1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
//===-- Solver.h ------------------------------------------------*- C++ -*-===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef KLEE_SOLVER_H
#define KLEE_SOLVER_H
#include "klee/Expr/Expr.h"
#include "klee/System/Time.h"
#include "klee/Solver/SolverCmdLine.h"
#include <vector>
namespace klee {
class ConstraintSet;
class Expr;
class SolverImpl;
/// Collection of meta data that a solver can have access to. This is
/// independent of the actual constraints but can be used as a two-way
/// communication between solver and context of query.
struct SolverQueryMetaData {
/// @brief Costs for all queries issued for this state
time::Span queryCost;
};
struct Query {
public:
const ConstraintSet &constraints;
ref<Expr> expr;
Query(const ConstraintSet& _constraints, ref<Expr> _expr)
: constraints(_constraints), expr(_expr) {
}
/// withExpr - Return a copy of the query with the given expression.
Query withExpr(ref<Expr> _expr) const {
return Query(constraints, _expr);
}
/// withFalse - Return a copy of the query with a false expression.
Query withFalse() const {
return Query(constraints, ConstantExpr::alloc(0, Expr::Bool));
}
/// negateExpr - Return a copy of the query with the expression negated.
Query negateExpr() const {
return withExpr(Expr::createIsZero(expr));
}
/// Dump query
void dump() const ;
};
class Solver {
// DO NOT IMPLEMENT.
Solver(const Solver&);
void operator=(const Solver&);
public:
enum Validity {
True = 1,
False = -1,
Unknown = 0
};
public:
/// validity_to_str - Return the name of given Validity enum value.
static const char *validity_to_str(Validity v);
public:
SolverImpl *impl;
public:
Solver(SolverImpl *_impl) : impl(_impl) {}
virtual ~Solver();
/// evaluate - Determine for a particular state if the query
/// expression is provably true, provably false or neither.
///
/// \param [out] result - if
/// \f[ \forall X constraints(X) \to query(X) \f]
/// then Solver::True,
/// else if
/// \f[ \forall X constraints(X) \to \lnot query(X) \f]
/// then Solver::False,
/// else
/// Solver::Unknown
///
/// \return True on success.
bool evaluate(const Query&, Validity &result);
/// mustBeTrue - Determine if the expression is provably true.
///
/// This evaluates the following logical formula:
///
/// \f[ \forall X constraints(X) \to query(X) \f]
///
/// which is equivalent to
///
/// \f[ \lnot \exists X constraints(X) \land \lnot query(X) \f]
///
/// Where \f$X\f$ is some assignment, \f$constraints(X)\f$ are the constraints
/// in the query and \f$query(X)\f$ is the query expression.
///
/// \param [out] result - On success, true iff the logical formula is true
///
/// \return True on success.
bool mustBeTrue(const Query&, bool &result);
/// mustBeFalse - Determine if the expression is provably false.
///
/// This evaluates the following logical formula:
///
/// \f[ \lnot \exists X constraints(X) \land query(X) \f]
///
/// which is equivalent to
///
/// \f[ \forall X constraints(X) \to \lnot query(X) \f]
///
/// Where \f$X\f$ is some assignment, \f$constraints(X)\f$ are the constraints
/// in the query and \f$query(X)\f$ is the query expression.
///
/// \param [out] result - On success, true iff the logical formula is false
///
/// \return True on success.
bool mustBeFalse(const Query&, bool &result);
/// mayBeTrue - Determine if there is a valid assignment for the given state
/// in which the expression evaluates to true.
///
/// This evaluates the following logical formula:
///
/// \f[ \exists X constraints(X) \land query(X) \f]
///
/// which is equivalent to
///
/// \f[ \lnot \forall X constraints(X) \to \lnot query(X) \f]
///
/// Where \f$X\f$ is some assignment, \f$constraints(X)\f$ are the constraints
/// in the query and \f$query(X)\f$ is the query expression.
///
/// \param [out] result - On success, true iff the logical formula may be true
///
/// \return True on success.
bool mayBeTrue(const Query&, bool &result);
/// mayBeFalse - Determine if there is a valid assignment for the given
/// state in which the expression evaluates to false.
