//===-- MetaSMTBuilder.h ----------------------------------------*- C++ -*-===// // // The KLEE Symbolic Virtual Machine // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /* * MetaSMTBuilder.h * * Created on: 8 Aug 2012 * Author: hpalikar */ #ifndef METASMTBUILDER_H_ #define METASMTBUILDER_H_ #include "klee/Config/config.h" #include "klee/Expr.h" #include "klee/util/ExprPPrinter.h" #include "klee/util/ArrayExprHash.h" #include "klee/util/ExprHashMap.h" #include "ConstantDivision.h" #ifdef ENABLE_METASMT #include "llvm/Support/CommandLine.h" #include #include #include using namespace metaSMT; using namespace metaSMT::logic::QF_BV; #define DIRECT_CONTEXT namespace { llvm::cl::opt UseConstructHashMetaSMT( "use-construct-hash-metasmt", llvm::cl::desc("Use hash-consing during metaSMT query construction."), llvm::cl::init(true)); } namespace klee { typedef metaSMT::logic::Predicate::type> const MetaSMTConstTrue; typedef metaSMT::logic::Predicate::type> const MetaSMTConstFalse; typedef metaSMT::logic::Array::array MetaSMTArray; template class MetaSMTBuilder; template class MetaSMTArrayExprHash : public ArrayExprHash { friend class MetaSMTBuilder; public: MetaSMTArrayExprHash(){}; virtual ~MetaSMTArrayExprHash(){}; }; static const bool mimic_stp = true; template class MetaSMTBuilder { public: MetaSMTBuilder(SolverContext &solver, bool optimizeDivides) : _solver(solver), _optimizeDivides(optimizeDivides){}; virtual ~MetaSMTBuilder(){}; typename SolverContext::result_type construct(ref e); typename SolverContext::result_type getInitialRead(const Array *root, unsigned index); typename SolverContext::result_type getTrue() { return (evaluate(_solver, metaSMT::logic::True)); } typename SolverContext::result_type getFalse() { return (evaluate(_solver, metaSMT::logic::False)); } typename SolverContext::result_type bvOne(unsigned width) { return bvZExtConst(width, 1); } typename SolverContext::result_type bvZero(unsigned width) { return bvZExtConst(width, 0); } typename SolverContext::result_type bvMinusOne(unsigned width) { return bvSExtConst(width, (int64_t)-1); } typename SolverContext::result_type bvConst32(unsigned width, uint32_t value) { return (evaluate(_solver, bvuint(value, width))); } typename SolverContext::result_type bvConst64(unsigned width, uint64_t value) { return (evaluate(_solver, bvuint(value, width))); } typename SolverContext::result_type bvZExtConst(unsigned width, uint64_t value); typename SolverContext::result_type bvSExtConst(unsigned width, uint64_t value); // logical left and right shift (not arithmetic) typename SolverContext::result_type bvLeftShift(typename SolverContext::result_type expr, unsigned width, unsigned shift); typename SolverContext::result_type bvRightShift(typename SolverContext::result_type expr, unsigned width, unsigned shift); typename SolverContext::result_type bvVarLeftShift(typename SolverContext::result_type expr, typename SolverContext::result_type shift, unsigned width); typename SolverContext::result_type bvVarRightShift(typename SolverContext::result_type expr, typename SolverContext::result_type shift, unsigned width); typename SolverContext::result_type bvVarArithRightShift(typename SolverContext::result_type expr, typename SolverContext::result_type shift, unsigned width); typename SolverContext::result_type getArrayForUpdate(const Array *root, const UpdateNode *un); typename SolverContext::result_type getInitialArray(const Array *root); MetaSMTArray buildArray(unsigned elem_width, unsigned index_width); private: typedef ExprHashMap > MetaSMTExprHashMap; typedef typename MetaSMTExprHashMap::iterator MetaSMTExprHashMapIter; typedef typename MetaSMTExprHashMap::const_iterator MetaSMTExprHashMapConstIter; SolverContext &_solver; bool _optimizeDivides; MetaSMTArrayExprHash _arr_hash; MetaSMTExprHashMap _constructed; typename SolverContext::result_type constructActual(ref e, int *width_out); typename SolverContext::result_type construct(ref e, int *width_out); typename SolverContext::result_type bvBoolExtract(typename SolverContext::result_type expr, int bit); typename SolverContext::result_type