about summary refs log tree commit diff homepage
path: root/lib/Core/Executor.cpp
blob: 4ff181f5b6bd3070d5c273a9d20625ac66d232e6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
//===-- Executor.cpp ------------------------------------------------------===//
//
//                     The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Executor.h"

#include "../Expr/ArrayExprOptimizer.h"
#include "Context.h"
#include "CoreStats.h"
#include "ExternalDispatcher.h"
#include "ImpliedValue.h"
#include "Memory.h"
#include "MemoryManager.h"
#include "PTree.h"
#include "Searcher.h"
#include "SeedInfo.h"
#include "SpecialFunctionHandler.h"
#include "StatsTracker.h"
#include "TimingSolver.h"
#include "UserSearcher.h"

#include "klee/Common.h"
#include "klee/Config/Version.h"
#include "klee/ExecutionState.h"
#include "klee/Expr/Assignment.h"
#include "klee/Expr/Expr.h"
#include "klee/Expr/ExprPPrinter.h"
#include "klee/Expr/ExprSMTLIBPrinter.h"
#include "klee/Expr/ExprUtil.h"
#include "klee/Internal/ADT/KTest.h"
#include "klee/Internal/ADT/RNG.h"
#include "klee/Internal/Module/Cell.h"
#include "klee/Internal/Module/InstructionInfoTable.h"
#include "klee/Internal/Module/KInstruction.h"
#include "klee/Internal/Module/KModule.h"
#include "klee/Internal/Support/ErrorHandling.h"
#include "klee/Internal/Support/FileHandling.h"
#include "klee/Internal/Support/FloatEvaluation.h"
#include "klee/Internal/Support/ModuleUtil.h"
#include "klee/Internal/System/MemoryUsage.h"
#include "klee/Internal/System/Time.h"
#include "klee/Interpreter.h"
#include "klee/OptionCategories.h"
#include "klee/Solver/SolverCmdLine.h"
#include "klee/Solver/SolverStats.h"
#include "klee/TimerStatIncrementer.h"
#include "klee/util/GetElementPtrTypeIterator.h"

#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/raw_ostream.h"

#include <algorithm>
#include <cassert>
#include <cerrno>
#include <cxxabi.h>
#include <fstream>
#include <iomanip>
#include <iosfwd>
#include <sstream>
#include <string>
#include <sys/mman.h>
#include <vector>

using namespace llvm;
using namespace klee;

namespace klee {
cl::OptionCategory DebugCat("Debugging options",
                            "These are debugging options.");

cl::OptionCategory ExtCallsCat("External call policy options",
                               "These options impact external calls.");

cl::OptionCategory SeedingCat(
    "Seeding options",
    "These options are related to the use of seeds to start exploration.");

cl::OptionCategory
    TerminationCat("State and overall termination options",
                   "These options control termination of the overall KLEE "
                   "execution and of individual states.");

cl::OptionCategory TestGenCat("Test generation options",
                              "These options impact test generation.");

cl::opt<std::string> MaxTime(
    "max-time",
    cl::desc("Halt execution after the specified duration.  "
             "Set to 0s to disable (default=0s)"),
    cl::init("0s"),
    cl::cat(TerminationCat));
} // namespace klee

namespace {

/*** Test generation options ***/

cl::opt<bool> DumpStatesOnHalt(
    "dump-states-on-halt",
    cl::init(true),
    cl::desc("Dump test cases for all active states on exit (default=true)"),
    cl::cat(TestGenCat));

cl::opt<bool> OnlyOutputStatesCoveringNew(
    "only-output-states-covering-new",
    cl::init(false),
    cl::desc("Only output test cases covering new code (default=false)"),
    cl::cat(TestGenCat));

cl::opt<bool> EmitAllErrors(
    "emit-all-errors", cl::init(false),
    cl::desc("Generate tests cases for all errors "
             "(default=false, i.e. one per (error,instruction) pair)"),
    cl::cat(TestGenCat));


/* Constraint solving options */

cl::opt<unsigned> MaxSymArraySize(
    "max-sym-array-size",
    cl::desc(
        "If a symbolic array exceeds this size (in bytes), symbolic addresses "
        "into this array are concretized.  Set to 0 to disable (default=0)"),
    cl::init(0),
    cl::cat(SolvingCat));

cl::opt<bool>
    SimplifySymIndices("simplify-sym-indices",
                       cl::init(false),
                       cl::desc("Simplify symbolic accesses using equalities "
                                "from other constraints (default=false)"),
                       cl::cat(SolvingCat));

cl::opt<bool>
    EqualitySubstitution("equality-substitution", cl::init(true),
                         cl::desc("Simplify equality expressions before "
                                  "querying the solver (default=true)"),
                         cl::cat(SolvingCat));


/*** External call policy options ***/

enum class ExternalCallPolicy {
  None,     // No external calls allowed
  Concrete, // Only external calls with concrete arguments allowed
  All,      // All external calls allowed
};

cl::opt<ExternalCallPolicy> ExternalCalls(
    "external-calls",
    cl::desc("Specify the external call policy"),
    cl::values(
        clEnumValN(
            ExternalCallPolicy::None, "none",
            "No external function calls are allowed.  Note that KLEE always "
            "allows some external calls with concrete arguments to go through "
            "(in particular printf and puts), regardless of this option."),
        clEnumValN(ExternalCallPolicy::Concrete, "concrete",
                   "Only external function calls with concrete arguments are "
                   "allowed (default)"),
        clEnumValN(ExternalCallPolicy::All, "all",
                   "All external function calls are allowed.  This concretizes "
                   "any symbolic arguments in calls to external functions.")
            KLEE_LLVM_CL_VAL_END),
    cl::init(ExternalCallPolicy::Concrete),
    cl::cat(ExtCallsCat));

cl::opt<bool> SuppressExternalWarnings(
    "suppress-external-warnings",
    cl::init(false),
    cl::desc("Supress warnings about calling external functions."),
    cl::cat(ExtCallsCat));

cl::opt<bool> AllExternalWarnings(
    "all-external-warnings",
    cl::init(false),
    cl::desc("Issue a warning everytime an external call is made, "
             "as opposed to once per function (default=false)"),
    cl::cat(ExtCallsCat));


/*** Seeding options ***/

cl::opt<bool> AlwaysOutputSeeds(
    "always-output-seeds",
    cl::init(true),
    cl::desc(
        "Dump test cases even if they are driven by seeds only (default=true)"),
    cl::cat(SeedingCat));

cl::opt<bool> OnlyReplaySeeds(
    "only-replay-seeds",
    cl::init(false),
    cl::desc("Discard states that do not have a seed (default=false)."),
    cl::cat(SeedingCat));

cl::opt<bool> OnlySeed("only-seed",
                       cl::init(false),
                       cl::desc("Stop execution after seeding is done without "
                                "doing regular search (default=false)."),
                       cl::cat(SeedingCat));

cl::opt<bool>
    AllowSeedExtension("allow-seed-extension",
                       cl::init(false),
                       cl::desc("Allow extra (unbound) values to become "
                                "symbolic during seeding (default=false)."),
                       cl::cat(SeedingCat));

cl::opt<bool> ZeroSeedExtension(
    "zero-seed-extension",
    cl::init(false),
    cl::desc(
        "Use zero-filled objects if matching seed not found (default=false)"),
    cl::cat(SeedingCat));

cl::opt<bool> AllowSeedTruncation(
    "allow-seed-truncation",
    cl::init(false),
    cl::desc("Allow smaller buffers than in seeds (default=false)."),
    cl::cat(SeedingCat));

cl::opt<bool> NamedSeedMatching(
    "named-seed-matching",
    cl::init(false),
    cl::desc("Use names to match symbolic objects to inputs (default=false)."),
    cl::cat(SeedingCat));

cl::opt<std::string>
    SeedTime("seed-time",
             cl::desc("Amount of time to dedicate to seeds, before normal "
                      "search (default=0s (off))"),
             cl::cat(SeedingCat));


/*** Termination criteria options ***/

cl::list<Executor::TerminateReason> ExitOnErrorType(
    "exit-on-error-type",
    cl::desc(
        "Stop execution after reaching a specified condition (default=false)"),
    cl::values(
        clEnumValN(Executor::Abort, "Abort", "The program crashed"),
        clEnumValN(Executor::Assert, "Assert", "An assertion was hit"),
        clEnumValN(Executor::BadVectorAccess, "BadVectorAccess",
                   "Vector accessed out of bounds"),
        clEnumValN(Executor::Exec, "Exec",
                   "Trying to execute an unexpected instruction"),
        clEnumValN(Executor::External, "External",
                   "External objects referenced"),
        clEnumValN(Executor::Free, "Free", "Freeing invalid memory"),
        clEnumValN(Executor::Model, "Model", "Memory model limit hit"),
        clEnumValN(Executor::Overflow, "Overflow", "An overflow occurred"),
        clEnumValN(Executor::Ptr, "Ptr", "Pointer error"),
        clEnumValN(Executor::ReadOnly, "ReadOnly", "Write to read-only memory"),
        clEnumValN(Executor::ReportError, "ReportError",
                   "klee_report_error called"),
        clEnumValN(Executor::User, "User", "Wrong klee_* functions invocation"),
        clEnumValN(Executor::Unhandled, "Unhandled",
                   "Unhandled instruction hit") KLEE_LLVM_CL_VAL_END),
    cl::ZeroOrMore,
    cl::cat(TerminationCat));

cl::opt<unsigned long long> MaxInstructions(
    "max-instructions",
    cl::desc("Stop execution after this many instructions.  Set to 0 to disable (default=0)"),
    cl::init(0),
    cl::cat(TerminationCat));

cl::opt<unsigned>
    MaxForks("max-forks",
             cl::desc("Only fork this many times.  Set to -1 to disable (default=-1)"),
             cl::init(~0u),
             cl::cat(TerminationCat));

cl::opt<unsigned> MaxDepth(
    "max-depth",
    cl::desc("Only allow this many symbolic branches.  Set to 0 to disable (default=0)"),
    cl::init(0),
    cl::cat(TerminationCat));

cl::opt<unsigned> MaxMemory("max-memory",
                            cl::desc("Refuse to fork when above this amount of "
                                     "memory (in MB) (default=2000)"),
                            cl::init(2000),
                            cl::cat(TerminationCat));

cl::opt<bool> MaxMemoryInhibit(
    "max-memory-inhibit",
    cl::desc(
        "Inhibit forking at memory cap (vs. random terminate) (default=true)"),
    cl::init(true),
    cl::cat(TerminationCat));

cl::opt<unsigned> RuntimeMaxStackFrames(
    "max-stack-frames",
    cl::desc("Terminate a state after this many stack frames.  Set to 0 to "
             "disable (default=8192)"),
    cl::init(8192),
    cl::cat(TerminationCat));

cl::opt<double> MaxStaticForkPct(
    "max-static-fork-pct", cl::init(1.),
    cl::desc("Maximum percentage spent by an instruction forking out of the "
             "forking of all instructions (default=1.0 (always))"),
    cl::cat(TerminationCat));

cl::opt<double> MaxStaticSolvePct(
    "max-static-solve-pct", cl::init(1.),
    cl::desc("Maximum percentage of solving time that can be spent by a single "
             "instruction over total solving time for all instructions "
             "(default=1.0 (always))"),
    cl::cat(TerminationCat));

cl::opt<double> MaxStaticCPForkPct(
    "max-static-cpfork-pct", cl::init(1.),
    cl::desc("Maximum percentage spent by an instruction of a call path "
             "forking out of the forking of all instructions in the call path "
             "(default=1.0 (always))"),
    cl::cat(TerminationCat));

cl::opt<double> MaxStaticCPSolvePct(
    "max-static-cpsolve-pct", cl::init(1.),
    cl::desc("Maximum percentage of solving time that can be spent by a single "
             "instruction of a call path over total solving time for all "
             "instructions (default=1.0 (always))"),
    cl::cat(TerminationCat));

cl::opt<std::string> TimerInterval(
    "timer-interval",
    cl::desc("Minimum interval to check timers. "
             "Affects -max-time, -istats-write-interval, -stats-write-interval, and -uncovered-update-interval (default=1s)"),
    cl::init("1s"),
    cl::cat(TerminationCat));


/*** Debugging options ***/

/// The different query logging solvers that can switched on/off
enum PrintDebugInstructionsType {
  STDERR_ALL, ///
  STDERR_SRC,
  STDERR_COMPACT,
  FILE_ALL,    ///
  FILE_SRC,    ///
  FILE_COMPACT ///
};

llvm::cl::bits<PrintDebugInstructionsType> DebugPrintInstructions(
    "debug-print-instructions",
    llvm::cl::desc("Log instructions during execution."),
    llvm::cl::values(
        clEnumValN(STDERR_ALL, "all:stderr",
                   "Log all instructions to stderr "
                   "in format [src, inst_id, "
                   "llvm_inst]"),
        clEnumValN(STDERR_SRC, "src:stderr",
                   "Log all instructions to stderr in format [src, inst_id]"),
        clEnumValN(STDERR_COMPACT, "compact:stderr",
                   "Log all instructions to stderr in format [inst_id]"),
        clEnumValN(FILE_ALL, "all:file",
                   "Log all instructions to file "
                   "instructions.txt in format [src, "
                   "inst_id, llvm_inst]"),
        clEnumValN(FILE_SRC, "src:file",
                   "Log all instructions to file "
                   "instructions.txt in format [src, "
                   "inst_id]"),
        clEnumValN(FILE_COMPACT, "compact:file",
                   "Log all instructions to file instructions.txt in format "
                   "[inst_id]") KLEE_LLVM_CL_VAL_END),
    llvm::cl::CommaSeparated,
    cl::cat(DebugCat));

#ifdef HAVE_ZLIB_H
cl::opt<bool> DebugCompressInstructions(
    "debug-compress-instructions", cl::init(false),
    cl::desc(
        "Compress the logged instructions in gzip format (default=false)."),
    cl::cat(DebugCat));
#endif

cl::opt<bool> DebugCheckForImpliedValues(
    "debug-check-for-implied-values", cl::init(false),
    cl::desc("Debug the implied value optimization"),
    cl::cat(DebugCat));

