// Check that we properly kill states when we exceed our memory bounds, for both // small and large allocations (large allocations commonly use mmap(), which can // follow a separate path in the allocator and statistics reporting). // RUN: %llvmgcc -emit-llvm -DLITTLE_ALLOC -g -c %s -o %t.little.bc // RUN: rm -rf %t.klee-out // RUN: %klee --output-dir=%t.klee-out --max-memory=20 %t.little.bc > %t.little.log // RUN: not grep -q "MALLOC FAILED" %t.little.log // RUN: not grep -q "DONE" %t.little.log // RUN: grep "WARNING: killing 1 states (over memory cap)" %t.klee-out/warnings.txt // RUN: %llvmgcc -emit-llvm -g -c %s -o %t.big.bc // RUN: rm -rf %t.klee-out // RUN: %klee --output-dir=%t.klee-out --max-memory=20 %t.big.bc > %t.big.log 2> %t.big.err // RUN: not grep -q "MALLOC FAILED" %t.big.log // RUN: not grep -q "DONE" %t.big.log // RUN: grep "WARNING: killing 1 states (over memory cap)" %t.klee-out/warnings.txt #include #include int main() { int i, j, x=0, malloc_failed = 0; #ifdef LITTLE_ALLOC printf("IN LITTLE ALLOC\n"); // 200 MBs total (in 1k chunks) for (i=0; i<100 && !malloc_failed; i++) { for (j=0; j<(1<<11); j++){ void * p = malloc(1<<10); malloc_failed |= (p == 0); } } #else printf("IN BIG ALLOC\n"); // 200 MBs total for (i=0; i<100 && !malloc_failed; i++) { void *p = malloc(1<<21); malloc_failed |= (p == 0); // Ensure we hit the periodic check // Use the pointer to be not optimized out by the compiler for (j=0; j<10000; j++) x+=(unsigned)p; } #endif if (malloc_failed) printf("MALLOC FAILED\n"); printf("DONE!\n"); return x; }