bvExtract(typename SolverContext::result_type expr, unsigned top, unsigned bottom); typename SolverContext::result_type eqExpr(typename SolverContext::result_type a, typename SolverContext::result_type b); typename SolverContext::result_type constructAShrByConstant(typename SolverContext::result_type expr, unsigned width, unsigned shift, typename SolverContext::result_type isSigned); typename SolverContext::result_type constructMulByConstant(typename SolverContext::result_type expr, unsigned width, uint64_t x); typename SolverContext::result_type constructUDivByConstant(typename SolverContext::result_type expr_n, unsigned width, uint64_t d); typename SolverContext::result_type constructSDivByConstant(typename SolverContext::result_type expr_n, unsigned width, uint64_t d); }; template typename SolverContext::result_type MetaSMTBuilder::getArrayForUpdate(const Array *root, const UpdateNode *un) { if (!un) { return (getInitialArray(root)); } else { typename SolverContext::result_type un_expr; bool hashed = _arr_hash.lookupUpdateNodeExpr(un, un_expr); if (!hashed) { un_expr = evaluate(_solver, metaSMT::logic::Array::store( getArrayForUpdate(root, un->next), construct(un->index, 0), construct(un->value, 0))); _arr_hash.hashUpdateNodeExpr(un, un_expr); } return (un_expr); } } template typename SolverContext::result_type MetaSMTBuilder::getInitialArray(const Array *root) { assert(root); typename SolverContext::result_type array_expr; bool hashed = _arr_hash.lookupArrayExpr(root, array_expr); if (!hashed) { array_expr = evaluate(_solver, buildArray(root->getRange(), root->getDomain())); if (root->isConstantArray()) { for (unsigned i = 0, e = root->size; i != e; ++i) { typename SolverContext::result_type tmp = evaluate( _solver, metaSMT::logic::Array::store( array_expr, construct(ConstantExpr::alloc(i, root->getDomain()), 0), construct(root->constantValues[i], 0))); array_expr = tmp; } } _arr_hash.hashArrayExpr(root, array_expr); } return (array_expr); } template MetaSMTArray MetaSMTBuilder::buildArray(unsigned elem_width, unsigned index_width) { return (metaSMT::logic::Array::new_array(elem_width, index_width)); } template typename SolverContext::result_type MetaSMTBuilder::getInitialRead(const Array *root, unsigned index) { assert(root); assert(false); typename SolverContext::result_type array_exp = getInitialArray(root); typename SolverContext::result_type res = evaluate(_solver, metaSMT::logic::Array::select( array_exp, bvuint(index, root->getDomain()))); return (res); } template typename SolverContext::result_type MetaSMTBuilder::bvZExtConst(unsigned width, uint64_t value) { typename SolverContext::result_type res; if (width <= 64) { res = bvConst64(width, value); } else { typename SolverContext::result_type expr = bvConst64(64, value); typename SolverContext::result_type zero = bvConst64(64, 0); for (width -= 64; width > 64; width -= 64) { expr = evaluate(_solver, concat(zero, expr)); } res = evaluate(_solver, concat(bvConst64(width, 0), expr)); } return (res); } template typename SolverContext::result_type MetaSMTBuilder::bvSExtConst(unsigned width, uint64_t value) { typename SolverContext::result_type res; if (width <= 64) { res = bvConst64(width, value); } else { // ToDo Reconsider -- note differences in STP and metaSMT for sign_extend // arguments res = evaluate(_solver, sign_extend(width - 64, bvConst64(64, value))); } return (res); } template typename SolverContext::result_type MetaSMTBuilder::bvBoolExtract( typename SolverContext::result_type expr, int bit) { return (evaluate(_solver, metaSMT::logic::equal(extract(bit, bit, expr), bvOne(1)))); } template typename SolverContext::result_type MetaSMTBuilder::bvExtract( typename SolverContext::result_type expr, unsigned top, unsigned bottom) { return (evaluate(_solver, extract(top, bottom, expr))); } template typename SolverContext::result_type MetaSMTBuilder::eqExpr(typename SolverContext::result_type a, typename SolverContext::result_type b) { return (evaluate(_solver, metaSMT::logic::equal(a, b))); } template typename SolverContext::result_type MetaSMTBuilder::constructAShrByConstant( typename