} // namespace

namespace klee {
  RNG theRNG;
}

// XXX hack
extern "C" unsigned dumpStates, dumpPTree;
unsigned dumpStates = 0, dumpPTree = 0;

const char *Executor::TerminateReasonNames[] = {
  [ Abort ] = "abort",
  [ Assert ] = "assert",
  [ BadVectorAccess ] = "bad_vector_access",
  [ Exec ] = "exec",
  [ External ] = "external",
  [ Free ] = "free",
  [ Model ] = "model",
  [ Overflow ] = "overflow",
  [ Ptr ] = "ptr",
  [ ReadOnly ] = "readonly",
  [ ReportError ] = "reporterror",
  [ User ] = "user",
  [ Unhandled ] = "xxx",
};


Executor::Executor(LLVMContext &ctx, const InterpreterOptions &opts,
                   InterpreterHandler *ih)
    : Interpreter(opts), interpreterHandler(ih), searcher(0),
      externalDispatcher(new ExternalDispatcher(ctx)), statsTracker(0),
      pathWriter(0), symPathWriter(0), specialFunctionHandler(0), timers{time::Span(TimerInterval)},
      replayKTest(0), replayPath(0), usingSeeds(0),
      atMemoryLimit(false), inhibitForking(false), haltExecution(false),
      ivcEnabled(false), debugLogBuffer(debugBufferString) {


  const time::Span maxTime{MaxTime};
  if (maxTime) timers.add(
      std::move(std::make_unique<Timer>(maxTime, [&]{
        klee_message("HaltTimer invoked");
        setHaltExecution(true);
      })));

  coreSolverTimeout = time::Span{MaxCoreSolverTime};
  if (coreSolverTimeout) UseForkedCoreSolver = true;
  Solver *coreSolver = klee::createCoreSolver(CoreSolverToUse);
  if (!coreSolver) {
    klee_error("Failed to create core solver\n");
  }

  Solver *solver = constructSolverChain(
      coreSolver,
      interpreterHandler->getOutputFilename(ALL_QUERIES_SMT2_FILE_NAME),
      interpreterHandler->getOutputFilename(SOLVER_QUERIES_SMT2_FILE_NAME),
      interpreterHandler->getOutputFilename(ALL_QUERIES_KQUERY_FILE_NAME),
      interpreterHandler->getOutputFilename(SOLVER_QUERIES_KQUERY_FILE_NAME));

  this->solver = new TimingSolver(solver, EqualitySubstitution);
  memory = new MemoryManager(&arrayCache);

  initializeSearchOptions();

  if (OnlyOutputStatesCoveringNew && !StatsTracker::useIStats())
    klee_error("To use --only-output-states-covering-new, you need to enable --output-istats.");

  if (DebugPrintInstructions.isSet(FILE_ALL) ||
      DebugPrintInstructions.isSet(FILE_COMPACT) ||
      DebugPrintInstructions.isSet(FILE_SRC)) {
    std::string debug_file_name =
        interpreterHandler->getOutputFilename("instructions.txt");
    std::string error;
#ifdef HAVE_ZLIB_H
    if (!DebugCompressInstructions) {
#endif
      debugInstFile = klee_open_output_file(debug_file_name, error);
#ifdef HAVE_ZLIB_H
    } else {
      debug_file_name.append(".gz");
      debugInstFile = klee_open_compressed_output_file(debug_file_name, error);
    }
#endif
    if (!debugInstFile) {
      klee_error("Could not open file %s : %s", debug_file_name.c_str(),
                 error.c_str());
    }
  }
}

llvm::Module *
Executor::setModule(std::vector<std::unique_ptr<llvm::Module>> &modules,
                    const ModuleOptions &opts) {
  assert(!kmodule && !modules.empty() &&
         "can only register one module"); // XXX gross

  kmodule = std::unique_ptr<KModule>(new KModule());

  // Preparing the final module happens in multiple stages

  // Link with KLEE intrinsics library before running any optimizations
  SmallString<128> LibPath(opts.LibraryDir);
  llvm::sys::path::append(LibPath, "libkleeRuntimeIntrinsic.bca");
  std::string error;
  if (!klee::loadFile(LibPath.str(), modules[0]->getContext(), modules,
                      error)) {
    klee_error("Could not load KLEE intrinsic file %s", LibPath.c_str());
  }

  // 1.) Link the modules together
  while (kmodule->link(modules, opts.EntryPoint)) {
    // 2.) Apply different instrumentation
    kmodule->instrument(opts);
  }

  // 3.) Optimise and prepare for KLEE

  // Create a list of functions that should be preserved if used
  std::vector<const char *> preservedFunctions;
  specialFunctionHandler = new SpecialFunctionHandler(*this);
  specialFunctionHandler->prepare(preservedFunctions);

  preservedFunctions.push_back(opts.EntryPoint.c_str());

  // Preserve the free-standing library calls
  preservedFunctions.push_back("memset");
  preservedFunctions.push_back("memcpy");
  preservedFunctions.push_back("memcmp");
  preservedFunctions.push_back("memmove");

  kmodule->optimiseAndPrepare(opts, preservedFunctions);
  kmodule->checkModule();

  // 4.) Manifest the module
  kmodule->manifest(interpreterHandler, StatsTracker::useStatistics());

  specialFunctionHandler->bind();

  if (StatsTracker::useStatistics() || userSearcherRequiresMD2U()) {
    statsTracker = 
      new StatsTracker(*this,
                       interpreterHandler->getOutputFilename("assembly.ll"),
                       userSearcherRequiresMD2U());
  }

  // Initialize the context.
  DataLayout *TD = kmodule->targetData.get();
  Context::initialize(TD->isLittleEndian(),
                      (Expr::Width)TD->getPointerSizeInBits());

  return kmodule->module.get();
}

Executor::~Executor() {
  delete memory;
  delete externalDispatcher;
  delete specialFunctionHandler;
  delete statsTracker;
  delete solver;
}

/***/

void Executor::initializeGlobalObject(ExecutionState &state, ObjectState *os,
                                      const Constant *c, 
                                      unsigned offset) {
  const auto targetData = kmodule->targetData.get();
  if (const ConstantVector *cp = dyn_cast<ConstantVector>(c)) {
    unsigned elementSize =
      targetData->getTypeStoreSize(cp->getType()->getElementType());
    for (unsigned i=0, e=cp->getNumOperands(); i != e; ++i)
      initializeGlobalObject(state, os, cp->getOperand(i), 
			     offset + i*elementSize);
  } else if (isa<ConstantAggregateZero>(c)) {
    unsigned i, size = targetData->getTypeStoreSize(c->getType());
    for (i=0; i<size; i++)
      os->write8(offset+i, (uint8_t) 0);
  } else if (const ConstantArray *ca = dyn_cast<ConstantArray>(c)) {
    unsigned elementSize =
      targetData->getTypeStoreSize(ca->getType()->getElementType());
    for (unsigned i=0, e=ca->getNumOperands(); i != e; ++i)
      initializeGlobalObject(state, os, ca->getOperand(i), 
			     offset + i*elementSize);
  } else if (const ConstantStruct *cs = dyn_cast<ConstantStruct>(c)) {
    const StructLayout *sl =
      targetData->getStructLayout(cast<StructType>(cs->getType()));
    for (unsigned i=0, e=cs->getNumOperands(); i != e; ++i)
      initializeGlobalObject(state, os, cs->getOperand(i), 
			     offset + sl->getElementOffset(i));
  } else if (const ConstantDataSequential *cds =
               dyn_cast<ConstantDataSequential>(c)) {
    unsigned elementSize =
      targetData->getTypeStoreSize(cds->getElementType());
    for (unsigned i=0, e=cds->getNumElements(); i != e; ++i)
      initializeGlobalObject(state, os, cds->getElementAsConstant(i),
                             offset + i*elementSize);
  } else if (!isa<UndefValue>(c) && !isa<MetadataAsValue>(c)) {
    unsigned StoreBits = targetData->getTypeStoreSizeInBits(c->getType());
    ref<ConstantExpr> C = evalConstant(c);

    // Extend the constant if necessary;
    assert(StoreBits >= C->getWidth() && "Invalid store size!");
    if (StoreBits > C->getWidth())
      C = C->ZExt(StoreBits);

    os->write(offset, C);
  }
}

MemoryObject * Executor::addExternalObject(ExecutionState &state, 
                                           void *addr, unsigned size, 
                                           bool isReadOnly) {
  auto mo = memory->allocateFixed(reinterpret_cast<std::uint64_t>(addr),
                                  size, nullptr);
  ObjectState *os = bindObjectInState(state, mo, false);
  for(unsigned i = 0; i < size; i++)
    os->write8(i, ((uint8_t*)addr)[i]);
  if(isReadOnly)
    os->setReadOnly(true);  
  return mo;
}


extern void *__dso_handle __attribute__ ((__weak__));

void Executor::initializeGlobals(ExecutionState &state) {
  Module *m = kmodule->module.get();

  if (m->getModuleInlineAsm() != "")
    klee_warning("executable has module level assembly (ignoring)");
  // represent function globals using the address of the actual llvm function
  // object. given that we use malloc to allocate memory in states this also
  // ensures that we won't conflict. we don't need to allocate a memory object
  // since reading/writing via a function pointer is unsupported anyway.
  for (Module::iterator i = m->begin(), ie = m->end(); i != ie; ++i) {
    Function *f = &*i;
    ref<ConstantExpr> addr(0);

    // If the symbol has external weak linkage then it is implicitly
    // not defined in this module; if it isn't resolvable then it
    // should be null.
    if (f->hasExternalWeakLinkage() && 
        !externalDispatcher->resolveSymbol(f->getName())) {
      addr = Expr::createPointer(0);
    } else {
      addr = Expr::createPointer(reinterpret_cast<std::uint64_t>(f));
      legalFunctions.insert(reinterpret_cast<std::uint64_t>(f));
    }
    
    globalAddresses.insert(std::make_pair(f, addr));
  }

#ifndef WINDOWS
  int *errno_addr = getErrnoLocation(state);
  MemoryObject *errnoObj =
      addExternalObject(state, (void *)errno_addr, sizeof *errno_addr, false);
  // Copy values from and to program space explicitly
  errnoObj->isUserSpecified = true;
#endif

  // Disabled, we don't want to promote use of live externals.
#ifdef HAVE_CTYPE_EXTERNALS
#ifndef WINDOWS
#ifndef DARWIN
  /* from /usr/include/ctype.h:
       These point into arrays of 384, so they can be indexed by any `unsigned
       char' value [0,255]; by EOF (-1); or by any `signed char' value
       [-128,-1).  ISO C requires that the ctype functions work for `unsigned */
  const uint16_t **addr = __ctype_b_loc();
  addExternalObject(state, const_cast<uint16_t*>(*addr-128),
                    384 * sizeof **addr, true);
  addExternalObject(state, addr, sizeof(*addr), true);
    
  const int32_t **lower_addr = __ctype_tolower_loc();
  addExternalObject(state, const_cast<int32_t*>(*lower_addr-128),
                    384 * sizeof **lower_addr, true);
  addExternalObject(state, lower_addr, sizeof(*lower_addr), true);
  
  const int32_t **upper_addr = __ctype_toupper_loc();
  addExternalObject(state, const_cast<int32_t*>(*upper_addr-128),
                    384 * sizeof **upper_addr, true);
  addExternalObject(state, upper_addr, sizeof(*upper_addr), true);
#endif
#endif
#endif

  // allocate and initialize globals, done in two passes since we may
  // need address of a global in order to initialize some other one.

  // allocate memory objects for all globals
  for (Module::const_global_iterator i = m->global_begin(),
         e = m->global_end();
       i != e; ++i) {
    const GlobalVariable *v = &*i;
    size_t globalObjectAlignment = getAllocationAlignment(v);
    if (i->isDeclaration()) {
      // FIXME: We have no general way of handling unknown external
      // symbols. If we really cared about making external stuff work
      // better we could support user definition, or use the EXE style
      // hack where we check the object file information.

      Type *ty = i->getType()->getElementType();
      uint64_t size = 0;
      if (ty->isSized()) {
	size = kmodule->targetData->getTypeStoreSize(ty);
      } else {
        klee_warning("Type for %.*s is not sized", (int)i->getName().size(),
			i->getName().data());
      }

      // XXX - DWD - hardcode some things until we decide how to fix.
#ifndef WINDOWS
      if (i->getName() == "_ZTVN10__cxxabiv117__class_type_infoE") {
        size = 0x2C;
      } else if (i->getName() == "_ZTVN10__cxxabiv120__si_class_type_infoE") {
        size = 0x2C;
      } else if (i->getName() == "_ZTVN10__cxxabiv121__vmi_class_type_infoE") {
        size = 0x2C;
      }
#endif

      if (size == 0) {
        klee_warning("Unable to find size for global variable: %.*s (use will result in out of bounds access)",
			(int)i->getName().size(), i->getName().data());
      }

      MemoryObject *mo = memory->allocate(size, /*isLocal=*/false,
                                          /*isGlobal=*/true, /*allocSite=*/v,
                                          /*alignment=*/globalObjectAlignment);
      ObjectState *os = bindObjectInState(state, mo, false);
      globalObjects.insert(std::make_pair(v, mo));
      globalAddresses.insert(std::make_pair(v, mo->getBaseExpr()));

      // Program already running = object already initialized.  Read
      // concrete value and write it to our copy.
      if (size) {
        void *addr;
        if (i->getName() == "__dso_handle") {
          addr = &__dso_handle; // wtf ?
        } else {
          addr = externalDispatcher->resolveSymbol(i->getName());
        }
        if (!addr)
          klee_error("unable to load symbol(%s) while initializing globals.", 
                     i->getName().data());

        for (unsigned offset=0; offset<mo->size; offset++)
          os->write8(offset, ((unsigned char*)addr)[offset]);
      }
    } else {
      Type *ty = i->getType()->getElementType();
      uint64_t size = kmodule->targetData->getTypeStoreSize(ty);
      MemoryObject *mo = memory->allocate(size, /*isLocal=*/false,
                                          /*isGlobal=*/true, /*allocSite=*/v,
                                          /*alignment=*/globalObjectAlignment);
      if (!mo)
        llvm::report_fatal_error("out of memory");
      ObjectState *os = bindObjectInState(state, mo, false);
      globalObjects.insert(std::make_pair(v, mo));
      globalAddresses.insert(std::make_pair(v, mo->getBaseExpr()));

      if (!i->hasInitializer())
          os->initializeToRandom();
    }
  }
  
  // link aliases to their definitions (if bound)
  for (auto i = m->alias_begin(), ie = m->alias_end(); i != ie; ++i) {
    // Map the alias to its aliasee's address. This works because we have
    // addresses for everything, even undefined functions.

