From 8e8732d482e42e363f0f4c51794ed966701371e7 Mon Sep 17 00:00:00 2001 From: Dan Liew Date: Wed, 24 May 2017 16:32:47 +0100 Subject: Implement basic support for vectorized instructions. We use LLVM's Scalarizer pass to remove most vectorized code so that the Executor only needs to support the InsertElement and ExtractElement instructions. This pass was not available in LLVM 3.4 so to support that LLVM version the pass has been back ported. To check that the Executor is not receiving vector operand types that it can't handle assertions have been added. There are a few limitations to this implementation. * The InsertElement and ExtractElement index cannot be symbolic. * There is no support for LLVM < 3.4. --- lib/Module/CMakeLists.txt | 1 + lib/Module/KModule.cpp | 9 + lib/Module/Passes.h | 9 + lib/Module/Scalarizer.cpp | 651 ++++++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 670 insertions(+) create mode 100644 lib/Module/Scalarizer.cpp (limited to 'lib/Module') diff --git a/lib/Module/CMakeLists.txt b/lib/Module/CMakeLists.txt index 006443a9..fc481780 100644 --- a/lib/Module/CMakeLists.txt +++ b/lib/Module/CMakeLists.txt @@ -17,6 +17,7 @@ klee_add_component(kleeModule Optimize.cpp PhiCleaner.cpp RaiseAsm.cpp + Scalarizer.cpp ) set(LLVM_COMPONENTS diff --git a/lib/Module/KModule.cpp b/lib/Module/KModule.cpp index 005c8869..bee9a0b4 100644 --- a/lib/Module/KModule.cpp +++ b/lib/Module/KModule.cpp @@ -307,6 +307,15 @@ void KModule::prepare(const Interpreter::ModuleOptions &opts, // module. LegacyLLVMPassManagerTy pm; pm.add(new RaiseAsmPass()); +#if LLVM_VERSION_CODE >= LLVM_VERSION(3,4) + // This pass will scalarize as much code as possible so that the Executor + // does not need to handle operands of vector type for most instructions + // other than InsertElementInst and ExtractElementInst. + // + // NOTE: Must come before division/overshift checks because those passes + // don't know how to handle vector instructions. + pm.add(createScalarizerPass()); +#endif if (opts.CheckDivZero) pm.add(new DivCheckPass()); if (opts.CheckOvershift) pm.add(new OvershiftCheckPass()); // FIXME: This false here is to work around a bug in diff --git a/lib/Module/Passes.h b/lib/Module/Passes.h index 4f1a1453..293766c1 100644 --- a/lib/Module/Passes.h +++ b/lib/Module/Passes.h @@ -180,6 +180,15 @@ private: llvm::BasicBlock *defaultBlock); }; +// This is the interface to a back-ported LLVM pass. +// Newer versions of LLVM already have this in-tree +// and we are not supporting vector instructions for +// LLVM 2.9. Therefore this interface is only needed for +// LLVM 3.4. +#if LLVM_VERSION_CODE == LLVM_VERSION(3,4) +llvm::FunctionPass *createScalarizerPass(); +#endif + } #endif diff --git a/lib/Module/Scalarizer.cpp b/lib/Module/Scalarizer.cpp new file mode 100644 index 00000000..0d8e1f48 --- /dev/null +++ b/lib/Module/Scalarizer.cpp @@ -0,0 +1,651 @@ +//===--- Scalarizer.cpp - Scalarize vector operations ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass converts vector operations into scalar operations, in order +// to expose optimization opportunities on the individual scalar operations. +// It is mainly intended for targets that do not have vector units, but it +// may also be useful for revectorizing code to different vector widths. +// +//===----------------------------------------------------------------------===// +#include "klee/Config/Version.h" + +// This is taken from r195471 in LLVM. This unfortunately was introduced just +// after LLVM branched for 3.4 so it has been copied into KLEE's source tree. +// We only use this for LLVM 3.4 because newer LLVM's have this pass in-tree. +#if LLVM_VERSION_CODE == LLVM_VERSION(3,4) + +#define DEBUG_TYPE "scalarizer" +#include "llvm/ADT/STLExtras.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/InstVisitor.