/****************************************************************************************[Global.h] MiniSat -- Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************************************/ #ifndef Global_h #define Global_h #include #include #include #include #include // PKT: needs to be outside namespace MINISAT or mac os x compilation breaks #ifdef _MSC_VER #else #include #endif namespace MINISAT { //================================================================================================= // Basic Types & Minor Things: // DWD: This is needed on darwin. typedef unsigned int uint; #ifdef _MSC_VER typedef INT64 int64; typedef UINT64 uint64; typedef INT_PTR intp; typedef UINT_PTR uintp; #define I64_fmt "I64d" #else typedef long long int64; typedef unsigned long long uint64; typedef __PTRDIFF_TYPE__ intp; typedef unsigned __PTRDIFF_TYPE__ uintp; #define I64_fmt "lld" #endif template static inline T min(T x, T y) { return (x < y) ? x : y; } template static inline T max(T x, T y) { return (x > y) ? x : y; } template struct STATIC_ASSERTION_FAILURE; template <> struct STATIC_ASSERTION_FAILURE{}; #define TEMPLATE_FAIL STATIC_ASSERTION_FAILURE() //================================================================================================= // 'malloc()'-style memory allocation -- never returns NULL; aborts instead: template static inline T* xmalloc(size_t size) { T* tmp = (T*)malloc(size * sizeof(T)); assert(size == 0 || tmp != NULL); return tmp; } template static inline T* xrealloc(T* ptr, size_t size) { T* tmp = (T*)realloc((void*)ptr, size * sizeof(T)); assert(size == 0 || tmp != NULL); return tmp; } template static inline void xfree(T *ptr) { if (ptr != NULL) free((void*)ptr); } //================================================================================================= // Random numbers: // Returns a random float 0 <= x < 1. Seed must never be 0. static inline double drand(double& seed) { seed *= 1389796; int q = (int)(seed / 2147483647); seed -= (double)q * 2147483647; return seed / 2147483647; } // Returns a random integer 0 <= x < size. Seed must never be 0. static inline int irand(double& seed, int size) { return (int)(drand(seed) * size); } //================================================================================================= // 'vec' -- automatically resizable arrays (via 'push()' method): // NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc) template class vec { T* data; int sz; int cap; void init(int size, const T& pad); void grow(int min_cap); public: // Types: typedef int Key; typedef T Datum; // Constructors: vec(void) : data(NULL) , sz(0) , cap(0) { } vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); } vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); } vec(T* array, int size) : data(array), sz(size), cap(size) { } // (takes ownership of array -- will be deallocated with 'xfree()') ~vec(void) { clear(true); } // Ownership of underlying array: T* release (void) { T* ret = data; data = NULL; sz = 0; cap = 0; return ret; } operator T* (void) { return data; } // (unsafe but convenient) operator const T* (void) const { return data; } // Size operations: int size (void) const { return sz; } void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); } void pop (void) { sz--, data[sz].~T(); } void growTo (int size); void growTo (int size, const T& pad); void clear (bool dealloc = false); void capacity (int size) { grow(size); } // Stack interface: void push (void) { if (sz == cap) grow(sz+1); new (&data[sz]) T() ; sz++; } void push (const T& elem) { if (sz == cap) grow(sz+1); new (&data[sz]) T(elem); sz++; } const T& last (void) const { return data[sz-1]; } T& last (void) { return data[sz-1]; } // Vector interface: const T& operator [] (int index) const { return data[index]; } T& operator [] (int index) { return data[index]; } // Don't allow copying (error prone): vec& operator = (vec& other) { TEMPLATE_FAIL; } vec (vec& other) { TEMPLATE_FAIL; } // Duplicatation (preferred instead): void copyTo(vec& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) new (©[i]) T(data[i]); } void moveTo(vec& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; } }; template void vec::grow(int min_cap) { if (min_cap <= cap) return; if (cap == 0) cap = (min_cap >= 2) ? min_cap : 2; else do cap = (cap*3+1) >> 1; while (cap < min_cap); data = xrealloc(data, cap); } template void vec::growTo(int size, const T& pad) { if (sz >= size) return; grow(size); for (int i = sz; i < size; i++) new (&data[i]) T(pad); sz = size; } template void vec::growTo(int size) { if (sz >= size) return; grow(size); for (int i = sz; i < size; i++) new (&data[i]) T(); sz = size; } template void vec::clear(bool dealloc) { if (data != NULL){ for (int i = 0; i < sz; i++) data[i].~T(); sz = 0; if (dealloc) xfree(data), data = NULL, cap = 0; } } //================================================================================================= // Useful functions on vectors template void remove(V& ts, const T& t) { int j = 0; for (; j < ts.size() && ts[j] != t; j++); assert(j < ts.size()); for (; j < ts.size()-1; j++) ts[j] = ts[j+1]; ts.pop(); } template bool find(V& ts, const T& t) { int j = 0; for (; j < ts.size() && ts[j] != t; j++); return j < ts.size(); } //================================================================================================= // Lifted booleans: class lbool { int value; explicit lbool(int v) : value(v) { } public: lbool() : value(0) { } lbool(bool x) : value((int)x*2-1) { } int toInt(void) const { return value; } bool operator == (const lbool& other) const { return value == other.value; } bool operator != (const lbool& other) const { return value != other.value; } lbool operator ~ (void) const { return lbool(-value); } friend int toInt (lbool l); friend lbool toLbool(int v); }; inline int toInt (lbool l) { return l.toInt(); } inline lbool toLbool(int v) { return lbool(v); } const lbool l_True = toLbool( 1); const lbool l_False = toLbool(-1); const lbool l_Undef = toLbool( 0); //================================================================================================= // Relation operators -- extend definitions from '==' and '<' #ifndef __SGI_STL_INTERNAL_RELOPS // (be aware of SGI's STL implementation...) #define __SGI_STL_INTERNAL_RELOPS template static inline bool operator != (const T& x, const T& y) { return !(x == y); } template static inline bool operator > (const T& x, const T& y) { return y < x; } template static inline bool operator <= (const T& x, const T& y) { return !(y < x); } template static inline bool operator >= (const T& x, const T& y) { return !(x < y); } #endif //================================================================================================= }; #endif