    // Alias may refer to other alias, not necessarily known at this point.
    // Thus, resolve to real alias directly.
    const GlobalAlias *alias = &*i;
    while (const auto *ga = dyn_cast<GlobalAlias>(alias->getAliasee())) {
      assert(ga != alias && "alias pointing to itself");
      alias = ga;
    }

    globalAddresses.insert(std::make_pair(&*i, evalConstant(alias->getAliasee())));
  }

  // once all objects are allocated, do the actual initialization
  for (Module::const_global_iterator i = m->global_begin(),
         e = m->global_end();
       i != e; ++i) {
    if (i->hasInitializer()) {
      const GlobalVariable *v = &*i;
      MemoryObject *mo = globalObjects.find(v)->second;
      const ObjectState *os = state.addressSpace.findObject(mo);
      assert(os);
      ObjectState *wos = state.addressSpace.getWriteable(mo, os);
      
      initializeGlobalObject(state, wos, i->getInitializer(), 0);
      // if(i->isConstant()) os->setReadOnly(true);
    }
  }
}

void Executor::branch(ExecutionState &state, 
                      const std::vector< ref<Expr> > &conditions,
                      std::vector<ExecutionState*> &result) {
  TimerStatIncrementer timer(stats::forkTime);
  unsigned N = conditions.size();
  assert(N);

  if (MaxForks!=~0u && stats::forks >= MaxForks) {
    unsigned next = theRNG.getInt32() % N;
    for (unsigned i=0; i<N; ++i) {
      if (i == next) {
        result.push_back(&state);
      } else {
        result.push_back(NULL);
      }
    }
  } else {
    stats::forks += N-1;

    // XXX do proper balance or keep random?
    result.push_back(&state);
    for (unsigned i=1; i<N; ++i) {
      ExecutionState *es = result[theRNG.getInt32() % i];
      ExecutionState *ns = es->branch();
      addedStates.push_back(ns);
      result.push_back(ns);
      processTree->attach(es->ptreeNode, ns, es);
    }
  }

  // If necessary redistribute seeds to match conditions, killing
  // states if necessary due to OnlyReplaySeeds (inefficient but
  // simple).
  
  std::map< ExecutionState*, std::vector<SeedInfo> >::iterator it = 
    seedMap.find(&state);
  if (it != seedMap.end()) {
    std::vector<SeedInfo> seeds = it->second;
    seedMap.erase(it);

    // Assume each seed only satisfies one condition (necessarily true
    // when conditions are mutually exclusive and their conjunction is
    // a tautology).
    for (std::vector<SeedInfo>::iterator siit = seeds.begin(), 
           siie = seeds.end(); siit != siie; ++siit) {
      unsigned i;
      for (i=0; i<N; ++i) {
        ref<ConstantExpr> res;
        bool success = 
          solver->getValue(state, siit->assignment.evaluate(conditions[i]), 
                           res);
        assert(success && "FIXME: Unhandled solver failure");
        (void) success;
        if (res->isTrue())
          break;
      }
      
      // If we didn't find a satisfying condition randomly pick one
      // (the seed will be patched).
      if (i==N)
        i = theRNG.getInt32() % N;

      // Extra check in case we're replaying seeds with a max-fork
      if (result[i])
        seedMap[result[i]].push_back(*siit);
    }

    if (OnlyReplaySeeds) {
      for (unsigned i=0; i<N; ++i) {
        if (result[i] && !seedMap.count(result[i])) {
          terminateState(*result[i]);
          result[i] = NULL;
        }
      } 
    }
  }

  for (unsigned i=0; i<N; ++i)
    if (result[i])
      addConstraint(*result[i], conditions[i]);
}

Executor::StatePair 
Executor::fork(ExecutionState &current, ref<Expr> condition, bool isInternal) {
  Solver::Validity res;
  std::map< ExecutionState*, std::vector<SeedInfo> >::iterator it = 
    seedMap.find(&current);
  bool isSeeding = it != seedMap.end();

  if (!isSeeding && !isa<ConstantExpr>(condition) && 
      (MaxStaticForkPct!=1. || MaxStaticSolvePct != 1. ||
       MaxStaticCPForkPct!=1. || MaxStaticCPSolvePct != 1.) &&
      statsTracker->elapsed() > time::seconds(60)) {
    StatisticManager &sm = *theStatisticManager;
    CallPathNode *cpn = current.stack.back().callPathNode;
    if ((MaxStaticForkPct<1. &&
         sm.getIndexedValue(stats::forks, sm.getIndex()) > 
         stats::forks*MaxStaticForkPct) ||
        (MaxStaticCPForkPct<1. &&
         cpn && (cpn->statistics.getValue(stats::forks) > 
                 stats::forks*MaxStaticCPForkPct)) ||
        (MaxStaticSolvePct<1 &&
         sm.getIndexedValue(stats::solverTime, sm.getIndex()) > 
         stats::solverTime*MaxStaticSolvePct) ||
        (MaxStaticCPForkPct<1. &&
         cpn && (cpn->statistics.getValue(stats::solverTime) > 
                 stats::solverTime*MaxStaticCPSolvePct))) {
      ref<ConstantExpr> value; 
      bool success = solver->getValue(current, condition, value);
      assert(success && "FIXME: Unhandled solver failure");
      (void) success;
      addConstraint(current, EqExpr::create(value, condition));
      condition = value;
    }
  }

  time::Span timeout = coreSolverTimeout;
  if (isSeeding)
    timeout *= static_cast<unsigned>(it->second.size());
  solver->setTimeout(timeout);
  bool success = solver->evaluate(current, condition, res);
  solver->setTimeout(time::Span());
  if (!success) {
    current.pc = current.prevPC;
    terminateStateEarly(current, "Query timed out (fork).");
    return StatePair(0, 0);
  }

  if (!isSeeding) {
    if (replayPath && !isInternal) {
      assert(replayPosition<replayPath->size() &&
             "ran out of branches in replay path mode");
      bool branch = (*replayPath)[replayPosition++];
      
      if (res==Solver::True) {
        assert(branch && "hit invalid branch in replay path mode");
      } else if (res==Solver::False) {
        assert(!branch && "hit invalid branch in replay path mode");
      } else {
        // add constraints
        if(branch) {
          res = Solver::True;
          addConstraint(current, condition);
        } else  {
          res = Solver::False;
          addConstraint(current, Expr::createIsZero(condition));
        }
      }
    } else if (res==Solver::Unknown) {
      assert(!replayKTest && "in replay mode, only one branch can be true.");
      
      if ((MaxMemoryInhibit && atMemoryLimit) || 
          current.forkDisabled ||
          inhibitForking || 
          (MaxForks!=~0u && stats::forks >= MaxForks)) {

	if (MaxMemoryInhibit && atMemoryLimit)
	  klee_warning_once(0, "skipping fork (memory cap exceeded)");
	else if (current.forkDisabled)
	  klee_warning_once(0, "skipping fork (fork disabled on current path)");
	else if (inhibitForking)
	  klee_warning_once(0, "skipping fork (fork disabled globally)");
	else 
	  klee_warning_once(0, "skipping fork (max-forks reached)");

        TimerStatIncrementer timer(stats::forkTime);
        if (theRNG.getBool()) {
          addConstraint(current, condition);
          res = Solver::True;        
        } else {
          addConstraint(current, Expr::createIsZero(condition));
          res = Solver::False;
        }
      }
    }
  }

  // Fix branch in only-replay-seed mode, if we don't have both true
  // and false seeds.
  if (isSeeding && 
      (current.forkDisabled || OnlyReplaySeeds) && 
      res == Solver::Unknown) {
    bool trueSeed=false, falseSeed=false;
    // Is seed extension still ok here?
    for (std::vector<SeedInfo>::iterator siit = it->second.begin(), 
           siie = it->second.end(); siit != siie; ++siit) {
      ref<ConstantExpr> res;
      bool success = 
        solver->getValue(current, siit->assignment.evaluate(condition), res);
      assert(success && "FIXME: Unhandled solver failure");
      (void) success;
      if (res->isTrue()) {
        trueSeed = true;
      } else {
        falseSeed = true;
      }
      if (trueSeed && falseSeed)
        break;
    }
    if (!(trueSeed && falseSeed)) {
      assert(trueSeed || falseSeed);
      
      res = trueSeed ? Solver::True : Solver::False;
      addConstraint(current, trueSeed ? condition : Expr::createIsZero(condition));
    }
  }


  // XXX - even if the constraint is provable one way or the other we
  // can probably benefit by adding this constraint and allowing it to
  // reduce the other constraints. For example, if we do a binary
  // search on a particular value, and then see a comparison against
  // the value it has been fixed at, we should take this as a nice
  // hint to just use the single constraint instead of all the binary
  // search ones. If that makes sense.
  if (res==Solver::True) {
    if (!isInternal) {
      if (pathWriter) {
        current.pathOS << "1";
      }
    }

    return StatePair(&current, 0);
  } else if (res==Solver::False) {
    if (!isInternal) {
      if (pathWriter) {
        current.pathOS << "0";
      }
    }

    return StatePair(0, &current);
  } else {
    TimerStatIncrementer timer(stats::forkTime);
    ExecutionState *falseState, *trueState = &current;

    ++stats::forks;

    falseState = trueState->branch();
    addedStates.push_back(falseState);

    if (it != seedMap.end()) {
      std::vector<SeedInfo> seeds = it->second;
      it->second.clear();
      std::vector<SeedInfo> &trueSeeds = seedMap[trueState];
      std::vector<SeedInfo> &falseSeeds = seedMap[falseState];
      for (std::vector<SeedInfo>::iterator siit = seeds.begin(), 
             siie = seeds.end(); siit != siie; ++siit) {
        ref<ConstantExpr> res;
        bool success = 
          solver->getValue(current, siit->assignment.evaluate(condition), res);
        assert(success && "FIXME: Unhandled solver failure");
        (void) success;
        if (res->isTrue()) {
          trueSeeds.push_back(*siit);
        } else {
          falseSeeds.push_back(*siit);
        }
      }
      
      bool swapInfo = false;
      if (trueSeeds.empty()) {
        if (&current == trueState) swapInfo = true;
        seedMap.erase(trueState);
      }
      if (falseSeeds.empty()) {
        if (&current == falseState) swapInfo = true;
        seedMap.erase(falseState);
      }
      if (swapInfo) {
        std::swap(trueState->coveredNew, falseState->coveredNew);
        std::swap(trueState->coveredLines, falseState->coveredLines);
      }
    }

    processTree->attach(current.ptreeNode, falseState, trueState);

    if (pathWriter) {
      // Need to update the pathOS.id field of falseState, otherwise the same id
      // is used for both falseState and trueState.
      falseState->pathOS = pathWriter->open(current.pathOS);
      if (!isInternal) {
        trueState->pathOS << "1";
        falseState->pathOS << "0";
      }
    }
    if (symPathWriter) {
      falseState->symPathOS = symPathWriter->open(current.symPathOS);
      if (!isInternal) {
        trueState->symPathOS << "1";
        falseState->symPathOS << "0";
      }
    }

    addConstraint(*trueState, condition);
    addConstraint(*falseState, Expr::createIsZero(condition));

    // Kinda gross, do we even really still want this option?
    if (MaxDepth && MaxDepth<=trueState->depth) {
      terminateStateEarly(*trueState, "max-depth exceeded.");
      terminateStateEarly(*falseState, "max-depth exceeded.");
      return StatePair(0, 0);
    }

    return StatePair(trueState, falseState);
  }
}

void Executor::addConstraint(ExecutionState &state, ref<Expr> condition) {
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(condition)) {
    if (!CE->isTrue())
      llvm::report_fatal_error("attempt to add invalid constraint");
    return;
  }

  // Check to see if this constraint violates seeds.
  std::map< ExecutionState*, std::vector<SeedInfo> >::iterator it = 
    seedMap.find(&state);
  if (it != seedMap.end()) {
    bool warn = false;
    for (std::vector<SeedInfo>::iterator siit = it->second.begin(), 
           siie = it->second.end(); siit != siie; ++siit) {
      bool res;
      bool success = 
        solver->mustBeFalse(state, siit->assignment.evaluate(condition), res);
      assert(success && "FIXME: Unhandled solver failure");
      (void) success;
      if (res) {
        siit->patchSeed(state, condition, solver);
        warn = true;
      }
    }
    if (warn)
      klee_warning("seeds patched for violating constraint"); 
  }

  state.addConstraint(condition);
  if (ivcEnabled)
    doImpliedValueConcretization(state, condition, 
                                 ConstantExpr::alloc(1, Expr::Bool));
}

const Cell& Executor::eval(KInstruction *ki, unsigned index, 
                           ExecutionState &state) const {
  assert(index < ki->inst->getNumOperands());
  int vnumber = ki->operands[index];

  assert(vnumber != -1 &&
         "Invalid operand to eval(), not a value or constant!");

