diff options
author | Cristian Cadar <c.cadar@imperial.ac.uk> | 2015-04-09 17:38:19 +0100 |
---|---|---|
committer | Cristian Cadar <c.cadar@imperial.ac.uk> | 2015-04-09 17:38:19 +0100 |
commit | cac3cc670bf19a055286353d55db3317ccb2301c (patch) | |
tree | f9817d0e1f34d5ccf29a14e88c59dc10debd3949 /utils/hacks/TreeGraphs/Graphics/Geometry/quat.py | |
parent | 185e2f9d3ad23e9926373979c3dd8dc362ad6857 (diff) | |
download | klee-cac3cc670bf19a055286353d55db3317ccb2301c.tar.gz |
Normalised line endings
Diffstat (limited to 'utils/hacks/TreeGraphs/Graphics/Geometry/quat.py')
-rw-r--r-- | utils/hacks/TreeGraphs/Graphics/Geometry/quat.py | 214 |
1 files changed, 107 insertions, 107 deletions
diff --git a/utils/hacks/TreeGraphs/Graphics/Geometry/quat.py b/utils/hacks/TreeGraphs/Graphics/Geometry/quat.py index f7837891..663d3d8c 100644 --- a/utils/hacks/TreeGraphs/Graphics/Geometry/quat.py +++ b/utils/hacks/TreeGraphs/Graphics/Geometry/quat.py @@ -1,107 +1,107 @@ -from __future__ import division - -import math -import vec3, vec4 - -def identity(): - return (0.0,0.0,0.0,1.0) - -def fromaxisangle(axisangle): - axis,angle= axisangle - ang_2= angle/2.0 - s_ang= math.sin(ang_2) - c_ang= math.cos(ang_2) - - q= vec3.mulN(axis, s_ang) + (c_ang,) - return normalize(q) - -def fromnormals(n1,n2): - axis,angle= vec3.normalize(vec3.cross(n1, n2)), math.acos(vec3.dot(n1, n2)) - return fromaxisangle((axis,angle)) - - # avoid trigonmetry -def fromnormals_faster(n1,n2): - axis= vec3.normalize(vec3.cross(n1, n2)) - - half_n= vec3.normalize(vec3.add(n1, n2)) - cos_half_angle= vec3.dot(n1, half_n) - sin_half_angle= 1.0 - cos_half_angle**2 - - return vec3.mulN(axis, sin_half_angle) + (cos_half_angle,) - -def fromvectors(v1,v2): - return fromnormals(vec3.normalize(v1), vec3.normalize(v2)) - -def magnitude(q): - return vec4.length(q) - -def normalize(q): - return vec4.divN(q, magnitude(q)) - -def conjugate(q): - x,y,z,w= q - return (-x, -y, -z, w) - -def mulvec3(q, v): - t= mul(q, v+(0.0,)) - t= mul(t, conjugate(q)) - return t[:3] - -def mul(a, b): - ax,ay,az,aw= a - bx,by,bz,bw= b - - x= aw*bx + ax*bw + ay*bz - az*by - y= aw*by + ay*bw + az*bx - ax*bz - z= aw*bz + az*bw + ax*by - ay*bx - w= aw*bw - ax*bx - ay*by - az*bz - - return (x,y,z,w) - -def toaxisangle(q): - tw= math.acos(q[3]) - scale= math.sin(tw) - angle= tw*2.0 - - try: - axis= vec3.divN(q[:3], scale) - except ZeroDivisionError: - axis= (1.0,0.0,0.0) - - return axis,angle - -def tomat3x3(q): - x,y,z,w= q - - m0= ( 1.0 - 2.0 * ( y*y + z*z ), - 2.0 * ( x*y - z*w ), - 2.0 * ( x*z + y*w )) - m1= ( 2.0 * ( x*y + z*w ), - 1.0 - 2.0 * ( x*x + z*z ), - 2.0 * ( y*z - x*w )) - m2= ( 2.0 * ( x*z - y*w ), - 2.0 * ( y*z + x*w ), - 1.0 - 2.0 * ( x*x + y*y )) - - return m0,m1,m2 - -def tomat4x4(q): - m0,m1,m2= tomat3x3(q) - return (m0 + (0.0,), - m1 + (0.0,), - m2 + (0.0,), - (0.0, 0.0, 0.0, 1.0)) - -def slerp(a, b, t): - raise NotImplementedError - - cos_omega= vec4.dot(a, b) - - if (cos_omega<0.0): - cos_omega= -cos_omega - b= vec4.neg(b) - - imega= math.acos(cos_omega) - t= sin(t*omega)/sin(omega) - - return vec4.lerp(a, b, t) +from __future__ import division + +import math +import vec3, vec4 + +def identity(): + return (0.0,0.0,0.0,1.0) + +def fromaxisangle(axisangle): + axis,angle= axisangle + ang_2= angle/2.0 + s_ang= math.sin(ang_2) + c_ang= math.cos(ang_2) + + q= vec3.mulN(axis, s_ang) + (c_ang,) + return normalize(q) + +def fromnormals(n1,n2): + axis,angle= vec3.normalize(vec3.cross(n1, n2)), math.acos(vec3.dot(n1, n2)) + return fromaxisangle((axis,angle)) + + # avoid trigonmetry +def fromnormals_faster(n1,n2): + axis= vec3.normalize(vec3.cross(n1, n2)) + + half_n= vec3.normalize(vec3.add(n1, n2)) + cos_half_angle= vec3.dot(n1, half_n) + sin_half_angle= 1.0 - cos_half_angle**2 + + return vec3.mulN(axis, sin_half_angle) + (cos_half_angle,) + +def fromvectors(v1,v2): + return fromnormals(vec3.normalize(v1), vec3.normalize(v2)) + +def magnitude(q): + return vec4.length(q) + +def normalize(q): + return vec4.divN(q, magnitude(q)) + +def conjugate(q): + x,y,z,w= q + return (-x, -y, -z, w) + +def mulvec3(q, v): + t= mul(q, v+(0.0,)) + t= mul(t, conjugate(q)) + return t[:3] + +def mul(a, b): + ax,ay,az,aw= a + bx,by,bz,bw= b + + x= aw*bx + ax*bw + ay*bz - az*by + y= aw*by + ay*bw + az*bx - ax*bz + z= aw*bz + az*bw + ax*by - ay*bx + w= aw*bw - ax*bx - ay*by - az*bz + + return (x,y,z,w) + +def toaxisangle(q): + tw= math.acos(q[3]) + scale= math.sin(tw) + angle= tw*2.0 + + try: + axis= vec3.divN(q[:3], scale) + except ZeroDivisionError: + axis= (1.0,0.0,0.0) + + return axis,angle + +def tomat3x3(q): + x,y,z,w= q + + m0= ( 1.0 - 2.0 * ( y*y + z*z ), + 2.0 * ( x*y - z*w ), + 2.0 * ( x*z + y*w )) + m1= ( 2.0 * ( x*y + z*w ), + 1.0 - 2.0 * ( x*x + z*z ), + 2.0 * ( y*z - x*w )) + m2= ( 2.0 * ( x*z - y*w ), + 2.0 * ( y*z + x*w ), + 1.0 - 2.0 * ( x*x + y*y )) + + return m0,m1,m2 + +def tomat4x4(q): + m0,m1,m2= tomat3x3(q) + return (m0 + (0.0,), + m1 + (0.0,), + m2 + (0.0,), + (0.0, 0.0, 0.0, 1.0)) + +def slerp(a, b, t): + raise NotImplementedError + + cos_omega= vec4.dot(a, b) + + if (cos_omega<0.0): + cos_omega= -cos_omega + b= vec4.neg(b) + + imega= math.acos(cos_omega) + t= sin(t*omega)/sin(omega) + + return vec4.lerp(a, b, t) |