), @@ -63,35 +57,27 @@ def getLogFile(path): """Return the path to run.stats.""" return os.path.join(path, 'run.stats') - class LazyEvalList: """Store all the lines in run.stats and eval() when needed.""" def __init__(self, fileName): # The first line in the records contains headers. - # self.lines = lines[1:] - self.conn = sqlite3.connect(fileName); + self.conn = sqlite3.connect(fileName) self.c = self.conn.cursor() self.c.execute("SELECT * FROM stats ORDER BY Instructions DESC LIMIT 1") - self.lines = self.c.fetchone() + self.line = self.c.fetchone() def aggregateRecords(self): - memC = self.conn.cursor() - memC.execute("SELECT max(MallocUsage) / 1024 / 1024, avg(MallocUsage) / 1024 / 1024 from stats") - maxMem, avgMem = memC.fetchone() - - stateC = self.conn.cursor() - stateC.execute("SELECT max(NumStates), avg(NumStates) from stats") - maxStates, avgStates = stateC.fetchone() - return (maxMem, avgMem, maxStates, avgStates) - - - def __getitem__(self, index): - return self.lines - - def __len__(self): - return len(self.lines) + memC = self.conn.cursor() + memC.execute("SELECT max(MallocUsage) / 1024 / 1024, avg(MallocUsage) / 1024 / 1024 from stats") + maxMem, avgMem = memC.fetchone() + stateC = self.conn.cursor() + stateC.execute("SELECT max(NumStates), avg(NumStates) from stats") + maxStates, avgStates = stateC.fetchone() + return (maxMem, avgMem, maxStates, avgStates) + def getLastRecord(self): + return self.line def stripCommonPathPrefix(paths): paths = map(os.path.normpath, paths) @@ -103,7 +89,6 @@ def stripCommonPathPrefix(paths): break return ['/'.join(p[i:]) for p in paths] - def getKleeOutDirs(dirs): kleeOutDirs = [] for dir in dirs: @@ -117,7 +102,6 @@ def getKleeOutDirs(dirs): kleeOutDirs.append(path) return kleeOutDirs - def getLabels(pr): if pr == 'all': labels = ('Path', 'Instrs', 'Time(s)', 'ICov(%)', 'BCov(%)', 'ICount', @@ -149,6 +133,7 @@ def getRow(record, stats, pr): if BTot == 0: BFull = BTot = 1 + Ts, Tcex, Tf, Tr = [e / 1000000 for e in [Ts, Tcex, Tf, Tr]] #convert from microseconds Mem = Mem / 1024 / 1024 AvgQC = int(QCon / max(1, QTot)) @@ -177,69 +162,60 @@ def getRow(record, stats, pr): def grafana(dirs): - dr = getLogFile(dirs[0]) - from flask import Flask, jsonify, request - from json import dumps - import datetime - import time - app = Flask(__name__) - - def toepoch(date_text): - dt = datetime.datetime.strptime(date_text, "%Y-%m-%dT%H:%M:%S.%fZ") - epoch = (dt - datetime.datetime(1970, 1, 1)).total_seconds() - return epoch - - @app.route('/') - def status(): - return 'OK' - - @app.route('/search', methods=['GET', 'POST']) - def search(): - jsn = request.get_json() - conn = sqlite3.connect(dr); - cursor = conn.execute('SELECT * FROM stats') - names = [description[0] for description in cursor.description] - return jsonify(names) - - @app.route('/query', methods=['POST']) - def query(): - jsn = request.get_json() -# print(dumps(jsn)) - interval = jsn["intervalMs"] - limit = jsn["maxDataPoints"] - frm = toepoch(jsn["range"]["from"]) - to = toepoch(jsn["range"]["to"]) - targets = [str(t["target"]) for t in jsn["targets"]] - startTime = os.path.getmtime(dr) - fromTime = frm - startTime if frm - startTime > 0 else 0 - toTime = to - startTime if to - startTime > fromTime else fromTime + 100 -# print(startTime) - conn = sqlite3.connect(dr); - s = "SELECT WallTime + " + str(startTime) + "," + ",".join(targets) + " FROM stats GROUP BY WallTime/3 LIMIT ?" - s = "SELECT WallTime + {startTime} , {fields} " \ - + " FROM stats" \ - + " WHERE WallTime >= {fromTime} AND WallTime <= {toTime}" \ - + " GROUP BY WallTime/{intervalSeconds} LIMIT {limit}" - s = s.format(startTime=startTime, - fields=",".join(["AVG( {0} )".format(t) for t in targets]), - intervalSeconds=interval/1000, - fromTime=fromTime, - toTime=toTime, - limit=limit) - cursor = conn.execute(s) - result = [ {"target": t, "datapoints": []} for t in targets ] - for line in cursor: - unixtimestamp = int(line[0] * 1000) #miliseconds - for field, datastream in zip(line[1:], result): - datastream["datapoints"].append([field, unixtimestamp]) - -# print(len(result[0]["datapoints"])) - ret = jsonify(result) -# print(result) - return ret - - app.run() - return 0 + dr = getLogFile(dirs[0]) + from flask import Flask, jsonify, request + import datetime + app = Flask(__name__) + + def toEpoch(date_text): + dt = datetime.datetime.strptime(date_text, "%Y-%m-%dT%H:%M:%S.