# ===-- vec2.py -----------------------------------------------------------===## # # The KLEE Symbolic Virtual Machine # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # # ===----------------------------------------------------------------------===## from __future__ import division from math import ceil,floor,sqrt,atan2,pi,cos,sin import random _abs,_min,_max= abs,min,max def random(rng=random): return (rng.random()*2-1,rng.random()*2-1) def getangle(a): x,y= a if y>=0: return atan2(y,x) else: return pi*2 + atan2(y,x) toangle = getangle def topolar(pt): return getangle(pt),length(pt) def fromangle(angle,radius=1.): return (cos(angle)*radius, sin(angle)*radius) frompolar = fromangle def rotate((x,y),angle): c_a,s_a = cos(angle),sin(angle) return (c_a*x - s_a*y, s_a*x + c_a*y) def rotate90((x,y)): return (-y,x) def abs(a): return (_abs(a[0]),_abs(a[1])) def inv(a): return (-a[0], -a[1]) def add(a,b): return (a[0]+b[0], a[1]+b[1]) def sub(a,b): return (a[0]-b[0], a[1]-b[1]) def mul(a,b): return (a[0]*b[0], a[1]*b[1]) def div(a,b): return (a[0]/b[0], a[1]/b[1]) def mod(a,b): return (a[0]%b[0], a[1]%b[1]) def dot(a,b): return (a[0]*b[0]+ a[1]*b[1]) def addN(a,n): return (a[0]+n, a[1]+n) def subN(a,n): return (a[0]-n, a[1]-n) def mulN(a,n): return (a[0]*n, a[1]*n) def modN(a,n): return (a[0]%n, a[1]%n) def divN(a,n): return (a[0]/n, a[1]/n) def sqr(a): return dot(a,a) def length(a): return sqrt(sqr(a)) def avg(a,b): return mulN(add(a,b),0.5) def distance(a,b): return length(sub(a,b)) def normalize(a): return mulN(a, 1.0/length(a)) def normalizeOrZero(a): try: return mulN(a, 1.0/length(a)) except ZeroDivisionError: return (0.0,0.0) def min((a0,a1),(b0,b1)): return (_min(a0,b0),_min(a1,b1)) def max((a0,a1),(b0,b1)): return (_max(a0,b0),_max(a1,b1)) def lerp(a,b,t): return add(mulN(a,1.0-t), mulN(b, t)) def toint(a): return (int(a[0]), int(a[1])) def tofloor(a): return (floor(a[0]), floor(a[1])) def toceil(a): return (ceil(a[0]), ceil(a[1])) def sumlist(l): return reduce(add, l) def avglist(l): return mulN(sumlist(l), 1.0/len(l))