//===-- rusage.cpp --------------------------------------------------------===// // // The KLEE Symbolic Virtual Machine // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "klee/KDAlloc/kdalloc.h" #include "gtest/gtest.h" #include #include // This test is disabled for asan and msan because they create additional page // faults #if !defined(__has_feature) || \ (!__has_feature(memory_sanitizer) && !__has_feature(address_sanitizer)) std::size_t write_to_allocations(std::vector &allocations) { struct rusage ru; getrusage(RUSAGE_SELF, &ru); auto initial = ru.ru_minflt; for (auto p : allocations) { auto pp = static_cast(p); *pp = 1; } getrusage(RUSAGE_SELF, &ru); return ru.ru_minflt - initial; } TEST(KDAllocTest, Rusage) { // initialize a factory and an associated allocator (1 GiB and no quarantine) klee::kdalloc::AllocatorFactory factory(static_cast(1) << 30, 0); klee::kdalloc::Allocator allocator = factory.makeAllocator(); std::vector allocations; for (std::size_t i = 0; i < 1000; ++i) { allocations.emplace_back(allocator.allocate(16)); } // When writing to allocations we should have at least one page fault per // object, but may have more due to unrelated behavior (e.g., swapping). In // the hopes that such interference is relatively rare, we try a few times to // encounter a perfect run, where the number of page faults matches the number // of allocated objects exactly. constexpr std::size_t tries = 100; for (std::size_t i = 0; i < tries; ++i) { auto pageFaults = write_to_allocations(allocations); if (pageFaults == allocations.size()) { // we have a perfect match return; } ASSERT_GE(pageFaults, allocations.size()) << "There should be at least as many page faults as allocated objects"; factory.getMapping().clear(); } FAIL() << "No single try out of " << tries << " yielded a perfect match between page faults and allocated objects"; } #endif