%fZ") + epoch = (dt - datetime.datetime(1970, 1, 1)).total_seconds() + return epoch + + @app.route('/') + def status(): + return 'OK' + + @app.route('/search', methods=['GET', 'POST']) + def search(): + conn = sqlite3.connect(dr) + cursor = conn.execute('SELECT * FROM stats') + names = [description[0] for description in cursor.description] + return jsonify(names) + + @app.route('/query', methods=['POST']) + def query(): + jsn = request.get_json() + interval = jsn["intervalMs"] + limit = jsn["maxDataPoints"] + frm = toEpoch(jsn["range"]["from"]) + to = toEpoch(jsn["range"]["to"]) + targets = [str(t["target"]) for t in jsn["targets"]] + startTime = os.path.getmtime(dr) + fromTime = frm - startTime if frm - startTime > 0 else 0 + toTime = to - startTime if to - startTime > fromTime else fromTime + 100 + sqlTarget = ",".join(["AVG( {0} )".format(t) for t in targets if t.isalnum()]) + + conn = sqlite3.connect(dr) + + s = "SELECT WallTime + ? , {fields} " \ + + " FROM stats" \ + + " WHERE WallTime >= ? AND WallTime <= ?" \ + + " GROUP BY WallTime/? LIMIT ?" + s = s.format(fields=sqlTarget) #can't use prepared staments for this one + + cursor = conn.execute(s, ( startTime, fromTime, toTime, interval/1000, limit)) + result = [ {"target": t, "datapoints": []} for t in targets ] + for line in cursor: + unixtimestamp = int(line[0]) * 1000 #miliseconds + for field, datastream in zip(line[1:], result): + datastream["datapoints"].append([field, unixtimestamp]) + + ret = jsonify(result) + return ret + + app.run() + return 0 def main(): parser = argparse.ArgumentParser( @@ -250,16 +226,15 @@ def main(): parser.add_argument('dir', nargs='+', help='klee output directory') parser.add_argument('--table-format', - choices=['plain', 'simple', 'grid', 'pipe', 'orgtbl', - 'rst', 'mediawiki', 'latex', 'klee'], - dest='tableFormat', default='klee', - help='Table format for the summary.') + choices=['klee'] + list(_table_formats.keys()), + dest='tableFormat', default='klee', + help='Table format for the summary.') parser.add_argument('-to-csv', action='store_true', dest='toCsv', - help='Dump run.stats to STDOUT in CSV format') + help='Output stats as comma-separated values (CSV)') parser.add_argument('-grafana', action='store_true', dest='grafana', - help='Start a graphan web server') + help='Start a grafana web server') # argument group for controlling output verboseness pControl = parser.add_mutually_exclusive_group(required=False) @@ -314,18 +289,14 @@ def main(): # write data for result in sql3_cursor: csv_out.writerow(result) - return + if len(data) > 1: dirs = stripCommonPathPrefix(dirs) # attach the stripped path data = list(zip(dirs, data)) labels = getLabels(pr) - # labels in the same order as in the run.stats file. used by --compare-by. - # current impl needs monotonic values, so only keep the ones making sense. - rawLabels = ('Instrs', '', '', '', '', '', '', 'Queries', - '', '', 'Time', 'ICov', '', '', '', '', '', '') # build the main body of the table table = [] @@ -335,8 +306,8 @@ def main(): row = [path] stats = records.aggregateRecords() totStats.append(stats) - row.extend(getRow(records[-1], stats, pr)) - totRecords.append(records[-1]) + row.extend(getRow(records.getLastRecord(), stats, pr)) + totRecords.append(records.getLastRecord()) table.append(row) # calculate the total totRecords = [sum(e) for e in zip(*totRecords)] |