  // Determine if this is a constant or not.
  if (vnumber < 0) {
    unsigned index = -vnumber - 2;
    return kmodule->constantTable[index];
  } else {
    unsigned index = vnumber;
    StackFrame &sf = state.stack.back();
    return sf.locals[index];
  }
}

void Executor::bindLocal(KInstruction *target, ExecutionState &state, 
                         ref<Expr> value) {
  getDestCell(state, target).value = value;
}

void Executor::bindArgument(KFunction *kf, unsigned index, 
                            ExecutionState &state, ref<Expr> value) {
  getArgumentCell(state, kf, index).value = value;
}

ref<Expr> Executor::toUnique(const ExecutionState &state, 
                             ref<Expr> &e) {
  ref<Expr> result = e;

  if (!isa<ConstantExpr>(e)) {
    ref<ConstantExpr> value;
    bool isTrue = false;
    e = optimizer.optimizeExpr(e, true);
    solver->setTimeout(coreSolverTimeout);
    if (solver->getValue(state, e, value)) {
      ref<Expr> cond = EqExpr::create(e, value);
      cond = optimizer.optimizeExpr(cond, false);
      if (solver->mustBeTrue(state, cond, isTrue) && isTrue)
        result = value;
    }
    solver->setTimeout(time::Span());
  }
  
  return result;
}


/* Concretize the given expression, and return a possible constant value. 
   'reason' is just a documentation string stating the reason for concretization. */
ref<klee::ConstantExpr> 
Executor::toConstant(ExecutionState &state, 
                     ref<Expr> e,
                     const char *reason) {
  e = state.constraints.simplifyExpr(e);
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(e))
    return CE;

  ref<ConstantExpr> value;
  bool success = solver->getValue(state, e, value);
  assert(success && "FIXME: Unhandled solver failure");
  (void) success;

  std::string str;
  llvm::raw_string_ostream os(str);
  os << "silently concretizing (reason: " << reason << ") expression " << e
     << " to value " << value << " (" << (*(state.pc)).info->file << ":"
     << (*(state.pc)).info->line << ")";

  if (AllExternalWarnings)
    klee_warning("%s", os.str().c_str());
  else
    klee_warning_once(reason, "%s", os.str().c_str());

  addConstraint(state, EqExpr::create(e, value));
    
  return value;
}

void Executor::executeGetValue(ExecutionState &state,
                               ref<Expr> e,
                               KInstruction *target) {
  e = state.constraints.simplifyExpr(e);
  std::map< ExecutionState*, std::vector<SeedInfo> >::iterator it = 
    seedMap.find(&state);
  if (it==seedMap.end() || isa<ConstantExpr>(e)) {
    ref<ConstantExpr> value;
    e = optimizer.optimizeExpr(e, true);
    bool success = solver->getValue(state, e, value);
    assert(success && "FIXME: Unhandled solver failure");
    (void) success;
    bindLocal(target, state, value);
  } else {
    std::set< ref<Expr> > values;
    for (std::vector<SeedInfo>::iterator siit = it->second.begin(), 
           siie = it->second.end(); siit != siie; ++siit) {
      ref<Expr> cond = siit->assignment.evaluate(e);
      cond = optimizer.optimizeExpr(cond, true);
      ref<ConstantExpr> value;
      bool success = solver->getValue(state, cond, value);
      assert(success && "FIXME: Unhandled solver failure");
      (void) success;
      values.insert(value);
    }
    
    std::vector< ref<Expr> > conditions;
    for (std::set< ref<Expr> >::iterator vit = values.begin(), 
           vie = values.end(); vit != vie; ++vit)
      conditions.push_back(EqExpr::create(e, *vit));

    std::vector<ExecutionState*> branches;
    branch(state, conditions, branches);
    
    std::vector<ExecutionState*>::iterator bit = branches.begin();
    for (std::set< ref<Expr> >::iterator vit = values.begin(), 
           vie = values.end(); vit != vie; ++vit) {
      ExecutionState *es = *bit;
      if (es)
        bindLocal(target, *es, *vit);
      ++bit;
    }
  }
}

void Executor::printDebugInstructions(ExecutionState &state) {
  // check do not print
  if (DebugPrintInstructions.getBits() == 0)
	  return;

  llvm::raw_ostream *stream = 0;
  if (DebugPrintInstructions.isSet(STDERR_ALL) ||
      DebugPrintInstructions.isSet(STDERR_SRC) ||
      DebugPrintInstructions.isSet(STDERR_COMPACT))
    stream = &llvm::errs();
  else
    stream = &debugLogBuffer;

  if (!DebugPrintInstructions.isSet(STDERR_COMPACT) &&
      !DebugPrintInstructions.isSet(FILE_COMPACT)) {
    (*stream) << "     " << state.pc->getSourceLocation() << ":";
  }

  (*stream) << state.pc->info->assemblyLine;

  if (DebugPrintInstructions.isSet(STDERR_ALL) ||
      DebugPrintInstructions.isSet(FILE_ALL))
    (*stream) << ":" << *(state.pc->inst);
  (*stream) << "\n";

  if (DebugPrintInstructions.isSet(FILE_ALL) ||
      DebugPrintInstructions.isSet(FILE_COMPACT) ||
      DebugPrintInstructions.isSet(FILE_SRC)) {
    debugLogBuffer.flush();
    (*debugInstFile) << debugLogBuffer.str();
    debugBufferString = "";
  }
}

void Executor::stepInstruction(ExecutionState &state) {
  printDebugInstructions(state);
  if (statsTracker)
    statsTracker->stepInstruction(state);

  ++stats::instructions;
  ++state.steppedInstructions;
  state.prevPC = state.pc;
  ++state.pc;

  if (stats::instructions == MaxInstructions)
    haltExecution = true;
}

static inline const llvm::fltSemantics *fpWidthToSemantics(unsigned width) {
  switch (width) {
#if LLVM_VERSION_CODE >= LLVM_VERSION(4, 0)
  case Expr::Int32:
    return &llvm::APFloat::IEEEsingle();
  case Expr::Int64:
    return &llvm::APFloat::IEEEdouble();
  case Expr::Fl80:
    return &llvm::APFloat::x87DoubleExtended();
#else
  case Expr::Int32:
    return &llvm::APFloat::IEEEsingle;
  case Expr::Int64:
    return &llvm::APFloat::IEEEdouble;
  case Expr::Fl80:
    return &llvm::APFloat::x87DoubleExtended;
#endif
  default:
    return 0;
  }
}

void Executor::executeCall(ExecutionState &state, 
                           KInstruction *ki,
                           Function *f,
                           std::vector< ref<Expr> > &arguments) {
  Instruction *i = ki->inst;
  if (i && isa<DbgInfoIntrinsic>(i))
    return;
  if (f && f->isDeclaration()) {
    switch(f->getIntrinsicID()) {
    case Intrinsic::not_intrinsic:
      // state may be destroyed by this call, cannot touch
      callExternalFunction(state, ki, f, arguments);
      break;
    case Intrinsic::fabs: {
      ref<ConstantExpr> arg =
          toConstant(state, eval(ki, 0, state).value, "floating point");
      if (!fpWidthToSemantics(arg->getWidth()))
        return terminateStateOnExecError(
            state, "Unsupported intrinsic llvm.fabs call");

      llvm::APFloat Res(*fpWidthToSemantics(arg->getWidth()),
                        arg->getAPValue());
      Res = llvm::abs(Res);

      bindLocal(ki, state, ConstantExpr::alloc(Res.bitcastToAPInt()));
      break;
    }
    // va_arg is handled by caller and intrinsic lowering, see comment for
    // ExecutionState::varargs
    case Intrinsic::vastart:  {
      StackFrame &sf = state.stack.back();

      // varargs can be zero if no varargs were provided
      if (!sf.varargs)
        return;

      // FIXME: This is really specific to the architecture, not the pointer
      // size. This happens to work for x86-32 and x86-64, however.
      Expr::Width WordSize = Context::get().getPointerWidth();
      if (WordSize == Expr::Int32) {
        executeMemoryOperation(state, true, arguments[0], 
                               sf.varargs->getBaseExpr(), 0);
      } else {
        assert(WordSize == Expr::Int64 && "Unknown word size!");

        // x86-64 has quite complicated calling convention. However,
        // instead of implementing it, we can do a simple hack: just
        // make a function believe that all varargs are on stack.
        executeMemoryOperation(state, true, arguments[0],
                               ConstantExpr::create(48, 32), 0); // gp_offset
        executeMemoryOperation(state, true,
                               AddExpr::create(arguments[0], 
                                               ConstantExpr::create(4, 64)),
                               ConstantExpr::create(304, 32), 0); // fp_offset
        executeMemoryOperation(state, true,
                               AddExpr::create(arguments[0], 
                                               ConstantExpr::create(8, 64)),
                               sf.varargs->getBaseExpr(), 0); // overflow_arg_area
        executeMemoryOperation(state, true,
                               AddExpr::create(arguments[0], 
                                               ConstantExpr::create(16, 64)),
                               ConstantExpr::create(0, 64), 0); // reg_save_area
      }
      break;
    }
    case Intrinsic::vaend:
      // va_end is a noop for the interpreter.
      //
      // FIXME: We should validate that the target didn't do something bad
      // with va_end, however (like call it twice).
      break;
        
    case Intrinsic::vacopy:
      // va_copy should have been lowered.
      //
      // FIXME: It would be nice to check for errors in the usage of this as
      // well.
    default:
      klee_error("unknown intrinsic: %s", f->getName().data());
    }

    if (InvokeInst *ii = dyn_cast<InvokeInst>(i))
      transferToBasicBlock(ii->getNormalDest(), i->getParent(), state);
  } else {
    // Check if maximum stack size was reached.
    // We currently only count the number of stack frames
    if (RuntimeMaxStackFrames && state.stack.size() > RuntimeMaxStackFrames) {
      terminateStateEarly(state, "Maximum stack size reached.");
      klee_warning("Maximum stack size reached.");
      return;
    }

    // FIXME: I'm not really happy about this reliance on prevPC but it is ok, I
    // guess. This just done to avoid having to pass KInstIterator everywhere
    // instead of the actual instruction, since we can't make a KInstIterator
    // from just an instruction (unlike LLVM).
    KFunction *kf = kmodule->functionMap[f];

    state.pushFrame(state.prevPC, kf);
    state.pc = kf->instructions;

    if (statsTracker)
      statsTracker->framePushed(state, &state.stack[state.stack.size()-2]);

     // TODO: support "byval" parameter attribute
     // TODO: support zeroext, signext, sret attributes

    unsigned callingArgs = arguments.size();
    unsigned funcArgs = f->arg_size();
    if (!f->isVarArg()) {
      if (callingArgs > funcArgs) {
        klee_warning_once(f, "calling %s with extra arguments.", 
                          f->getName().data());
      } else if (callingArgs < funcArgs) {
        terminateStateOnError(state, "calling function with too few arguments",
                              User);
        return;
      }
    } else {
      Expr::Width WordSize = Context::get().getPointerWidth();

      if (callingArgs < funcArgs) {
        terminateStateOnError(state, "calling function with too few arguments",
                              User);
        return;
      }

      StackFrame &sf = state.stack.back();
      unsigned size = 0;
      bool requires16ByteAlignment = false;
      for (unsigned i = funcArgs; i < callingArgs; i++) {
        // FIXME: This is really specific to the architecture, not the pointer
        // size. This happens to work for x86-32 and x86-64, however.
        if (WordSize == Expr::Int32) {
          size += Expr::getMinBytesForWidth(arguments[i]->getWidth());
        } else {
          Expr::Width argWidth = arguments[i]->getWidth();
          // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a
          // 16 byte boundary if alignment needed by type exceeds 8 byte
          // boundary.
          //
          // Alignment requirements for scalar types is the same as their size
          if (argWidth > Expr::Int64) {
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 9)
             size = llvm::alignTo(size, 16);
#else
             size = llvm::RoundUpToAlignment(size, 16);
#endif
             requires16ByteAlignment = true;
          }
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 9)
          size += llvm::alignTo(argWidth, WordSize) / 8;
#else
          size += llvm::RoundUpToAlignment(argWidth, WordSize) / 8;
#endif
        }
      }

      MemoryObject *mo = sf.varargs =
          memory->allocate(size, true, false, state.prevPC->inst,
                           (requires16ByteAlignment ? 16 : 8));
      if (!mo && size) {
        terminateStateOnExecError(state, "out of memory (varargs)");
        return;
      }

      if (mo) {
        if ((WordSize == Expr::Int64) && (mo->address & 15) &&
            requires16ByteAlignment) {
          // Both 64bit Linux/Glibc and 64bit MacOSX should align to 16 bytes.
          klee_warning_once(
              0, "While allocating varargs: malloc did not align to 16 bytes.");
        }

        ObjectState *os = bindObjectInState(state, mo, true);
        unsigned offset = 0;
        for (unsigned i = funcArgs; i < callingArgs; i++) {
          // FIXME: This is really specific to the architecture, not the pointer
          // size. This happens to work for x86-32 and x86-64, however.
          if (WordSize == Expr::Int32) {
            os->write(offset, arguments[i]);
            offset += Expr::getMinBytesForWidth(arguments[i]->getWidth());
          } else {
            assert(WordSize == Expr::Int64 && "Unknown word size!");

            Expr::Width argWidth = arguments[i]->getWidth();
            if (argWidth > Expr::Int64) {
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 9)
              offset = llvm::alignTo(offset, 16);
#else
              offset = llvm::RoundUpToAlignment(offset, 16);
#endif
            }
            os->write(offset, arguments[i]);
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 9)
            offset += llvm::alignTo(argWidth, WordSize) / 8;
#else
            offset += llvm::RoundUpToAlignment(argWidth, WordSize) / 8;
#endif
          }
        }
      }
    }

    unsigned numFormals = f->arg_size();
    for (unsigned i=0; i<numFormals; ++i) 
      bindArgument(kf, i, state, arguments[i]);
  }
}

void Executor::transferToBasicBlock(BasicBlock *dst, BasicBlock *src, 
                                    ExecutionState &state) {
  // Note that in general phi nodes can reuse phi values from the same
  // block but the incoming value is the eval() result *before* the
  // execution of any phi nodes. this is pathological and doesn't
  // really seem to occur, but just in case we run the PhiCleanerPass
  // which makes sure this cannot happen and so it is safe to just
  // eval things in order. The PhiCleanerPass also makes sure that all
  // incoming blocks have the same order for each PHINode so we only
  // have to compute the index once.
  //
  // With that done we simply set an index in the state so that PHI
  // instructions know which argument to eval, set the pc, and continue.
  