///
/// This evaluates the following logical formula:
///
/// \f[ \exists X constraints(X) \land \lnot query(X) \f]
///
/// which is equivalent to
///
/// \f[ \lnot \forall X constraints(X) \to query(X) \f]
///
/// Where \f$X\f$ is some assignment, \f$constraints(X)\f$ are the constraints
/// in the query and \f$query(X)\f$ is the query expression.
///
/// \param [out] result - On success, true iff the logical formula may be false
///
/// \return True on success.
bool mayBeFalse(const Query&, bool &result);
/// getValue - Compute one possible value for the given expression.
///
/// \param [out] result - On success, a value for the expression in some
/// satisfying assignment.
///
/// \return True on success.
bool getValue(const Query&, ref<ConstantExpr> &result);
/// getInitialValues - Compute the initial values for a list of objects.
///
/// \param [out] result - On success, this vector will be filled in with an
/// array of bytes for each given object (with length matching the object
/// size). The bytes correspond to the initial values for the objects for
/// some satisfying assignment.
///
/// \return True on success.
///
/// NOTE: This function returns failure if there is no satisfying
/// assignment.
//
// FIXME: This API is lame. We should probably just provide an API which
// returns an Assignment object, then clients can get out whatever values
// they want. This also allows us to optimize the representation.
bool getInitialValues(const Query&,
const std::vector<const Array*> &objects,
std::vector< std::vector<unsigned char> > &result);
/// getRange - Compute a tight range of possible values for a given
/// expression.
///
/// \return - A pair with (min, max) values for the expression.
///
/// \post(mustBeTrue(min <= e <= max) &&
/// mayBeTrue(min == e) &&
/// mayBeTrue(max == e))
//
// FIXME: This should go into a helper class, and should handle failure.
virtual std::pair< ref<Expr>, ref<Expr> > getRange(const Query&);
virtual char *getConstraintLog(const Query& query);
virtual void setCoreSolverTimeout(time::Span timeout);
};
/* *** */
/// createValidatingSolver - Create a solver which will validate all query
/// results against an oracle, used for testing that an optimized solver has
/// the same results as an unoptimized one. This solver will assert on any
/// mismatches.
///
/// \param s - The primary underlying solver to use.
/// \param oracle - The solver to check query results against.
Solver *createValidatingSolver(Solver *s, Solver *oracle);
/// createAssignmentValidatingSolver - Create a solver that when requested
/// for an assignment will check that the computed assignment satisfies
/// the Query.
/// \param s - The underlying solver to use.
Solver *createAssignmentValidatingSolver(Solver *s);
/// createCachingSolver - Create a solver which will cache the queries in
/// memory (without eviction).
///
/// \param s - The underlying solver to use.
Solver *createCachingSolver(Solver *s);
/// createCexCachingSolver - Create a counterexample caching solver. This is a
/// more sophisticated cache which records counterexamples for a constraint
/// set and uses subset/superset relations among constraints to try and
/// quickly find satisfying assignments.
///
/// \param s - The underlying solver to use.
Solver *createCexCachingSolver(Solver *s);
/// createFastCexSolver - Create a "fast counterexample solver", which tries
/// to quickly compute a satisfying assignment for a constraint set using
/// value propogation and range analysis.
///
/// \param s - The underlying solver to use.
Solver *createFastCexSolver(Solver *s);
/// createIndependentSolver - Create a solver which will eliminate any
/// unnecessary constraints before propogating the query to the underlying
/// solver.
///
/// \param s - The underlying solver to use.
Solver *createIndependentSolver(Solver *s);
/// createKQueryLoggingSolver - Create a solver which will forward all queries
/// after writing them to the given path in .kquery format.
Solver *createKQueryLoggingSolver(Solver *s, std::string path,
time::Span minQueryTimeToLog,
bool logTimedOut);
/// createSMTLIBLoggingSolver - Create a solver which will forward all queries
/// after writing them to the given path in .smt2 format.
Solver *createSMTLIBLoggingSolver(Solver *s, std::string path,
time::Span minQueryTimeToLog,
bool logTimedOut);
/// createDummySolver - Create a dummy solver implementation which always
/// fails.
Solver *createDummySolver();
// Create a solver based on the supplied ``CoreSolverType``.
Solver *createCoreSolver(CoreSolverType cst);
}
#endif /* KLEE_SOLVER_H */
|