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" + +using namespace llvm; + +namespace { +// Used to store the scattered form of a vector. +typedef SmallVector ValueVector; + +// Used to map a vector Value to its scattered form. We use std::map +// because we want iterators to persist across insertion and because the +// values are relatively large. +typedef std::map ScatterMap; + +// Lists Instructions that have been replaced with scalar implementations, +// along with a pointer to their scattered forms. +typedef SmallVector, 16> GatherList; + +// Provides a very limited vector-like interface for lazily accessing one +// component of a scattered vector or vector pointer. +class Scatterer { +public: + // Scatter V into Size components. If new instructions are needed, + // insert them before BBI in BB. If Cache is nonnull, use it to cache + // the results. + Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, + ValueVector *cachePtr = 0); + + // Return component I, creating a new Value for it if necessary. + Value *operator[](unsigned I); + + // Return the number of components. + unsigned size() const { return Size; } + +private: + BasicBlock *BB; + BasicBlock::iterator BBI; + Value *V; + ValueVector *CachePtr; + PointerType *PtrTy; + ValueVector Tmp; + unsigned Size; +}; + +// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp +// called Name that compares X and Y in the same way as FCI. +struct FCmpSplitter { + FCmpSplitter(FCmpInst &fci) : FCI(fci) {} + Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, + const Twine &Name) const { + return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name); + } + FCmpInst &FCI; +}; + +// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp +// called Name that compares X and Y in the same way as ICI. +struct ICmpSplitter { + ICmpSplitter(ICmpInst &ici) : ICI(ici) {} + Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, + const Twine &Name) const { + return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name); + } + ICmpInst &ICI; +}; + +// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create +// a binary operator like BO called Name with operands X and Y. +struct BinarySplitter { + BinarySplitter(BinaryOperator &bo) : BO(bo) {} + Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, + const Twine &Name) const { + return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name); + } + BinaryOperator &BO; +}; + +// GEPSpliiter()(Builder, X, Y, Name) uses Builder to create +// a single GEP called Name with operands X and Y. +struct GEPSplitter { + GEPSplitter() {} + Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, + const Twine &Name) const { + return Builder.CreateGEP(Op0, Op1, Name); + } +}; + +// Information about a load or store that we're scalarizing. +struct VectorLayout { + VectorLayout() : VecTy(0), ElemTy(0), VecAlign(0), ElemSize(0) {} + + // Return the alignment of element I. + uint64_t getElemAlign(unsigned I) { + return MinAlign(VecAlign, I * ElemSize); + } + + // The type of the vector. + VectorType *VecTy; + + // The type of each element. + Type *ElemTy; + + // The alignment of the vector. + uint64_t VecAlign; + + // The size of each element. + uint64_t ElemSize; +}; + +class Scalarizer : public FunctionPass, + public InstVisitor { +public: + static char ID; + + Scalarizer() : + FunctionPass(ID) { + // HACK: + //initializeScalarizerPass(*PassRegistry::getPassRegistry()); + } + + virtual bool doInitialization(Module &M); + virtual bool runOnFunction(Function &F); + + // InstVisitor methods. They return true if the instruction was scalarized, + // false if nothing changed. + bool visitInstruction(Instruction &) { return false; } + bool visitSelectInst(SelectInst &SI); + bool visitICmpInst(ICmpInst &); + bool visitFCmpInst(FCmpInst &); + bool visitBinaryOperator(BinaryOperator &); + bool visitGetElementPtrInst(GetElementPtrInst &); + bool visitCastInst(CastInst &); + bool visitBitCastInst(BitCastInst &); + bool visitShuffleVectorInst(ShuffleVectorInst &); + bool visitPHINode(PHINode &); + bool visitLoadInst(LoadInst &); + bool visitStoreInst(StoreInst &); + +private: + Scatterer scatter(Instruction *, Value *); + void gather(Instruction *, const ValueVector &); + bool canTransferMetadata(unsigned Kind); + void transferMetadata(Instruction *, const ValueVector &); + bool getVectorLayout(Type *, unsigned, VectorLayout &); + bool finish(); + + template bool splitBinary(Instruction &, const T &); + + ScatterMap Scattered; + GatherList Gathered; + unsigned ParallelLoopAccessMDKind; + const DataLayout *TDL; +}; + +char Scalarizer::ID = 0; +} // end anonymous namespace + +bool ScalarizeLoadStore = true; // HACK +/* +// This is disabled by default because having separate loads and stores makes +// it more likely that the -combiner-alias-analysis limits will be reached. +static cl::opt ScalarizeLoadStore + ("scalarize-load-store", cl::Hidden, cl::init(false), + cl::desc("Allow the scalarizer pass to scalarize loads and store")); + +INITIALIZE_PASS(Scalarizer, "scalarizer", "Scalarize vector operations", + false, false) +*/ + +Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, + ValueVector *cachePtr) + : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) { + Type *Ty = V->getType(); + PtrTy = dyn_cast(Ty); + if (PtrTy) + Ty = PtrTy->getElementType(); + Size = Ty->getVectorNumElements(); + if (!CachePtr) + Tmp.resize(Size, 0); + else if (CachePtr->empty()) + CachePtr->resize(Size, 0); + else + assert(Size == CachePtr->size() && "Inconsistent vector sizes"); +} + +// Return component I, creating a new Value for it if necessary. +Value *Scatterer::operator[](unsigned I) { + ValueVector &CV = (CachePtr ? *CachePtr : Tmp); + // Try to reuse a previous value. + if (CV[I]) + return CV[I]; + IRBuilder<> Builder(BB, BBI); + if (PtrTy) { + if (!CV[0]) { + Type *Ty = + PointerType::get(PtrTy->getElementType()->getVectorElementType(), + PtrTy->getAddressSpace()); + CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0"); + } + if (I != 0) + CV[I] = Builder.CreateConstGEP1_32(CV[0], I, + V->getName() + ".i" + Twine(I)); + } else { + // Search through a chain of InsertElementInsts looking for element I. + // Record other elements in the cache. The new V is still suitable + // for all uncached indices. + for (;;) { + InsertElementInst *Insert = dyn_cast(V); + if (!Insert) + break; + ConstantInt *Idx = dyn_cast(Insert->getOperand(2)); + if (!Idx) + break; + unsigned J = Idx->getZExtValue(); + CV[J] = Insert->getOperand(1); + V = Insert->getOperand(0); + if (I == J) + return CV[J]; + } + CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I), + V->getName() + ".i" + Twine(I)); + } + return CV[I]; +} + +bool Scalarizer::doInitialization(Module &M) { + ParallelLoopAccessMDKind = + M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); + return false; +} + +bool Scalarizer::runOnFunction(Function &F) { + TDL = getAnalysisIfAvailable(); + for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { + BasicBlock *BB = BBI; + for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { + Instruction *I = II; + bool Done = visit(I); + ++II; + if (Done && I->getType()->isVoidTy()) + I->eraseFromParent(); + } + } + return finish(); +} + +// Return a scattered form of V that can be accessed by Point. V must be a +// vector or a pointer to a vector. +Scatterer Scalarizer::scatter(Instruction *Point, Value *V) { + if (Argument *VArg = dyn_cast(V)) { + // Put the scattered form of arguments in the entry block, + // so that it can be used everywhere. + Function *F = VArg->getParent(); + BasicBlock *BB = &F->getEntryBlock(); + return Scatterer(BB, BB->begin(), V, &Scattered[V]); + } + if (Instruction *VOp = dyn_cast(V)) { + // Put