  // XXX this lookup has to go ?
  KFunction *kf = state.stack.back().kf;
  unsigned entry = kf->basicBlockEntry[dst];
  state.pc = &kf->instructions[entry];
  if (state.pc->inst->getOpcode() == Instruction::PHI) {
    PHINode *first = static_cast<PHINode*>(state.pc->inst);
    state.incomingBBIndex = first->getBasicBlockIndex(src);
  }
}

/// Compute the true target of a function call, resolving LLVM aliases
/// and bitcasts.
Function* Executor::getTargetFunction(Value *calledVal, ExecutionState &state) {
  SmallPtrSet<const GlobalValue*, 3> Visited;

  Constant *c = dyn_cast<Constant>(calledVal);
  if (!c)
    return 0;

  while (true) {
    if (GlobalValue *gv = dyn_cast<GlobalValue>(c)) {
      if (!Visited.insert(gv).second)
        return 0;

      if (Function *f = dyn_cast<Function>(gv))
        return f;
      else if (GlobalAlias *ga = dyn_cast<GlobalAlias>(gv))
        c = ga->getAliasee();
      else
        return 0;
    } else if (llvm::ConstantExpr *ce = dyn_cast<llvm::ConstantExpr>(c)) {
      if (ce->getOpcode()==Instruction::BitCast)
        c = ce->getOperand(0);
      else
        return 0;
    } else
      return 0;
  }
}

void Executor::executeInstruction(ExecutionState &state, KInstruction *ki) {
  Instruction *i = ki->inst;
  switch (i->getOpcode()) {
    // Control flow
  case Instruction::Ret: {
    ReturnInst *ri = cast<ReturnInst>(i);
    KInstIterator kcaller = state.stack.back().caller;
    Instruction *caller = kcaller ? kcaller->inst : 0;
    bool isVoidReturn = (ri->getNumOperands() == 0);
    ref<Expr> result = ConstantExpr::alloc(0, Expr::Bool);
    
    if (!isVoidReturn) {
      result = eval(ki, 0, state).value;
    }
    
    if (state.stack.size() <= 1) {
      assert(!caller && "caller set on initial stack frame");
      terminateStateOnExit(state);
    } else {
      state.popFrame();

      if (statsTracker)
        statsTracker->framePopped(state);

      if (InvokeInst *ii = dyn_cast<InvokeInst>(caller)) {
        transferToBasicBlock(ii->getNormalDest(), caller->getParent(), state);
      } else {
        state.pc = kcaller;
        ++state.pc;
      }

      if (!isVoidReturn) {
        Type *t = caller->getType();
        if (t != Type::getVoidTy(i->getContext())) {
          // may need to do coercion due to bitcasts
          Expr::Width from = result->getWidth();
          Expr::Width to = getWidthForLLVMType(t);
            
          if (from != to) {
            CallSite cs = (isa<InvokeInst>(caller) ? CallSite(cast<InvokeInst>(caller)) : 
                           CallSite(cast<CallInst>(caller)));

            // XXX need to check other param attrs ?
#if LLVM_VERSION_CODE >= LLVM_VERSION(5, 0)
            bool isSExt = cs.hasRetAttr(llvm::Attribute::SExt);
#else
            bool isSExt = cs.paramHasAttr(0, llvm::Attribute::SExt);
#endif
            if (isSExt) {
              result = SExtExpr::create(result, to);
            } else {
              result = ZExtExpr::create(result, to);
            }
          }

          bindLocal(kcaller, state, result);
        }
      } else {
        // We check that the return value has no users instead of
        // checking the type, since C defaults to returning int for
        // undeclared functions.
        if (!caller->use_empty()) {
          terminateStateOnExecError(state, "return void when caller expected a result");
        }
      }
    }      
    break;
  }
  case Instruction::Br: {
    BranchInst *bi = cast<BranchInst>(i);
    if (bi->isUnconditional()) {
      transferToBasicBlock(bi->getSuccessor(0), bi->getParent(), state);
    } else {
      // FIXME: Find a way that we don't have this hidden dependency.
      assert(bi->getCondition() == bi->getOperand(0) &&
             "Wrong operand index!");
      ref<Expr> cond = eval(ki, 0, state).value;

      cond = optimizer.optimizeExpr(cond, false);
      Executor::StatePair branches = fork(state, cond, false);

      // NOTE: There is a hidden dependency here, markBranchVisited
      // requires that we still be in the context of the branch
      // instruction (it reuses its statistic id). Should be cleaned
      // up with convenient instruction specific data.
      if (statsTracker && state.stack.back().kf->trackCoverage)
        statsTracker->markBranchVisited(branches.first, branches.second);

      if (branches.first)
        transferToBasicBlock(bi->getSuccessor(0), bi->getParent(), *branches.first);
      if (branches.second)
        transferToBasicBlock(bi->getSuccessor(1), bi->getParent(), *branches.second);
    }
    break;
  }
  case Instruction::IndirectBr: {
    // implements indirect branch to a label within the current function
    const auto bi = cast<IndirectBrInst>(i);
    auto address = eval(ki, 0, state).value;
    address = toUnique(state, address);

    // concrete address
    if (const auto CE = dyn_cast<ConstantExpr>(address.get())) {
      const auto bb_address = (BasicBlock *) CE->getZExtValue(Context::get().getPointerWidth());
      transferToBasicBlock(bb_address, bi->getParent(), state);
      break;
    }

    // symbolic address
    const auto numDestinations = bi->getNumDestinations();
    std::vector<BasicBlock *> targets;
    targets.reserve(numDestinations);
    std::vector<ref<Expr>> expressions;
    expressions.reserve(numDestinations);

    ref<Expr> errorCase = ConstantExpr::alloc(1, Expr::Bool);
    SmallPtrSet<BasicBlock *, 5> destinations;
    // collect and check destinations from label list
    for (unsigned k = 0; k < numDestinations; ++k) {
      // filter duplicates
      const auto d = bi->getDestination(k);
      if (destinations.count(d)) continue;
      destinations.insert(d);

      // create address expression
      const auto PE = Expr::createPointer(reinterpret_cast<std::uint64_t>(d));
      ref<Expr> e = EqExpr::create(address, PE);

      // exclude address from errorCase
      errorCase = AndExpr::create(errorCase, Expr::createIsZero(e));

      // check feasibility
      bool result;
      bool success __attribute__ ((unused)) = solver->mayBeTrue(state, e, result);
      assert(success && "FIXME: Unhandled solver failure");
      if (result) {
        targets.push_back(d);
        expressions.push_back(e);
      }
    }
    // check errorCase feasibility
    bool result;
    bool success __attribute__ ((unused)) = solver->mayBeTrue(state, errorCase, result);
    assert(success && "FIXME: Unhandled solver failure");
    if (result) {
      expressions.push_back(errorCase);
    }

    // fork states
    std::vector<ExecutionState *> branches;
    branch(state, expressions, branches);

    // terminate error state
    if (result) {
      terminateStateOnExecError(*branches.back(), "indirectbr: illegal label address");
      branches.pop_back();
    }

    // branch states to resp. target blocks
    assert(targets.size() == branches.size());
    for (std::vector<ExecutionState *>::size_type k = 0; k < branches.size(); ++k) {
      if (branches[k]) {
        transferToBasicBlock(targets[k], bi->getParent(), *branches[k]);
      }
    }

    break;
  }
  case Instruction::Switch: {
    SwitchInst *si = cast<SwitchInst>(i);
    ref<Expr> cond = eval(ki, 0, state).value;
    BasicBlock *bb = si->getParent();

    cond = toUnique(state, cond);
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(cond)) {
      // Somewhat gross to create these all the time, but fine till we
      // switch to an internal rep.
      llvm::IntegerType *Ty = cast<IntegerType>(si->getCondition()->getType());
      ConstantInt *ci = ConstantInt::get(Ty, CE->getZExtValue());
#if LLVM_VERSION_CODE >= LLVM_VERSION(5, 0)
      unsigned index = si->findCaseValue(ci)->getSuccessorIndex();
#else
      unsigned index = si->findCaseValue(ci).getSuccessorIndex();
#endif
      transferToBasicBlock(si->getSuccessor(index), si->getParent(), state);
    } else {
      // Handle possible different branch targets

      // We have the following assumptions:
      // - each case value is mutual exclusive to all other values
      // - order of case branches is based on the order of the expressions of
      //   the case values, still default is handled last
      std::vector<BasicBlock *> bbOrder;
      std::map<BasicBlock *, ref<Expr> > branchTargets;

      std::map<ref<Expr>, BasicBlock *> expressionOrder;

      // Iterate through all non-default cases and order them by expressions
      for (auto i : si->cases()) {
        ref<Expr> value = evalConstant(i.getCaseValue());

        BasicBlock *caseSuccessor = i.getCaseSuccessor();
        expressionOrder.insert(std::make_pair(value, caseSuccessor));
      }

      // Track default branch values
      ref<Expr> defaultValue = ConstantExpr::alloc(1, Expr::Bool);

      // iterate through all non-default cases but in order of the expressions
      for (std::map<ref<Expr>, BasicBlock *>::iterator
               it = expressionOrder.begin(),
               itE = expressionOrder.end();
           it != itE; ++it) {
        ref<Expr> match = EqExpr::create(cond, it->first);

        // skip if case has same successor basic block as default case
        // (should work even with phi nodes as a switch is a single terminating instruction)
        if (it->second == si->getDefaultDest()) continue;

        // Make sure that the default value does not contain this target's value
        defaultValue = AndExpr::create(defaultValue, Expr::createIsZero(match));

        // Check if control flow could take this case
        bool result;
        match = optimizer.optimizeExpr(match, false);
        bool success = solver->mayBeTrue(state, match, result);
        assert(success && "FIXME: Unhandled solver failure");
        (void) success;
        if (result) {
          BasicBlock *caseSuccessor = it->second;

          // Handle the case that a basic block might be the target of multiple
          // switch cases.
          // Currently we generate an expression containing all switch-case
          // values for the same target basic block. We spare us forking too
          // many times but we generate more complex condition expressions
          // TODO Add option to allow to choose between those behaviors
          std::pair<std::map<BasicBlock *, ref<Expr> >::iterator, bool> res =
              branchTargets.insert(std::make_pair(
                  caseSuccessor, ConstantExpr::alloc(0, Expr::Bool)));

          res.first->second = OrExpr::create(match, res.first->second);

          // Only add basic blocks which have not been target of a branch yet
          if (res.second) {
            bbOrder.push_back(caseSuccessor);
          }
        }
      }

      // Check if control could take the default case
      defaultValue = optimizer.optimizeExpr(defaultValue, false);
      bool res;
      bool success = solver->mayBeTrue(state, defaultValue, res);
      assert(success && "FIXME: Unhandled solver failure");
      (void) success;
      if (res) {
        std::pair<std::map<BasicBlock *, ref<Expr> >::iterator, bool> ret =
            branchTargets.insert(
                std::make_pair(si->getDefaultDest(), defaultValue));
        if (ret.second) {
          bbOrder.push_back(si->getDefaultDest());
        }
      }

      // Fork the current state with each state having one of the possible
      // successors of this switch
      std::vector< ref<Expr> > conditions;
      for (std::vector<BasicBlock *>::iterator it = bbOrder.begin(),
                                               ie = bbOrder.end();
           it != ie; ++it) {
        conditions.push_back(branchTargets[*it]);
      }
      std::vector<ExecutionState*> branches;
      branch(state, conditions, branches);

      std::vector<ExecutionState*>::iterator bit = branches.begin();
      for (std::vector<BasicBlock *>::iterator it = bbOrder.begin(),
                                               ie = bbOrder.end();
           it != ie; ++it) {
        ExecutionState *es = *bit;
        if (es)
          transferToBasicBlock(*it, bb, *es);
        ++bit;
      }
    }
    break;
  }
  case Instruction::Unreachable:
    // Note that this is not necessarily an internal bug, llvm will
    // generate unreachable instructions in cases where it knows the
    // program will crash. So it is effectively a SEGV or internal
    // error.
    terminateStateOnExecError(state, "reached \"unreachable\" instruction");
    break;

  case Instruction::Invoke:
  case Instruction::Call: {
    // Ignore debug intrinsic calls
    if (isa<DbgInfoIntrinsic>(i))
      break;
    CallSite cs(i);

    unsigned numArgs = cs.arg_size();
    Value *fp = cs.getCalledValue();
    Function *f = getTargetFunction(fp, state);

    // Skip debug intrinsics, we can't evaluate their metadata arguments.
    if (isa<DbgInfoIntrinsic>(i))
      break;

    if (isa<InlineAsm>(fp)) {
      terminateStateOnExecError(state, "inline assembly is unsupported");
      break;
    }
    // evaluate arguments
    std::vector< ref<Expr> > arguments;
    arguments.reserve(numArgs);

    for (unsigned j=0; j<numArgs; ++j)
      arguments.push_back(eval(ki, j+1, state).value);

    if (f) {
      const FunctionType *fType = 
        dyn_cast<FunctionType>(cast<PointerType>(f->getType())->getElementType());
      const FunctionType *fpType =
        dyn_cast<FunctionType>(cast<PointerType>(fp->getType())->getElementType());

      // special case the call with a bitcast case
      if (fType != fpType) {
        assert(fType && fpType && "unable to get function type");

        // XXX check result coercion

        // XXX this really needs thought and validation
        unsigned i=0;
        for (std::vector< ref<Expr> >::iterator
               ai = arguments.begin(), ie = arguments.end();
             ai != ie; ++ai) {
          Expr::Width to, from = (*ai)->getWidth();
            
          if (i<fType->getNumParams()) {
            to = getWidthForLLVMType(fType->getParamType(i));

            if (from != to) {
              // XXX need to check other param attrs ?
#if LLVM_VERSION_CODE >= LLVM_VERSION(5, 0)
              bool isSExt = cs.paramHasAttr(i, llvm::Attribute::SExt);
#else
              bool isSExt = cs.paramHasAttr(i+1, llvm::Attribute::SExt);
#endif
              if (isSExt) {
                arguments[i] = SExtExpr::create(arguments[i], to);
              } else {
                arguments[i] = ZExtExpr::create(arguments[i], to);
              }
            }
          }
            
          i++;
        }
      }

      executeCall(state, ki, f, arguments);
    } else {
      ref<Expr> v = eval(ki, 0, state).value;

      ExecutionState *free = &state;
      bool hasInvalid = false, first = true;

      /* XXX This is wasteful, no need to do a full evaluate since we
         have already got a value. But in the end the caches should
         handle it for us, albeit with some overhead. */
      do {
        v = optimizer.optimizeExpr(v, true);
        ref<ConstantExpr> value;
        bool success = solver->getValue(*free, v, value);
        assert(success && "FIXME: Unhandled solver failure");
        (void) success;
        StatePair res = fork(*free, EqExpr::create(v, value), true);
        if (res.first) {
          uint64_t addr = value->getZExtValue();
          if (legalFunctions.count(addr)) {
            f = (Function*) addr;