SolverContext::result_type expr, unsigned width, unsigned shift, typename SolverContext::result_type isSigned) { typename SolverContext::result_type res; if (shift == 0) { res = expr; } else if (shift >= width) { res = bvZero(width); } else { res = evaluate( _solver, metaSMT::logic::Ite(isSigned, concat(bvMinusOne(shift), bvExtract(expr, width - 1, shift)), bvRightShift(expr, width, shift))); } return (res); } // width is the width of expr; x -- number of bits to shift with template typename SolverContext::result_type MetaSMTBuilder::constructMulByConstant( typename SolverContext::result_type expr, unsigned width, uint64_t x) { uint64_t add, sub; typename SolverContext::result_type res; bool first = true; // expr*x == expr*(add-sub) == expr*add - expr*sub ComputeMultConstants64(x, add, sub); // legal, these would overflow completely add = bits64::truncateToNBits(add, width); sub = bits64::truncateToNBits(sub, width); for (int j = 63; j >= 0; j--) { uint64_t bit = 1LL << j; if ((add & bit) || (sub & bit)) { assert(!((add & bit) && (sub & bit)) && "invalid mult constants"); typename SolverContext::result_type op = bvLeftShift(expr, width, j); if (add & bit) { if (!first) { res = evaluate(_solver, bvadd(res, op)); } else { res = op; first = false; } } else { if (!first) { res = evaluate(_solver, bvsub(res, op)); } else { // To reconsider: vc_bvUMinusExpr in STP res = evaluate(_solver, bvsub(bvZero(width), op)); first = false; } } } } if (first) { res = bvZero(width); } return (res); } /* * Compute the 32-bit unsigned integer division of n by a divisor d based on * the constants derived from the constant divisor d. * * Returns n/d without doing explicit division. The cost is 2 adds, 3 shifts, * and a (64-bit) multiply. * * @param expr_n numerator (dividend) n as an expression * @param width number of bits used to represent the value * @param d the divisor * * @return n/d without doing explicit division */ template typename SolverContext::result_type MetaSMTBuilder::constructUDivByConstant( typename SolverContext::result_type expr_n, unsigned width, uint64_t d) { assert(width == 32 && "can only compute udiv constants for 32-bit division"); // Compute the constants needed to compute n/d for constant d without division // by d. uint32_t mprime, sh1, sh2; ComputeUDivConstants32(d, mprime, sh1, sh2); typename SolverContext::result_type expr_sh1 = bvConst32(32, sh1); typename SolverContext::result_type expr_sh2 = bvConst32(32, sh2); // t1 = MULUH(mprime, n) = ( (uint64_t)mprime * (uint64_t)n ) >> 32 typename SolverContext::result_type expr_n_64 = evaluate(_solver, concat(bvZero(32), expr_n)); // extend to 64 bits typename SolverContext::result_type t1_64bits = constructMulByConstant(expr_n_64, 64, (uint64_t)mprime); typename SolverContext::result_type t1 = bvExtract(t1_64bits, 63, 32); // upper 32 bits // n/d = (((n - t1) >> sh1) + t1) >> sh2; typename SolverContext::result_type n_minus_t1 = evaluate(_solver, bvsub(expr_n, t1)); typename SolverContext::result_type shift_sh1 = bvVarRightShift(n_minus_t1, expr_sh1, 32); typename SolverContext::result_type plus_t1 = evaluate(_solver, bvadd(shift_sh1, t1)); typename SolverContext::result_type res = bvVarRightShift(plus_t1, expr_sh2, 32); return (res); } /* * Compute the 32-bitnsigned integer division of n by a divisor d based on * the constants derived from the constant divisor d. * * Returns n/d without doing explicit division. The cost is 3 adds, 3 shifts, * a (64-bit) multiply, and an XOR. * * @param n numerator (dividend) as an expression * @param width number of bits used to represent the value * @param d the divisor * * @return n/d without doing explicit division */ template typename SolverContext::result_type MetaSMTBuilder::constructSDivByConstant( typename SolverContext::result_type expr_n, unsigned width, uint64_t d) { assert(width == 32 && "can only compute udiv constants for 32-bit division"); // Compute the constants needed to compute n/d for constant d w/o division by // d. int32_t mprime, dsign, shpost; ComputeSDivConstants32(d, mprime, dsign, shpost); typename