the scattered form of an instruction directly after the + // instruction. + BasicBlock *BB = VOp->getParent(); + return Scatterer(BB, llvm::next(BasicBlock::iterator(VOp)), + V, &Scattered[V]); + } + // In the fallback case, just put the scattered before Point and + // keep the result local to Point. + return Scatterer(Point->getParent(), Point, V); +} + +// Replace Op with the gathered form of the components in CV. Defer the +// deletion of Op and creation of the gathered form to the end of the pass, +// so that we can avoid creating the gathered form if all uses of Op are +// replaced with uses of CV. +void Scalarizer::gather(Instruction *Op, const ValueVector &CV) { + // Since we're not deleting Op yet, stub out its operands, so that it + // doesn't make anything live unnecessarily. + for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) + Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType())); + + transferMetadata(Op, CV); + + // If we already have a scattered form of Op (created from ExtractElements + // of Op itself), replace them with the new form. + ValueVector &SV = Scattered[Op]; + if (!SV.empty()) { + for (unsigned I = 0, E = SV.size(); I != E; ++I) { + Instruction *Old = cast(SV[I]); + CV[I]->takeName(Old); + Old->replaceAllUsesWith(CV[I]); + Old->eraseFromParent(); + } + } + SV = CV; + Gathered.push_back(GatherList::value_type(Op, &SV)); +} + +// Return true if it is safe to transfer the given metadata tag from +// vector to scalar instructions. +bool Scalarizer::canTransferMetadata(unsigned Tag) { + return (Tag == LLVMContext::MD_tbaa + || Tag == LLVMContext::MD_fpmath + || Tag == LLVMContext::MD_tbaa_struct + || Tag == LLVMContext::MD_invariant_load + || Tag == ParallelLoopAccessMDKind); +} + +// Transfer metadata from Op to the instructions in CV if it is known +// to be safe to do so. +void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) { + SmallVector, 4> MDs; + Op->getAllMetadataOtherThanDebugLoc(MDs); + for (unsigned I = 0, E = CV.size(); I != E; ++I) { + if (Instruction *New = dyn_cast(CV[I])) { + for (SmallVectorImpl >::iterator + MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) + if (canTransferMetadata(MI->first)) + New->setMetadata(MI->first, MI->second); + New->setDebugLoc(Op->getDebugLoc()); + } + } +} + +// Try to fill in Layout from Ty, returning true on success. Alignment is +// the alignment of the vector, or 0 if the ABI default should be used. +bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment, + VectorLayout &Layout) { + if (!TDL) + return false; + + // Make sure we're dealing with a vector. + Layout.VecTy = dyn_cast(Ty); + if (!Layout.VecTy) + return false; + + // Check that we're dealing with full-byte elements. + Layout.ElemTy = Layout.VecTy->getElementType(); + if (TDL->getTypeSizeInBits(Layout.ElemTy) != + TDL->getTypeStoreSizeInBits(Layout.ElemTy)) + return false; + + if (Alignment) + Layout.VecAlign = Alignment; + else + Layout.VecAlign = TDL->getABITypeAlignment(Layout.VecTy); + Layout.ElemSize = TDL->getTypeStoreSize(Layout.ElemTy); + return true; +} + +// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name) +// to create an instruction like I with operands X and Y and name Name. +template +bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) { + VectorType *VT = dyn_cast(I.getType()); + if (!VT) + return false; + + unsigned NumElems = VT->getNumElements(); + IRBuilder<> Builder(I.getParent(), &I); + Scatterer Op0 = scatter(&I, I.getOperand(0)); + Scatterer Op1 = scatter(&I, I.getOperand(1)); + assert(Op0.size() == NumElems && "Mismatched binary operation"); + assert(Op1.size() == NumElems && "Mismatched binary operation"); + ValueVector Res; + Res.resize(NumElems); + for (unsigned Elem = 0; Elem < NumElems; ++Elem) + Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem], + I.getName() + ".i" + Twine(Elem)); + gather(&I, Res); + return