            // Don't give warning on unique resolution
            if (res.second || !first)
              klee_warning_once(reinterpret_cast<void*>(addr),
                                "resolved symbolic function pointer to: %s",
                                f->getName().data());

            executeCall(*res.first, ki, f, arguments);
          } else {
            if (!hasInvalid) {
              terminateStateOnExecError(state, "invalid function pointer");
              hasInvalid = true;
            }
          }
        }

        first = false;
        free = res.second;
      } while (free);
    }
    break;
  }
  case Instruction::PHI: {
    ref<Expr> result = eval(ki, state.incomingBBIndex, state).value;
    bindLocal(ki, state, result);
    break;
  }

    // Special instructions
  case Instruction::Select: {
    // NOTE: It is not required that operands 1 and 2 be of scalar type.
    ref<Expr> cond = eval(ki, 0, state).value;
    ref<Expr> tExpr = eval(ki, 1, state).value;
    ref<Expr> fExpr = eval(ki, 2, state).value;
    ref<Expr> result = SelectExpr::create(cond, tExpr, fExpr);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::VAArg:
    terminateStateOnExecError(state, "unexpected VAArg instruction");
    break;

    // Arithmetic / logical

  case Instruction::Add: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    bindLocal(ki, state, AddExpr::create(left, right));
    break;
  }

  case Instruction::Sub: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    bindLocal(ki, state, SubExpr::create(left, right));
    break;
  }
 
  case Instruction::Mul: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    bindLocal(ki, state, MulExpr::create(left, right));
    break;
  }

  case Instruction::UDiv: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = UDivExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::SDiv: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = SDivExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::URem: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = URemExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::SRem: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = SRemExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::And: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = AndExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::Or: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = OrExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::Xor: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = XorExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::Shl: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = ShlExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::LShr: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = LShrExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::AShr: {
    ref<Expr> left = eval(ki, 0, state).value;
    ref<Expr> right = eval(ki, 1, state).value;
    ref<Expr> result = AShrExpr::create(left, right);
    bindLocal(ki, state, result);
    break;
  }

    // Compare

  case Instruction::ICmp: {
    CmpInst *ci = cast<CmpInst>(i);
    ICmpInst *ii = cast<ICmpInst>(ci);

    switch(ii->getPredicate()) {
    case ICmpInst::ICMP_EQ: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = EqExpr::create(left, right);
      bindLocal(ki, state, result);
      break;
    }

    case ICmpInst::ICMP_NE: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = NeExpr::create(left, right);
      bindLocal(ki, state, result);
      break;
    }

    case ICmpInst::ICMP_UGT: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = UgtExpr::create(left, right);
      bindLocal(ki, state,result);
      break;
    }

    case ICmpInst::ICMP_UGE: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = UgeExpr::create(left, right);
      bindLocal(ki, state, result);
      break;
    }

    case ICmpInst::ICMP_ULT: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = UltExpr::create(left, right);
      bindLocal(ki, state, result);
      break;
    }

    case ICmpInst::ICMP_ULE: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = UleExpr::create(left, right);
      bindLocal(ki, state, result);
      break;
    }

    case ICmpInst::ICMP_SGT: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = SgtExpr::create(left, right);
      bindLocal(ki, state, result);
      break;
    }

    case ICmpInst::ICMP_SGE: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = SgeExpr::create(left, right);
      bindLocal(ki, state, result);
      break;
    }

    case ICmpInst::ICMP_SLT: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = SltExpr::create(left, right);
      bindLocal(ki, state, result);
      break;
    }

    case ICmpInst::ICMP_SLE: {
      ref<Expr> left = eval(ki, 0, state).value;
      ref<Expr> right = eval(ki, 1, state).value;
      ref<Expr> result = SleExpr::create(left, right);
      bindLocal(ki, state, result);
      break;
    }

    default:
      terminateStateOnExecError(state, "invalid ICmp predicate");
    }
    break;
  }
 
    // Memory instructions...
  case Instruction::Alloca: {
    AllocaInst *ai = cast<AllocaInst>(i);
    unsigned elementSize = 
      kmodule->targetData->getTypeStoreSize(ai->getAllocatedType());
    ref<Expr> size = Expr::createPointer(elementSize);
    if (ai->isArrayAllocation()) {
      ref<Expr> count = eval(ki, 0, state).value;
      count = Expr::createZExtToPointerWidth(count);
      size = MulExpr::create(size, count);
    }
    executeAlloc(state, size, true, ki);
    break;
  }

  case Instruction::Load: {
    ref<Expr> base = eval(ki, 0, state).value;
    executeMemoryOperation(state, false, base, 0, ki);
    break;
  }
  case Instruction::Store: {
    ref<Expr> base = eval(ki, 1, state).value;
    ref<Expr> value = eval(ki, 0, state).value;
    executeMemoryOperation(state, true, base, value, 0);
    break;
  }

  case Instruction::GetElementPtr: {
    KGEPInstruction *kgepi = static_cast<KGEPInstruction*>(ki);
    ref<Expr> base = eval(ki, 0, state).value;

    for (std::vector< std::pair<unsigned, uint64_t> >::iterator 
           it = kgepi->indices.begin(), ie = kgepi->indices.end(); 
         it != ie; ++it) {
      uint64_t elementSize = it->second;
      ref<Expr> index = eval(ki, it->first, state).value;
      base = AddExpr::create(base,
                             MulExpr::create(Expr::createSExtToPointerWidth(index),
                                             Expr::createPointer(elementSize)));
    }
    if (kgepi->offset)
      base = AddExpr::create(base,
                             Expr::createPointer(kgepi->offset));
    bindLocal(ki, state, base);
    break;
  }

    // Conversion
  case Instruction::Trunc: {
    CastInst *ci = cast<CastInst>(i);
    ref<Expr> result = ExtractExpr::create(eval(ki, 0, state).value,
                                           0,
                                           getWidthForLLVMType(ci->getType()));
    bindLocal(ki, state, result);
    break;
  }
  case Instruction::ZExt: {
    CastInst *ci = cast<CastInst>(i);
    ref<Expr> result = ZExtExpr::create(eval(ki, 0, state).value,
                                        getWidthForLLVMType(ci->getType()));
    bindLocal(ki, state, result);
    break;
  }
  case Instruction::SExt: {
    CastInst *ci = cast<CastInst>(i);
    ref<Expr> result = SExtExpr::create(eval(ki, 0, state).value,
                                        getWidthForLLVMType(ci->getType()));
    bindLocal(ki, state, result);
    break;
  }

  case Instruction::IntToPtr: {
    CastInst *ci = cast<CastInst>(i);
    Expr::Width pType = getWidthForLLVMType(ci->getType());
    ref<Expr> arg = eval(ki, 0, state).value;
    bindLocal(ki, state, ZExtExpr::create(arg, pType));
    break;
  }
  case Instruction::PtrToInt: {
    CastInst *ci = cast<CastInst>(i);
    Expr::Width iType = getWidthForLLVMType(ci->getType());
    ref<Expr> arg = eval(ki, 0, state).value;
    bindLocal(ki, state, ZExtExpr::create(arg, iType));
    break;
  }

  case Instruction::BitCast: {
    ref<Expr> result = eval(ki, 0, state).value;
    bindLocal(ki, state, result);
    break;
  }

    // Floating point instructions

  case Instruction::FAdd: {
    ref<ConstantExpr> left = toConstant(state, eval(ki, 0, state).value,
                                        "floating point");
    ref<ConstantExpr> right = toConstant(state, eval(ki, 1, state).value,
                                         "floating point");
    if (!fpWidthToSemantics(left->getWidth()) ||
        !fpWidthToSemantics(right->getWidth()))
      return terminateStateOnExecError(state, "Unsupported FAdd operation");

    llvm::APFloat Res(*fpWidthToSemantics(left->getWidth()), left->getAPValue());
    Res.add(APFloat(*fpWidthToSemantics(right->getWidth()),right->getAPValue()), APFloat::rmNearestTiesToEven);
    bindLocal(ki, state, ConstantExpr::alloc(Res.bitcastToAPInt()));
    break;
  }

  case Instruction::FSub: {
    ref<ConstantExpr> left = toConstant(state, eval(ki, 0, state).value,
                                        "floating point");
    ref<ConstantExpr> right = toConstant(state, eval(ki, 1, state).value,
                                         "floating point");
    if (!fpWidthToSemantics(left->getWidth()) ||
        !fpWidthToSemantics(right->getWidth()))
      return terminateStateOnExecError(state, "Unsupported FSub operation");
    llvm::APFloat Res(*fpWidthToSemantics(left->getWidth()), left->getAPValue());
    Res.subtract(APFloat(*fpWidthToSemantics(right->getWidth()), right->getAPValue()), APFloat::rmNearestTiesToEven);
    bindLocal(ki, state, ConstantExpr::alloc(Res.bitcastToAPInt()));
    break;
  }

  case Instruction::FMul: {
    ref<ConstantExpr> left = toConstant(state, eval(ki, 0, state).value,
                                        "floating point");
    ref<ConstantExpr> right = toConstant(state, eval(ki, 1, state).value,
                                         "floating point");
    if (!fpWidthToSemantics(left->getWidth()) ||
        !fpWidthToSemantics(right->getWidth()))
      return terminateStateOnExecError(state, "Unsupported FMul operation");

    llvm::APFloat Res(*fpWidthToSemantics(left->getWidth()), left->getAPValue());
    Res.multiply(APFloat(*fpWidthToSemantics(right->getWidth()), right->getAPValue()), APFloat::rmNearestTiesToEven);
    bindLocal(ki, state, ConstantExpr::alloc(Res.bitcastToAPInt()));
    break;
  }

  case Instruction::FDiv: {
    ref<ConstantExpr> left = toConstant(state, eval(ki, 0, state).value,
                                        "floating point");
    ref<ConstantExpr> right = toConstant(state, eval(ki, 1, state).value,
                                         "floating point");
    if (!fpWidthToSemantics(left->getWidth()) ||
        !fpWidthToSemantics(right->getWidth()))
      return terminateStateOnExecError(state, "Unsupported FDiv operation");

    llvm::APFloat Res(*fpWidthToSemantics(left->getWidth()), left->getAPValue());
    Res.divide(APFloat(*fpWidthToSemantics(right->getWidth()), right->getAPValue()), APFloat::rmNearestTiesToEven);
    bindLocal(ki, state, ConstantExpr::alloc(Res.bitcastToAPInt()));
    break;
  }

  case Instruction::FRem: {
    ref<ConstantExpr> left = toConstant(state, eval(ki, 0, state).value,
                                        "floating point");
    ref<ConstantExpr> right = toConstant(state, eval(ki, 1, state).value,
                                         "floating point");
    if (!fpWidthToSemantics(left->getWidth()) ||
        !fpWidthToSemantics(right->getWidth()))
      return terminateStateOnExecError(state, "Unsupported FRem operation");
    llvm::APFloat Res(*fpWidthToSemantics(left->getWidth()), left->getAPValue());
    Res.mod(
        APFloat(*fpWidthToSemantics(right->getWidth()), right->getAPValue()));
    bindLocal(ki, state, ConstantExpr::alloc(Res.bitcastToAPInt()));
    break;
  }

  case Instruction::FPTrunc: {
    FPTruncInst *fi = cast<FPTruncInst>(i);
    Expr::Width resultType = getWidthForLLVMType(fi->getType());
    ref<ConstantExpr> arg = toConstant(state, eval(ki, 0, state).value,
                                       "floating point");
    if (!fpWidthToSemantics(arg->getWidth()) || resultType > arg->getWidth())
      return terminateStateOnExecError(state, "Unsupported FPTrunc operation");

    llvm::APFloat Res(*fpWidthToSemantics(arg->getWidth()), arg->getAPValue());
    bool losesInfo = false;
    Res.convert(*fpWidthToSemantics(resultType),
                llvm::APFloat::rmNearestTiesToEven,
                &losesInfo);
    bindLocal(ki, state, ConstantExpr::alloc(Res));
    break;
  }

  case Instruction::FPExt: {
    FPExtInst *fi = cast<FPExtInst>(i);
    Expr::Width resultType = getWidthForLLVMType(fi->getType());
    ref<ConstantExpr> arg = toConstant(state, eval(ki, 0, state).value,
                                        "floating point");
    if (!fpWidthToSemantics(arg->getWidth()) || arg->getWidth() > resultType)
      return terminateStateOnExecError(state, "Unsupported FPExt operation");
    llvm::APFloat Res(*fpWidthToSemantics(arg->getWidth()), arg->getAPValue());
    bool losesInfo = false;
    Res.convert(*fpWidthToSemantics(resultType),
                llvm::APFloat::rmNearestTiesToEven,
                &losesInfo);
    bindLocal(ki, state, ConstantExpr::alloc(Res));
    break;
  }

  case Instruction::FPToUI: {
    FPToUIInst *fi = cast<FPToUIInst>(i);
    Expr::Width resultType = getWidthForLLVMType(fi->getType());
    ref<ConstantExpr> arg = toConstant(state, eval(ki, 0, state).value,
                                       "floating point");
    if (!fpWidthToSemantics(arg->getWidth()) || resultType > 64)
      return terminateStateOnExecError(state, "Unsupported FPToUI operation");

    llvm::APFloat Arg(*fpWidthToSemantics(arg->getWidth()), arg->getAPValue());
    uint64_t value = 0;
    bool isExact = true;
#if LLVM_VERSION_CODE >= LLVM_VERSION(5, 0)
    auto valueRef = makeMutableArrayRef(value);
#else
    uint64_t *valueRef = &value;
#endif
    Arg.convertToInteger(valueRef, resultType, false,
                         llvm::APFloat::rmTowardZero, &isExact);
    bindLocal(ki, state, ConstantExpr::alloc(value, resultType));
    break;
  }

  case Instruction::FPToSI: {
    FPToSIInst *fi = cast<FPToSIInst>(i);
    Expr::Width resultType = getWidthForLLVMType(fi->getType());
    ref<ConstantExpr> arg = toConstant(state, eval(ki, 0, state).value,
                                       "floating point");
    if (!fpWidthToSemantics(arg->getWidth()) || resultType > 64)
      return terminateStateOnExecError(state, "Unsupported FPToSI operation");
    llvm::APFloat Arg(*fpWidthToSemantics(arg->getWidth()), arg->getAPValue());