SolverContext::result_type expr_dsign = bvConst32(32, dsign); typename SolverContext::result_type expr_shpost = bvConst32(64, shpost); // q0 = n + MULSH( mprime, n ) = n + (( (int64_t)mprime * (int64_t)n ) >> 32) int64_t mprime_64 = (int64_t)mprime; // ToDo Reconsider -- note differences in STP and metaSMT for sign_extend // arguments typename SolverContext::result_type expr_n_64 = evaluate(_solver, sign_extend(64 - width, expr_n)); typename SolverContext::result_type mult_64 = constructMulByConstant(expr_n_64, 64, mprime_64); typename SolverContext::result_type mulsh = bvExtract(mult_64, 63, 32); // upper 32-bits typename SolverContext::result_type n_plus_mulsh = evaluate(_solver, bvadd(expr_n, mulsh)); // Improved variable arithmetic right shift: sign extend, shift, extract. typename SolverContext::result_type extend_npm = evaluate(_solver, sign_extend(64 - width, n_plus_mulsh)); typename SolverContext::result_type shift_npm = bvVarRightShift(extend_npm, expr_shpost, 64); typename SolverContext::result_type shift_shpost = bvExtract(shift_npm, 31, 0); // lower 32-bits ///////////// // XSIGN(n) is -1 if n is negative, positive one otherwise typename SolverContext::result_type is_signed = bvBoolExtract(expr_n, 31); typename SolverContext::result_type neg_one = bvMinusOne(32); typename SolverContext::result_type xsign_of_n = evaluate(_solver, metaSMT::logic::Ite(is_signed, neg_one, bvZero(32))); // q0 = (n_plus_mulsh >> shpost) - XSIGN(n) typename SolverContext::result_type q0 = evaluate(_solver, bvsub(shift_shpost, xsign_of_n)); // n/d = (q0 ^ dsign) - dsign typename SolverContext::result_type q0_xor_dsign = evaluate(_solver, bvxor(q0, expr_dsign)); typename SolverContext::result_type res = evaluate(_solver, bvsub(q0_xor_dsign, expr_dsign)); return (res); } template typename SolverContext::result_type MetaSMTBuilder::bvLeftShift( typename SolverContext::result_type expr, unsigned width, unsigned shift) { typename SolverContext::result_type res; if (shift == 0) { res = expr; } else if (shift >= width) { res = bvZero(width); } else { // stp shift does "expr @ [0 x s]" which we then have to extract, // rolling our own gives slightly smaller exprs res = evaluate(_solver, concat(extract(width - shift - 1, 0, expr), bvZero(shift))); } return (res); } template typename SolverContext::result_type MetaSMTBuilder::bvRightShift( typename SolverContext::result_type expr, unsigned width, unsigned shift) { typename SolverContext::result_type res; if (shift == 0) { res = expr; } else if (shift >= width) { res = bvZero(width); } else { res = evaluate(_solver, concat(bvZero(shift), extract(width - 1, shift, expr))); } return (res); } // left shift by a variable amount on an expression of the specified width template typename SolverContext::result_type MetaSMTBuilder::bvVarLeftShift( typename SolverContext::result_type expr, typename SolverContext::result_type shift, unsigned width) { assert(_solver.get_bv_width(expr) == width); assert(_solver.get_bv_width(shift) == width); typename SolverContext::result_type res = bvZero(width); // construct a big if-then-elif-elif-... with one case per possible shift // amount for (int i = width - 1; i >= 0; i--) { res = evaluate(_solver, metaSMT::logic::Ite(eqExpr(shift, bvConst32(width, i)), bvLeftShift(expr, width, i), res)); } // If overshifting, shift to zero res = evaluate(_solver, metaSMT::logic::Ite(bvult(shift, bvConst32(width, width)), res, bvZero(width))); return (res); } // logical right shift by a variable amount on an expression of the specified // width template typename SolverContext::result_type MetaSMTBuilder::bvVarRightShift( typename SolverContext::result_type expr, typename SolverContext::result_type shift, unsigned width) { assert(_solver.get_bv_width(expr) == width); assert(_solver.get_bv_width(shift) == width); typename SolverContext::result_type res = bvZero(width); // construct a big if-then-elif-elif-... with one case per possible shift // amount for (int i = width - 1; i >= 0; i--) { res = evaluate(_solver, metaSMT::logic::Ite(eqExpr(shift, bvConst32(width, i)), bvRightShift(expr, width, i), res)); // ToDo