true; +} + +bool Scalarizer::visitSelectInst(SelectInst &SI) { + VectorType *VT = dyn_cast(SI.getType()); + if (!VT) + return false; + + unsigned NumElems = VT->getNumElements(); + IRBuilder<> Builder(SI.getParent(), &SI); + Scatterer Op1 = scatter(&SI, SI.getOperand(1)); + Scatterer Op2 = scatter(&SI, SI.getOperand(2)); + assert(Op1.size() == NumElems && "Mismatched select"); + assert(Op2.size() == NumElems && "Mismatched select"); + ValueVector Res; + Res.resize(NumElems); + + if (SI.getOperand(0)->getType()->isVectorTy()) { + Scatterer Op0 = scatter(&SI, SI.getOperand(0)); + assert(Op0.size() == NumElems && "Mismatched select"); + for (unsigned I = 0; I < NumElems; ++I) + Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I], + SI.getName() + ".i" + Twine(I)); + } else { + Value *Op0 = SI.getOperand(0); + for (unsigned I = 0; I < NumElems; ++I) + Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I], + SI.getName() + ".i" + Twine(I)); + } + gather(&SI, Res); + return true; +} + +bool Scalarizer::visitICmpInst(ICmpInst &ICI) { + return splitBinary(ICI, ICmpSplitter(ICI)); +} + +bool Scalarizer::visitFCmpInst(FCmpInst &FCI) { + return splitBinary(FCI, FCmpSplitter(FCI)); +} + +bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) { + return splitBinary(BO, BinarySplitter(BO)); +} + +bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) { + return splitBinary(GEPI, GEPSplitter()); +} + +bool Scalarizer::visitCastInst(CastInst &CI) { + VectorType *VT = dyn_cast(CI.getDestTy()); + if (!VT) + return false; + + unsigned NumElems = VT->getNumElements(); + IRBuilder<> Builder(CI.getParent(), &CI); + Scatterer Op0 = scatter(&CI, CI.getOperand(0)); + assert(Op0.size() == NumElems && "Mismatched cast"); + ValueVector Res; + Res.resize(NumElems); + for (unsigned I = 0; I < NumElems; ++I) + Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(), + CI.getName() + ".i" + Twine(I)); + gather(&CI, Res); + return true; +} + +bool Scalarizer::visitBitCastInst(BitCastInst &BCI) { + VectorType *DstVT = dyn_cast(BCI.getDestTy()); + VectorType *SrcVT = dyn_cast(BCI.getSrcTy()); + if (!DstVT || !SrcVT) + return false; + + unsigned DstNumElems = DstVT->getNumElements(); + unsigned SrcNumElems = SrcVT->getNumElements(); + IRBuilder<> Builder(BCI.getParent(), &BCI); + Scatterer Op0 = scatter(&BCI, BCI.getOperand(0)); + ValueVector Res; + Res.resize(DstNumElems); + + if (DstNumElems == SrcNumElems) { + for (unsigned I = 0; I < DstNumElems; ++I) + Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(), + BCI.getName() + ".i" + Twine(I)); + } else if (DstNumElems > SrcNumElems) { + // -> . Convert each t1 to and copy the + // individual elements to the destination. + unsigned FanOut = DstNumElems / SrcNumElems; + Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut); + unsigned ResI = 0; + for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) { + Value *V = Op0[Op0I]; + Instruction *VI; + // Look through any existing bitcasts before converting to . + // In the best case, the resulting conversion might be a no-op. + while ((VI = dyn_cast(V)) && + VI->getOpcode() == Instruction::BitCast) + V = VI->getOperand(0); + V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast"); + Scatterer Mid = scatter(&BCI, V); + for (unsigned MidI = 0; MidI < FanOut; ++MidI) + Res[ResI++] = Mid[MidI]; + } + } else { + // -> . Convert each group of into a t2. + unsigned FanIn = SrcNumElems / DstNumElems; + Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn); + unsigned Op0I = 0; + for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) { + Value *V = UndefValue::get(MidTy); + for (unsigned MidI = 0; MidI < FanIn; ++MidI) + V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI), + BCI.getName() + ".i" + Twine(ResI) + + ".upto" + Twine(MidI)); + Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(), + BCI.getName() + ".i" + Twine(ResI)); + } + } + gather(&BCI, Res); + return