    uint64_t value = 0;
    bool isExact = true;
#if LLVM_VERSION_CODE >= LLVM_VERSION(5, 0)
    auto valueRef = makeMutableArrayRef(value);
#else
    uint64_t *valueRef = &value;
#endif
    Arg.convertToInteger(valueRef, resultType, true,
                         llvm::APFloat::rmTowardZero, &isExact);
    bindLocal(ki, state, ConstantExpr::alloc(value, resultType));
    break;
  }

  case Instruction::UIToFP: {
    UIToFPInst *fi = cast<UIToFPInst>(i);
    Expr::Width resultType = getWidthForLLVMType(fi->getType());
    ref<ConstantExpr> arg = toConstant(state, eval(ki, 0, state).value,
                                       "floating point");
    const llvm::fltSemantics *semantics = fpWidthToSemantics(resultType);
    if (!semantics)
      return terminateStateOnExecError(state, "Unsupported UIToFP operation");
    llvm::APFloat f(*semantics, 0);
    f.convertFromAPInt(arg->getAPValue(), false,
                       llvm::APFloat::rmNearestTiesToEven);

    bindLocal(ki, state, ConstantExpr::alloc(f));
    break;
  }

  case Instruction::SIToFP: {
    SIToFPInst *fi = cast<SIToFPInst>(i);
    Expr::Width resultType = getWidthForLLVMType(fi->getType());
    ref<ConstantExpr> arg = toConstant(state, eval(ki, 0, state).value,
                                       "floating point");
    const llvm::fltSemantics *semantics = fpWidthToSemantics(resultType);
    if (!semantics)
      return terminateStateOnExecError(state, "Unsupported SIToFP operation");
    llvm::APFloat f(*semantics, 0);
    f.convertFromAPInt(arg->getAPValue(), true,
                       llvm::APFloat::rmNearestTiesToEven);

    bindLocal(ki, state, ConstantExpr::alloc(f));
    break;
  }

  case Instruction::FCmp: {
    FCmpInst *fi = cast<FCmpInst>(i);
    ref<ConstantExpr> left = toConstant(state, eval(ki, 0, state).value,
                                        "floating point");
    ref<ConstantExpr> right = toConstant(state, eval(ki, 1, state).value,
                                         "floating point");
    if (!fpWidthToSemantics(left->getWidth()) ||
        !fpWidthToSemantics(right->getWidth()))
      return terminateStateOnExecError(state, "Unsupported FCmp operation");

    APFloat LHS(*fpWidthToSemantics(left->getWidth()),left->getAPValue());
    APFloat RHS(*fpWidthToSemantics(right->getWidth()),right->getAPValue());
    APFloat::cmpResult CmpRes = LHS.compare(RHS);

    bool Result = false;
    switch( fi->getPredicate() ) {
      // Predicates which only care about whether or not the operands are NaNs.
    case FCmpInst::FCMP_ORD:
      Result = (CmpRes != APFloat::cmpUnordered);
      break;

    case FCmpInst::FCMP_UNO:
      Result = (CmpRes == APFloat::cmpUnordered);
      break;

      // Ordered comparisons return false if either operand is NaN.  Unordered
      // comparisons return true if either operand is NaN.
    case FCmpInst::FCMP_UEQ:
      Result = (CmpRes == APFloat::cmpUnordered || CmpRes == APFloat::cmpEqual);
      break;
    case FCmpInst::FCMP_OEQ:
      Result = (CmpRes != APFloat::cmpUnordered && CmpRes == APFloat::cmpEqual);
      break;

    case FCmpInst::FCMP_UGT:
      Result = (CmpRes == APFloat::cmpUnordered || CmpRes == APFloat::cmpGreaterThan);
      break;
    case FCmpInst::FCMP_OGT:
      Result = (CmpRes != APFloat::cmpUnordered && CmpRes == APFloat::cmpGreaterThan);
      break;

    case FCmpInst::FCMP_UGE:
      Result = (CmpRes == APFloat::cmpUnordered || (CmpRes == APFloat::cmpGreaterThan || CmpRes == APFloat::cmpEqual));
      break;
    case FCmpInst::FCMP_OGE:
      Result = (CmpRes != APFloat::cmpUnordered && (CmpRes == APFloat::cmpGreaterThan || CmpRes == APFloat::cmpEqual));
      break;

    case FCmpInst::FCMP_ULT:
      Result = (CmpRes == APFloat::cmpUnordered || CmpRes == APFloat::cmpLessThan);
      break;
    case FCmpInst::FCMP_OLT:
      Result = (CmpRes != APFloat::cmpUnordered && CmpRes == APFloat::cmpLessThan);
      break;

    case FCmpInst::FCMP_ULE:
      Result = (CmpRes == APFloat::cmpUnordered || (CmpRes == APFloat::cmpLessThan || CmpRes == APFloat::cmpEqual));
      break;
    case FCmpInst::FCMP_OLE:
      Result = (CmpRes != APFloat::cmpUnordered && (CmpRes == APFloat::cmpLessThan || CmpRes == APFloat::cmpEqual));
      break;

    case FCmpInst::FCMP_UNE:
      Result = (CmpRes == APFloat::cmpUnordered || CmpRes != APFloat::cmpEqual);
      break;
    case FCmpInst::FCMP_ONE:
      Result = (CmpRes != APFloat::cmpUnordered && CmpRes != APFloat::cmpEqual);
      break;

    default:
      assert(0 && "Invalid FCMP predicate!");
      break;
    case FCmpInst::FCMP_FALSE:
      Result = false;
      break;
    case FCmpInst::FCMP_TRUE:
      Result = true;
      break;
    }

    bindLocal(ki, state, ConstantExpr::alloc(Result, Expr::Bool));
    break;
  }
  case Instruction::InsertValue: {
    KGEPInstruction *kgepi = static_cast<KGEPInstruction*>(ki);

    ref<Expr> agg = eval(ki, 0, state).value;
    ref<Expr> val = eval(ki, 1, state).value;

    ref<Expr> l = NULL, r = NULL;
    unsigned lOffset = kgepi->offset*8, rOffset = kgepi->offset*8 + val->getWidth();

    if (lOffset > 0)
      l = ExtractExpr::create(agg, 0, lOffset);
    if (rOffset < agg->getWidth())
      r = ExtractExpr::create(agg, rOffset, agg->getWidth() - rOffset);

    ref<Expr> result;
    if (!l.isNull() && !r.isNull())
      result = ConcatExpr::create(r, ConcatExpr::create(val, l));
    else if (!l.isNull())
      result = ConcatExpr::create(val, l);
    else if (!r.isNull())
      result = ConcatExpr::create(r, val);
    else
      result = val;

    bindLocal(ki, state, result);
    break;
  }
  case Instruction::ExtractValue: {
    KGEPInstruction *kgepi = static_cast<KGEPInstruction*>(ki);

    ref<Expr> agg = eval(ki, 0, state).value;

    ref<Expr> result = ExtractExpr::create(agg, kgepi->offset*8, getWidthForLLVMType(i->getType()));

    bindLocal(ki, state, result);
    break;
  }
  case Instruction::Fence: {
    // Ignore for now
    break;
  }
  case Instruction::InsertElement: {
    InsertElementInst *iei = cast<InsertElementInst>(i);
    ref<Expr> vec = eval(ki, 0, state).value;
    ref<Expr> newElt = eval(ki, 1, state).value;
    ref<Expr> idx = eval(ki, 2, state).value;

    ConstantExpr *cIdx = dyn_cast<ConstantExpr>(idx);
    if (cIdx == NULL) {
      terminateStateOnError(
          state, "InsertElement, support for symbolic index not implemented",
          Unhandled);
      return;
    }
    uint64_t iIdx = cIdx->getZExtValue();
    const llvm::VectorType *vt = iei->getType();
    unsigned EltBits = getWidthForLLVMType(vt->getElementType());

    if (iIdx >= vt->getNumElements()) {
      // Out of bounds write
      terminateStateOnError(state, "Out of bounds write when inserting element",
                            BadVectorAccess);
      return;
    }

    const unsigned elementCount = vt->getNumElements();
    llvm::SmallVector<ref<Expr>, 8> elems;
    elems.reserve(elementCount);
    for (unsigned i = elementCount; i != 0; --i) {
      auto of = i - 1;
      unsigned bitOffset = EltBits * of;
      elems.push_back(
          of == iIdx ? newElt : ExtractExpr::create(vec, bitOffset, EltBits));
    }

    assert(Context::get().isLittleEndian() && "FIXME:Broken for big endian");
    ref<Expr> Result = ConcatExpr::createN(elementCount, elems.data());
    bindLocal(ki, state, Result);
    break;
  }
  case Instruction::ExtractElement: {
    ExtractElementInst *eei = cast<ExtractElementInst>(i);
    ref<Expr> vec = eval(ki, 0, state).value;
    ref<Expr> idx = eval(ki, 1, state).value;

    ConstantExpr *cIdx = dyn_cast<ConstantExpr>(idx);
    if (cIdx == NULL) {
      terminateStateOnError(
          state, "ExtractElement, support for symbolic index not implemented",
          Unhandled);
      return;
    }
    uint64_t iIdx = cIdx->getZExtValue();
    const llvm::VectorType *vt = eei->getVectorOperandType();
    unsigned EltBits = getWidthForLLVMType(vt->getElementType());

    if (iIdx >= vt->getNumElements()) {
      // Out of bounds read
      terminateStateOnError(state, "Out of bounds read when extracting element",
                            BadVectorAccess);
      return;
    }

    unsigned bitOffset = EltBits * iIdx;
    ref<Expr> Result = ExtractExpr::create(vec, bitOffset, EltBits);
    bindLocal(ki, state, Result);
    break;
  }
  case Instruction::ShuffleVector:
    // Should never happen due to Scalarizer pass removing ShuffleVector
    // instructions.
    terminateStateOnExecError(state, "Unexpected ShuffleVector instruction");
    break;
  case Instruction::AtomicRMW:
    terminateStateOnExecError(state, "Unexpected Atomic instruction, should be "
                                     "lowered by LowerAtomicInstructionPass");
    break;
  case Instruction::AtomicCmpXchg:
    terminateStateOnExecError(state,
                              "Unexpected AtomicCmpXchg instruction, should be "
                              "lowered by LowerAtomicInstructionPass");
    break;
  // Other instructions...
  // Unhandled
  default:
    terminateStateOnExecError(state, "illegal instruction");
    break;
  }
}

void Executor::updateStates(ExecutionState *current) {
  if (searcher) {
    searcher->update(current, addedStates, removedStates);
  }
  
  states.insert(addedStates.begin(), addedStates.end());
  addedStates.clear();

  for (std::vector<ExecutionState *>::iterator it = removedStates.begin(),
                                               ie = removedStates.end();
       it != ie; ++it) {
    ExecutionState *es = *it;
    std::set<ExecutionState*>::iterator it2 = states.find(es);
    assert(it2!=states.end());
    states.erase(it2);
    std::map<ExecutionState*, std::vector<SeedInfo> >::iterator it3 = 
      seedMap.find(es);
    if (it3 != seedMap.end())
      seedMap.erase(it3);
    processTree->remove(es->ptreeNode);
    delete es;
  }
  removedStates.clear();

  if (searcher) {
    searcher->update(nullptr, continuedStates, pausedStates);
    pausedStates.clear();
    continuedStates.clear();
  }
}

template <typename TypeIt>
void Executor::computeOffsets(KGEPInstruction *kgepi, TypeIt ib, TypeIt ie) {
  ref<ConstantExpr> constantOffset =
    ConstantExpr::alloc(0, Context::get().getPointerWidth());
  uint64_t index = 1;
  for (TypeIt ii = ib; ii != ie; ++ii) {
    if (StructType *st = dyn_cast<StructType>(*ii)) {
      const StructLayout *sl = kmodule->targetData->getStructLayout(st);
      const ConstantInt *ci = cast<ConstantInt>(ii.getOperand());
      uint64_t addend = sl->getElementOffset((unsigned) ci->getZExtValue());
      constantOffset = constantOffset->Add(ConstantExpr::alloc(addend,
                                                               Context::get().getPointerWidth()));
    } else if (const auto set = dyn_cast<SequentialType>(*ii)) {
      uint64_t elementSize = 
        kmodule->targetData->getTypeStoreSize(set->getElementType());
      Value *operand = ii.getOperand();
      if (Constant *c = dyn_cast<Constant>(operand)) {
        ref<ConstantExpr> index = 
          evalConstant(c)->SExt(Context::get().getPointerWidth());
        ref<ConstantExpr> addend = 
          index->Mul(ConstantExpr::alloc(elementSize,
                                         Context::get().getPointerWidth()));
        constantOffset = constantOffset->Add(addend);
      } else {
        kgepi->indices.push_back(std::make_pair(index, elementSize));
      }
#if LLVM_VERSION_CODE >= LLVM_VERSION(4, 0)
    } else if (const auto ptr = dyn_cast<PointerType>(*ii)) {
      auto elementSize =
        kmodule->targetData->getTypeStoreSize(ptr->getElementType());
      auto operand = ii.getOperand();
      if (auto c = dyn_cast<Constant>(operand)) {
        auto index = evalConstant(c)->SExt(Context::get().getPointerWidth());
        auto addend = index->Mul(ConstantExpr::alloc(elementSize,
                                         Context::get().getPointerWidth()));
        constantOffset = constantOffset->Add(addend);
      } else {
        kgepi->indices.push_back(std::make_pair(index, elementSize));
      }
#endif
    } else
      assert("invalid type" && 0);
    index++;
  }
  kgepi->offset = constantOffset->getZExtValue();
}

void Executor::bindInstructionConstants(KInstruction *KI) {
  KGEPInstruction *kgepi = static_cast<KGEPInstruction*>(KI);

  if (GetElementPtrInst *gepi = dyn_cast<GetElementPtrInst>(KI->inst)) {
    computeOffsets(kgepi, gep_type_begin(gepi), gep_type_end(gepi));
  } else if (InsertValueInst *ivi = dyn_cast<InsertValueInst>(KI->inst)) {
    computeOffsets(kgepi, iv_type_begin(ivi), iv_type_end(ivi));
    assert(kgepi->indices.empty() && "InsertValue constant offset expected");
  } else if (ExtractValueInst *evi = dyn_cast<ExtractValueInst>(KI->inst)) {
    computeOffsets(kgepi, ev_type_begin(evi), ev_type_end(evi));
    assert(kgepi->indices.empty() && "ExtractValue constant offset expected");
  }
}