Reconsider widht to provide to bvRightShift } // If overshifting, shift to zero res = evaluate(_solver, metaSMT::logic::Ite(bvult(shift, bvConst32(width, width)), res, bvZero(width))); return (res); } // arithmetic right shift by a variable amount on an expression of the specified // width template typename SolverContext::result_type MetaSMTBuilder::bvVarArithRightShift( typename SolverContext::result_type expr, typename SolverContext::result_type shift, unsigned width) { assert(_solver.get_bv_width(expr) == width); assert(_solver.get_bv_width(shift) == width); // get the sign bit to fill with typename SolverContext::result_type signedBool = bvBoolExtract(expr, width - 1); // start with the result if shifting by width-1 typename SolverContext::result_type res = constructAShrByConstant(expr, width, width - 1, signedBool); // construct a big if-then-elif-elif-... with one case per possible shift // amount // XXX more efficient to move the ite on the sign outside all exprs? // XXX more efficient to sign extend, right shift, then extract lower bits? for (int i = width - 2; i >= 0; i--) { res = evaluate( _solver, metaSMT::logic::Ite( eqExpr(shift, bvConst32(width, i)), constructAShrByConstant(expr, width, i, signedBool), res)); } // If overshifting, shift to zero res = evaluate(_solver, metaSMT::logic::Ite(bvult(shift, bvConst32(width, width)), res, bvZero(width))); return (res); } template typename SolverContext::result_type MetaSMTBuilder::construct(ref e) { typename SolverContext::result_type res = construct(e, 0); _constructed.clear(); return res; } /** if *width_out!=1 then result is a bitvector, otherwise it is a bool */ template typename SolverContext::result_type MetaSMTBuilder::construct(ref e, int *width_out) { if (!UseConstructHashMetaSMT || isa(e)) { return (constructActual(e, width_out)); } else { MetaSMTExprHashMapIter it = _constructed.find(e); if (it != _constructed.end()) { if (width_out) { *width_out = it->second.second; } return it->second.first; } else { int width = 0; if (!width_out) { width_out = &width; } typename SolverContext::result_type res = constructActual(e, width_out); _constructed.insert(std::make_pair(e, std::make_pair(res, *width_out))); return res; } } } template typename SolverContext::result_type MetaSMTBuilder::constructActual(ref e, int *width_out) { typename SolverContext::result_type res; int width = 0; if (!width_out) { // assert(false); width_out = &width; } ++stats::queryConstructs; // llvm::errs() << "Constructing expression "; // ExprPPrinter::printSingleExpr(llvm::errs(), e); // llvm::errs() << "\n"; switch (e->getKind()) { case Expr::Constant: { ConstantExpr *coe = cast(e); assert(coe); unsigned coe_width = coe->getWidth(); *width_out = coe_width; // Coerce to bool if necessary. if (coe_width == 1) { res = (coe->isTrue()) ? getTrue() : getFalse(); } else if (coe_width <= 32) { res = bvConst32(coe_width, coe->getZExtValue(32)); } else if (coe_width <= 64) { res = bvConst64(coe_width, coe->getZExtValue()); } else { ref tmp = coe; res = bvConst64(64, tmp->Extract(0, 64)->getZExtValue()); while (tmp->getWidth() > 64) { tmp = tmp->Extract(64, tmp->getWidth() - 64); unsigned min_width = std::min(64U, tmp->getWidth()); res = evaluate(_solver, concat(bvConst64(min_width, tmp->Extract(0, min_width) ->getZExtValue()), res)); } } break; } case Expr::NotOptimized: { NotOptimizedExpr *noe = cast(e); assert(noe); res = construct(noe->src, width_out); break; } case Expr::Select: { SelectExpr *se = cast(e); assert(se); res = evaluate(_solver, metaSMT::logic::Ite(construct(se->cond, 0), construct(se->trueExpr, width_out), construct(se->falseExpr, width_out))); break; } case Expr::Read: { ReadExpr *re = cast(e); assert(re && re->updates.root); *width_out = re->updates.root->getRange(); // FixMe call method of Array res = evaluate(_solver, metaSMT::logic::Array::select( getArrayForUpdate(re->updates.root, re->updates.head), construct(re->index, 0))); break; } case Expr::Concat: { ConcatExpr *ce = cast(e); assert(ce); *width_out = ce->getWidth(); unsigned numKids = ce->getNumKids(); if (numKids > 0) { res = evaluate(_solver, construct(ce->getKid(numKids - 1), 0)); for (int i = numKids - 2; i >= 0; i--) { res = evaluate(_solver, concat(construct(ce->getKid(i), 0), res)); } } break; } case Expr::Extract: { ExtractExpr *ee = cast(e); assert(ee); // ToDo spare evaluate? typename SolverContext::result_type child = evaluate(_solver, construct(ee->expr, width_out)); unsigned ee_width = ee->getWidth(); *width_out = ee_width; if (ee_width == 1) { res = bvBoolExtract(child, ee->offset); } else { res = evaluate(_solver, extract(ee->offset + ee_width - 1, ee->offset, child)); } break; } case Expr::ZExt: { CastExpr *ce = cast(e); assert(ce); int child_width = 0; typename SolverContext::result_type child = evaluate(_solver, construct(ce->src, &child_width)); unsigned ce_width = ce->getWidth(); *width_out = ce_width; if (child_width == 1) { res = evaluate(_solver, metaSMT::logic::Ite(child, bvOne(ce_width), bvZero(ce_width))); } else { res = evaluate(_solver, zero_extend(ce_width - child_width, child)); } // ToDo calculate how many zeros to add // Note: STP and metaSMT differ in the prototype arguments; // STP requires the width of the resulting bv; // whereas metaSMT (and Z3) require the width of the zero vector that is to // be appended // res = evaluate(_solver, zero_extend(ce_width, construct(ce->src))); break; } case Expr::SExt: { CastExpr *ce = cast(e); assert(ce); int child_width = 0; typename SolverContext::result_type child = evaluate(_solver, construct(ce->src, &child_width)); unsigned ce_width = ce->getWidth(); *width_out = ce_width; if (child_width == 1) { res = evaluate(_solver, metaSMT::logic::Ite(child, bvMinusOne(ce_width), bvZero(ce_width))); } else { // ToDo ce_width - child_width? It is only ce_width in STPBuilder res = evaluate(_solver, sign_extend(ce_width - child_width, child)); } break; } case Expr::Add: { AddExpr *ae = cast(e); assert(ae); res = evaluate(_solver, bvadd(construct(ae->left, width_out), construct(ae->right, width_out))); assert(*width_out != 1 && "uncanonicalized add"); break; } case Expr::Sub: { SubExpr *se = cast(e); assert(se); res = evaluate(_solver, bvsub(construct(se->left, width_out), construct(se->right, width_out))); assert(*width_out != 1 && "uncanonicalized sub"); break; } case Expr::Mul: { MulExpr *me = cast(e); assert(me); typename SolverContext::result_type right_expr = evaluate(_solver, construct(me->right, width_out)); assert(*width_out != 1 && "uncanonicalized mul"); ConstantExpr *CE = dyn_cast(me->left); if (CE && (CE->getWidth() <= 64)) { res = constructMulByConstant(right_expr, *width_out, CE->getZExtValue()); } else { res = evaluate(_solver, bvmul(construct(me->left, width_out), right_expr)); } break; } case Expr::UDiv: { UDivExpr *de = cast(e); assert(de); typename SolverContext::result_type left_expr = construct(de->left, width_out); assert(*width_out != 1 && "uncanonicalized udiv"); bool construct_both = true; ConstantExpr *CE = dyn_cast(de->right); if (CE && (CE->getWidth() <= 64)) { uint64_t divisor = CE->getZExtValue(); if (bits64::isPowerOfTwo(divisor)) { res = bvRightShift(left_expr, *width_out, bits64::indexOfSingleBit(divisor)); construct_both = false; } else if (_optimizeDivides) { if (*width_out == 32) { // only works for 32-bit division res = constructUDivByConstant(left_expr, *width_out, (uint32_t)divisor); construct_both = false; } } } if (construct_both) { res = evaluate(_solver, bvudiv(left_expr, construct(de->right, width_out))); } break; } case Expr::SDiv: { SDivExpr *de = cast(e); assert(de); typename SolverContext::result_type left_expr = construct(de->left, width_out); assert(*width_out != 1 && "uncanonicalized sdiv"); bool optimized = false; ConstantExpr *CE = dyn_cast(de->right); if (CE && _optimizeDivides && (*width_out == 32)) { llvm::APInt divisor = CE->getAPValue(); if (divisor != llvm::APInt(CE->getWidth(), 1, false /*unsigned*/) && divisor != llvm::APInt(CE->getWidth(), -1, true /*signed*/)) { res = constructSDivByConstant(left_expr, *width_out, CE->getZExtValue(32)); optimized = true; } } if (!optimized) { res = evaluate(_solver, bvsdiv(left_expr, construct(de->right, width_out))); } break; } case