true; +} + +bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) { + VectorType *VT = dyn_cast(SVI.getType()); + if (!VT) + return false; + + unsigned NumElems = VT->getNumElements(); + Scatterer Op0 = scatter(&SVI, SVI.getOperand(0)); + Scatterer Op1 = scatter(&SVI, SVI.getOperand(1)); + ValueVector Res; + Res.resize(NumElems); + + for (unsigned I = 0; I < NumElems; ++I) { + int Selector = SVI.getMaskValue(I); + if (Selector < 0) + Res[I] = UndefValue::get(VT->getElementType()); + else if (unsigned(Selector) < Op0.size()) + Res[I] = Op0[Selector]; + else + Res[I] = Op1[Selector - Op0.size()]; + } + gather(&SVI, Res); + return true; +} + +bool Scalarizer::visitPHINode(PHINode &PHI) { + VectorType *VT = dyn_cast(PHI.getType()); + if (!VT) + return false; + + unsigned NumElems = VT->getNumElements(); + IRBuilder<> Builder(PHI.getParent(), &PHI); + ValueVector Res; + Res.resize(NumElems); + + unsigned NumOps = PHI.getNumOperands(); + for (unsigned I = 0; I < NumElems; ++I) + Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps, + PHI.getName() + ".i" + Twine(I)); + + for (unsigned I = 0; I < NumOps; ++I) { + Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I)); + BasicBlock *IncomingBlock = PHI.getIncomingBlock(I); + for (unsigned J = 0; J < NumElems; ++J) + cast(Res[J])->addIncoming(Op[J], IncomingBlock); + } + gather(&PHI, Res); + return true; +} + +bool Scalarizer::visitLoadInst(LoadInst &LI) { + if (!ScalarizeLoadStore) + return false; + if (!LI.isSimple()) + return false; + + VectorLayout Layout; + if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout)) + return false; + + unsigned NumElems = Layout.VecTy->getNumElements(); + IRBuilder<> Builder(LI.getParent(), &LI); + Scatterer Ptr = scatter(&LI, LI.getPointerOperand()); + ValueVector Res; + Res.resize(NumElems); + + for (unsigned I = 0; I < NumElems; ++I) + Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I), + LI.getName() + ".i" + Twine(I)); + gather(&LI, Res); + return true; +} + +bool Scalarizer::visitStoreInst(StoreInst &SI) { + if (!ScalarizeLoadStore) + return false; + if (!SI.isSimple()) + return false; + + VectorLayout Layout; + Value *FullValue = SI.getValueOperand(); + if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout)) + return false; + + unsigned NumElems = Layout.VecTy->getNumElements(); + IRBuilder<> Builder(SI.getParent(), &SI); + Scatterer Ptr = scatter(&SI, SI.getPointerOperand()); + Scatterer Val = scatter(&SI, FullValue); + + ValueVector Stores; + Stores.resize(NumElems); + for (unsigned I = 0; I < NumElems; ++I) { + unsigned Align = Layout.getElemAlign(I); + Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align); + } + transferMetadata(&SI, Stores); + return true; +} + +// Delete the instructions that we scalarized. If a full vector result +// is still needed, recreate it using InsertElements. +bool Scalarizer::finish() { + if (Gathered.empty()) + return false; + for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end(); + GMI != GME; ++GMI) { + Instruction *Op = GMI->first; + ValueVector &CV = *GMI->second; + if (!Op->use_empty()) { + // The value is still needed, so recreate it using a series of + // InsertElements. + Type *Ty = Op->getType(); + Value *Res = UndefValue::get(Ty); + unsigned Count = Ty->getVectorNumElements(); + IRBuilder<> Builder(Op->getParent(), Op); + for (unsigned I = 0; I < Count; ++I) + Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I), + Op->getName() + ".upto" + Twine(I)); + Res->takeName(Op); + Op->replaceAllUsesWith(Res); + } + Op->eraseFromParent(); + } + Gathered.clear(); + Scattered.clear(); + return true; +} + +namespace klee { + llvm::FunctionPass *createScalarizerPass() { + return new Scalarizer(); + } +} + +#endif -- cgit 1.4.1