Expr::URem: { URemExpr *de = cast(e); assert(de); typename SolverContext::result_type left_expr = construct(de->left, width_out); assert(*width_out != 1 && "uncanonicalized urem"); bool construct_both = true; ConstantExpr *CE = dyn_cast(de->right); if (CE && (CE->getWidth() <= 64)) { uint64_t divisor = CE->getZExtValue(); if (bits64::isPowerOfTwo(divisor)) { unsigned bits = bits64::indexOfSingleBit(divisor); // special case for modding by 1 or else we bvExtract -1:0 if (bits == 0) { res = bvZero(*width_out); construct_both = false; } else { res = evaluate(_solver, concat(bvZero(*width_out - bits), bvExtract(left_expr, bits - 1, 0))); construct_both = false; } } // Use fast division to compute modulo without explicit division for // constant divisor. if (_optimizeDivides && *width_out == 32) { // only works for 32-bit division typename SolverContext::result_type quotient = constructUDivByConstant(left_expr, *width_out, (uint32_t)divisor); typename SolverContext::result_type quot_times_divisor = constructMulByConstant(quotient, *width_out, divisor); res = evaluate(_solver, bvsub(left_expr, quot_times_divisor)); construct_both = false; } } if (construct_both) { res = evaluate(_solver, bvurem(left_expr, construct(de->right, width_out))); } break; } case Expr::SRem: { SRemExpr *de = cast(e); assert(de); typename SolverContext::result_type left_expr = evaluate(_solver, construct(de->left, width_out)); typename SolverContext::result_type right_expr = evaluate(_solver, construct(de->right, width_out)); assert(*width_out != 1 && "uncanonicalized srem"); bool construct_both = true; #if 0 // not faster per first benchmark if (_optimizeDivides) { if (ConstantExpr *cre = de->right->asConstant()) { uint64_t divisor = cre->asUInt64; //use fast division to compute modulo without explicit division for constant divisor if( *width_out == 32 ) { //only works for 32-bit division typename SolverContext::result_type quotient = constructSDivByConstant(left, *width_out, divisor); typename SolverContext::result_type quot_times_divisor = constructMulByConstant(quotient, *width_out, divisor); res = vc_bvMinusExpr( vc, *width_out, left, quot_times_divisor ); construct_both = false; } } } #endif if (construct_both) { res = evaluate(_solver, bvsrem(left_expr, right_expr)); } break; } case Expr::Not: { NotExpr *ne = cast(e); assert(ne); typename SolverContext::result_type child = evaluate(_solver, construct(ne->expr, width_out)); if (*width_out == 1) { res = evaluate(_solver, metaSMT::logic::Not(child)); } else { res = evaluate(_solver, bvnot(child)); } break; } case Expr::And: { AndExpr *ae = cast(e); assert(ae); typename SolverContext::result_type left_expr = evaluate(_solver, construct(ae->left, width_out)); typename SolverContext::result_type right_expr = evaluate(_solver, construct(ae->right, width_out)); if (*width_out == 1) { res = evaluate(_solver, metaSMT::logic::And(left_expr, right_expr)); } else { res = evaluate(_solver, bvand(left_expr, right_expr)); } break; } case Expr::Or: { OrExpr *oe = cast(e); assert(oe); typename SolverContext::result_type left_expr = evaluate(_solver, construct(oe->left, width_out)); typename SolverContext::result_type right_expr = evaluate(_solver, construct(oe->right, width_out)); if (*width_out == 1) { res = evaluate(_solver, metaSMT::logic::Or(left_expr, right_expr)); } else { res = evaluate(_solver, bvor(left_expr, right_expr)); } break; } case Expr::Xor: { XorExpr *xe = cast(e); assert(xe); typename SolverContext::result_type left_expr = evaluate(_solver, construct(xe->left, width_out)); typename SolverContext::result_type right_expr = evaluate(_solver, construct(xe->right, width_out)); if (*width_out == 1) { res = evaluate(_solver, metaSMT::logic::Xor(left_expr, right_expr)); } else { res = evaluate(_solver, bvxor(left_expr, right_expr)); } break; } case Expr::Shl: { ShlExpr *se = cast(e); assert(se); typename SolverContext::result_type left_expr = evaluate(_solver, construct(se->left, width_out)); assert(*width_out != 1 && "uncanonicalized shl"); if (ConstantExpr *CE = dyn_cast(se->right)) { res = bvLeftShift(left_expr, *width_out, (unsigned)CE->getLimitedValue()); } else { int shiftWidth = 0; typename SolverContext::result_type right_expr = evaluate(_solver, construct(se->right, &shiftWidth)); res = mimic_stp ? bvVarLeftShift(left_expr, right_expr, *width_out) : evaluate(_solver, bvshl(left_expr, right_expr)); } break; } case Expr::LShr: { LShrExpr *lse = cast(e); assert(lse); typename SolverContext::result_type left_expr = evaluate(_solver, construct(lse->left, width_out)); assert(*width_out != 1 && "uncanonicalized lshr"); if (ConstantExpr *CE = dyn_cast(lse->right)) { res = bvRightShift(left_expr, *width_out, (unsigned)CE->getLimitedValue()); } else { int shiftWidth = 0; typename SolverContext::result_type right_expr = evaluate(_solver, construct(lse->right, &shiftWidth)); res = mimic_stp ? bvVarRightShift(left_expr, right_expr, *width_out) : evaluate(_solver, bvshr(left_expr, right_expr)); } break; } case Expr::AShr: { AShrExpr *ase = cast(e); assert(ase); typename SolverContext::result_type left_expr = evaluate(_solver, construct(ase->left, width_out)); assert(*width_out != 1 && "uncanonicalized ashr"); if (ConstantExpr *CE = dyn_cast(ase->right)) { unsigned shift = (unsigned)CE->getLimitedValue(); typename SolverContext::result_type signedBool = bvBoolExtract(left_expr, *width_out - 1); res = constructAShrByConstant(left_expr, *width_out, shift, signedBool); } else { int shiftWidth = 0; typename SolverContext::result_type right_expr = evaluate(_solver, construct(ase->right, &shiftWidth)); res = mimic_stp ? bvVarArithRightShift(left_expr, right_expr, *width_out) : evaluate(_solver, bvashr(left_expr, right_expr)); } break; } case Expr::Eq: { EqExpr *ee = cast(e); assert(ee); typename SolverContext::result_type left_expr = evaluate(_solver, construct(ee->left, width_out)); typename SolverContext::result_type right_expr = evaluate(_solver, construct(ee->right, width_out)); if (*width_out == 1) { if (ConstantExpr *CE = dyn_cast(ee->left)) { if (CE->isTrue()) { res = right_expr; } else { res = evaluate(_solver, metaSMT::logic::Not(right_expr)); } } else { res = evaluate(_solver, metaSMT::logic::equal(left_expr, right_expr)); } } // end of *width_out == 1 else { *width_out = 1; res = evaluate(_solver, metaSMT::logic::equal(left_expr, right_expr)); } break; } case Expr::Ult: { UltExpr *ue = cast(e); assert(ue); typename SolverContext::result_type left_expr = evaluate(_solver, construct(ue->left, width_out)); typename SolverContext::result_type right_expr = evaluate(_solver, construct(ue->right, width_out)); assert(*width_out != 1 && "uncanonicalized ult"); *width_out = 1; res = evaluate(_solver, bvult(left_expr, right_expr)); break; } case Expr::Ule: { UleExpr *ue = cast(e); assert(ue); typename SolverContext::result_type left_expr = evaluate(_solver, construct(ue->left, width_out)); typename SolverContext::result_type right_expr = evaluate(_solver, construct(ue->right, width_out)); assert(*width_out != 1 && "uncanonicalized ule"); *width_out = 1; res = evaluate(_solver, bvule(left_expr, right_expr)); break; } case Expr::Slt: { SltExpr *se = cast(e); assert(se); typename SolverContext::result_type left_expr = evaluate(_solver, construct(se->left, width_out)); typename SolverContext::result_type right_expr = evaluate(_solver, construct(se->right, width_out)); assert(*width_out != 1 && "uncanonicalized slt"); *width_out = 1; res = evaluate(_solver, bvslt(left_expr, right_expr)); break; } case Expr::Sle: { SleExpr *se = cast(e); assert(se); typename SolverContext::result_type left_expr = evaluate(_solver, construct(se->left, width_out)); typename SolverContext::result_type right_expr = evaluate(_solver, construct(se->right, width_out)); assert(*width_out != 1 && "uncanonicalized sle"); *width_out = 1; res = evaluate(_solver, bvsle(left_expr, right_expr)); break; } // unused due to canonicalization #if 0 case Expr::Ne: case Expr::Ugt: case Expr::Uge: case Expr::Sgt: case Expr::Sge: #endif default: assert(false); break; }; return res; } } /* end of namespace klee */ #endif /* ENABLE_METASMT */ #endif /* METASMTBUILDER_H_ */