void Executor::bindModuleConstants() {
  for (auto &kfp : kmodule->functions) {
    KFunction *kf = kfp.get();
    for (unsigned i=0; i<kf->numInstructions; ++i)
      bindInstructionConstants(kf->instructions[i]);
  }

  kmodule->constantTable =
      std::unique_ptr<Cell[]>(new Cell[kmodule->constants.size()]);
  for (unsigned i=0; i<kmodule->constants.size(); ++i) {
    Cell &c = kmodule->constantTable[i];
    c.value = evalConstant(kmodule->constants[i]);
  }
}

void Executor::checkMemoryUsage() {
  if (!MaxMemory)
    return;
  if ((stats::instructions & 0xFFFF) == 0) {
    // We need to avoid calling GetTotalMallocUsage() often because it
    // is O(elts on freelist). This is really bad since we start
    // to pummel the freelist once we hit the memory cap.
    unsigned mbs = (util::GetTotalMallocUsage() >> 20) +
                   (memory->getUsedDeterministicSize() >> 20);

    if (mbs > MaxMemory) {
      if (mbs > MaxMemory + 100) {
        // just guess at how many to kill
        unsigned numStates = states.size();
        unsigned toKill = std::max(1U, numStates - numStates * MaxMemory / mbs);
        klee_warning("killing %d states (over memory cap)", toKill);
        std::vector<ExecutionState *> arr(states.begin(), states.end());
        for (unsigned i = 0, N = arr.size(); N && i < toKill; ++i, --N) {
          unsigned idx = rand() % N;
          // Make two pulls to try and not hit a state that
          // covered new code.
          if (arr[idx]->coveredNew)
            idx = rand() % N;

          std::swap(arr[idx], arr[N - 1]);
          terminateStateEarly(*arr[N - 1], "Memory limit exceeded.");
        }
      }
      atMemoryLimit = true;
    } else {
      atMemoryLimit = false;
    }
  }
}

void Executor::doDumpStates() {
  if (!DumpStatesOnHalt || states.empty())
    return;

  klee_message("halting execution, dumping remaining states");
  for (const auto &state : states)
    terminateStateEarly(*state, "Execution halting.");
  updateStates(nullptr);
}

void Executor::run(ExecutionState &initialState) {
  bindModuleConstants();

  // Delay init till now so that ticks don't accrue during optimization and such.
  timers.reset();

  states.insert(&initialState);

  if (usingSeeds) {
    std::vector<SeedInfo> &v = seedMap[&initialState];
    
    for (std::vector<KTest*>::const_iterator it = usingSeeds->begin(), 
           ie = usingSeeds->end(); it != ie; ++it)
      v.push_back(SeedInfo(*it));

    int lastNumSeeds = usingSeeds->size()+10;
    time::Point lastTime, startTime = lastTime = time::getWallTime();
    ExecutionState *lastState = 0;
    while (!seedMap.empty()) {
      if (haltExecution) {
        doDumpStates();
        return;
      }

      std::map<ExecutionState*, std::vector<SeedInfo> >::iterator it = 
        seedMap.upper_bound(lastState);
      if (it == seedMap.end())
        it = seedMap.begin();
      lastState = it->first;
      unsigned numSeeds = it->second.size();
      ExecutionState &state = *lastState;
      KInstruction *ki = state.pc;
      stepInstruction(state);

      executeInstruction(state, ki);
      timers.invoke();
      if (::dumpStates) dumpStates();
      if (::dumpPTree) dumpPTree();
      updateStates(&state);

      if ((stats::instructions % 1000) == 0) {
        int numSeeds = 0, numStates = 0;
        for (std::map<ExecutionState*, std::vector<SeedInfo> >::iterator
               it = seedMap.begin(), ie = seedMap.end();
             it != ie; ++it) {
          numSeeds += it->second.size();
          numStates++;
        }
        const auto time = time::getWallTime();
        const time::Span seedTime(SeedTime);
        if (seedTime && time > startTime + seedTime) {
          klee_warning("seed time expired, %d seeds remain over %d states",
                       numSeeds, numStates);
          break;
        } else if (numSeeds<=lastNumSeeds-10 ||
                   time - lastTime >= time::seconds(10)) {
          lastTime = time;
          lastNumSeeds = numSeeds;          
          klee_message("%d seeds remaining over: %d states", 
                       numSeeds, numStates);
        }
      }
    }

    klee_message("seeding done (%d states remain)", (int) states.size());

    // XXX total hack, just because I like non uniform better but want
    // seed results to be equally weighted.
    for (std::set<ExecutionState*>::iterator
           it = states.begin(), ie = states.end();
         it != ie; ++it) {
      (*it)->weight = 1.;
    }

    if (OnlySeed) {
      doDumpStates();
      return;
    }
  }

  searcher = constructUserSearcher(*this);

  std::vector<ExecutionState *> newStates(states.begin(), states.end());
  searcher->update(0, newStates, std::vector<ExecutionState *>());

  while (!states.empty() && !haltExecution) {
    ExecutionState &state = searcher->selectState();
    KInstruction *ki = state.pc;
    stepInstruction(state);

    executeInstruction(state, ki);
    timers.invoke();
    if (::dumpStates) dumpStates();
    if (::dumpPTree) dumpPTree();

    checkMemoryUsage();

    updateStates(&state);
  }

  delete searcher;
  searcher = 0;

  doDumpStates();
}

std::string Executor::getAddressInfo(ExecutionState &state, 
                                     ref<Expr> address) const{
  std::string Str;
  llvm::raw_string_ostream info(Str);
  info << "\taddress: " << address << "\n";
  uint64_t example;
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(address)) {
    example = CE->getZExtValue();
  } else {
    ref<ConstantExpr> value;
    bool success = solver->getValue(state, address, value);
    assert(success && "FIXME: Unhandled solver failure");
    (void) success;
    example = value->getZExtValue();
    info << "\texample: " << example << "\n";
    std::pair< ref<Expr>, ref<Expr> > res = solver->getRange(state, address);
    info << "\trange: [" << res.first << ", " << res.second <<"]\n";
  }
  
  MemoryObject hack((unsigned) example);    
  MemoryMap::iterator lower = state.addressSpace.objects.upper_bound(&hack);
  info << "\tnext: ";
  if (lower==state.addressSpace.objects.end()) {
    info << "none\n";
  } else {
    const MemoryObject *mo = lower->first;
    std::string alloc_info;
    mo->getAllocInfo(alloc_info);
    info << "object at " << mo->address
         << " of size " << mo->size << "\n"
         << "\t\t" << alloc_info << "\n";
  }
  if (lower!=state.addressSpace.objects.begin()) {
    --lower;
    info << "\tprev: ";
    if (lower==state.addressSpace.objects.end()) {
      info << "none\n";
    } else {
      const MemoryObject *mo = lower->first;
      std::string alloc_info;
      mo->getAllocInfo(alloc_info);
      info << "object at " << mo->address 
           << " of size " << mo->size << "\n"
           << "\t\t" << alloc_info << "\n";
    }
  }

  return info.str();
}

void Executor::pauseState(ExecutionState &state){
  auto it = std::find(continuedStates.begin(), continuedStates.end(), &state);
  // If the state was to be continued, but now gets paused again
  if (it != continuedStates.end()){
    // ...just don't continue it
    std::swap(*it, continuedStates.back());
    continuedStates.pop_back();
  } else {
    pausedStates.push_back(&state);
  }
}

void Executor::continueState(ExecutionState &state){
  auto it = std::find(pausedStates.begin(), pausedStates.end(), &state);
  // If the state was to be paused, but now gets continued again
  if (it != pausedStates.end()){
    // ...don't pause it
    std::swap(*it, pausedStates.back());
    pausedStates.pop_back();
  } else {
    continuedStates.push_back(&state);
  }
}

void Executor::terminateState(ExecutionState &state) {
  if (replayKTest && replayPosition!=replayKTest->numObjects) {
    klee_warning_once(replayKTest,
                      "replay did not consume all objects in test input.");
  }

  interpreterHandler->incPathsExplored();

  std::vector<ExecutionState *>::iterator it =
      std::find(addedStates.begin(), addedStates.end(), &state);
  if (it==addedStates.end()) {
    state.pc = state.prevPC;

    removedStates.push_back(&state);
  } else {
    // never reached searcher, just delete immediately
    std::map< ExecutionState*, std::vector<SeedInfo> >::iterator it3 = 
      seedMap.find(&state);
    if (it3 != seedMap.end())
      seedMap.erase(it3);
    addedStates.erase(it);
    processTree->remove(state.ptreeNode);
    delete &state;
  }
}

void Executor::terminateStateEarly(ExecutionState &state, 
                                   const Twine &message) {
  if (!OnlyOutputStatesCoveringNew || state.coveredNew ||
      (AlwaysOutputSeeds && seedMap.count(&state)))
    interpreterHandler->processTestCase(state, (message + "\n").str().c_str(),
                                        "early");
  terminateState(state);
}

void Executor::terminateStateOnExit(ExecutionState &state) {
  if (!OnlyOutputStatesCoveringNew || state.coveredNew || 
      (AlwaysOutputSeeds && seedMap.count(&state)))
    interpreterHandler->processTestCase(state, 0, 0);
  terminateState(state);
}

const InstructionInfo & Executor::getLastNonKleeInternalInstruction(const ExecutionState &state,
    Instruction ** lastInstruction) {
  // unroll the stack of the applications state and find
  // the last instruction which is not inside a KLEE internal function
  ExecutionState::stack_ty::const_reverse_iterator it = state.stack.rbegin(),
      itE = state.stack.rend();

  // don't check beyond the outermost function (i.e. main())
  itE--;

  const InstructionInfo * ii = 0;
  if (kmodule->internalFunctions.count(it->kf->function) == 0){
    ii =  state.prevPC->info;
    *lastInstruction = state.prevPC->inst;
    //  Cannot return yet because even though
    //  it->function is not an internal function it might of
    //  been called from an internal function.
  }

  // Wind up the stack and check if we are in a KLEE internal function.
  // We visit the entire stack because we want to return a CallInstruction
  // that was not reached via any KLEE internal functions.
  for (;it != itE; ++it) {
    // check calling instruction and if it is contained in a KLEE internal function
    const Function * f = (*it->caller).inst->getParent()->getParent();
    if (kmodule->internalFunctions.count(f)){
      ii = 0;
      continue;
    }
    if (!ii){
      ii = (*it->caller).info;
      *lastInstruction = (*it->caller).inst;
    }
  }

  if (!ii) {
    // something went wrong, play safe and return the current instruction info
    *lastInstruction = state.prevPC->inst;
    return *state.prevPC->info;
  }
  return *ii;
}

bool Executor::shouldExitOn(enum TerminateReason termReason) {
  std::vector<TerminateReason>::iterator s = ExitOnErrorType.begin();
  std::vector<TerminateReason>::iterator e = ExitOnErrorType.end();

  for (; s != e; ++s)
    if (termReason == *s)
      return true;

  return false;
}

void Executor::terminateStateOnError(ExecutionState &state,
                                     const llvm::Twine &messaget,
                                     enum TerminateReason termReason,
                                     const char *suffix,
                                     const llvm::Twine &info) {
  std::string message = messaget.str();
  static std::set< std::pair<Instruction*, std::string> > emittedErrors;
  Instruction * lastInst;
  const InstructionInfo &ii = getLastNonKleeInternalInstruction(state, &lastInst);
  
  if (EmitAllErrors ||
      emittedErrors.insert(std::make_pair(lastInst, message)).second) {
    if (ii.file != "") {
      klee_message("ERROR: %s:%d: %s", ii.file.c_str(), ii.line, message.c_str());
    } else {
      klee_message("ERROR: (location information missing) %s", message.c_str());
    }
    if (!EmitAllErrors)
      klee_message("NOTE: now ignoring this error at this location");

    std::string MsgString;
    llvm::raw_string_ostream msg(MsgString);
    msg << "Error: " << message << "\n";
    if (ii.file != "") {
      msg << "File: " << ii.file << "\n";
      msg << "Line: " << ii.line << "\n";
      msg << "assembly.ll line: " << ii.assemblyLine << "\n";
    }
    msg << "Stack: \n";
    state.dumpStack(msg);

    std::string info_str = info.str();
    if (info_str != "")
      msg << "Info: \n" << info_str;

    std::string suffix_buf;
    if (!suffix) {
      suffix_buf = TerminateReasonNames[termReason];
      suffix_buf += ".err";
      suffix = suffix_buf.c_str();
    }

    interpreterHandler->processTestCase(state, msg.str().c_str(), suffix);
  }
    
  terminateState(state);

  if (shouldExitOn(termReason))
    haltExecution = true;
}

// XXX shoot me
static const char *okExternalsList[] = { "printf", 
                                         "fprintf", 
                                         "puts",
                                         "getpid" };
static std::set<std::string> okExternals(okExternalsList,
                                         okExternalsList + 
                                         (sizeof(okExternalsList)/sizeof(okExternalsList[0])));

void Executor::callExternalFunction(ExecutionState &state,
                                    KInstruction *target,
                                    Function *function,
                                    std::vector< ref<Expr> > &arguments) {
  // check if specialFunctionHandler wants it
  if (specialFunctionHandler->handle(state, function, target, arguments))
    return;
  
  if (ExternalCalls == ExternalCallPolicy::None
      && !okExternals.count(function->getName())) {
    klee_warning("Disallowed call to external function: %s\n",
               function->getName().str().c_str());
    terminateStateOnError(state, "external calls disallowed", User);
    return;
  }

  // normal external function handling path
  // allocate 128 bits for each argument (+return value) to support fp80's;
  // we could iterate through all the arguments first and determine the exact
  // size we need, but this is faster, and the memory usage isn't significant.
  uint64_t *args = (uint64_t*) alloca(2*sizeof(*args) * (arguments.size() + 1));
  memset(args, 0, 2 * sizeof(*args) * (arguments.size() + 1));
  unsigned wordIndex = 2;
  for (std::vector<ref<Expr> >::iterator ai = arguments.begin(), 
       ae = arguments.end(); ai!=ae; ++ai) {
    if (ExternalCalls == ExternalCallPolicy::All) { // don't bother checking uniqueness
      *ai = optimizer.optimizeExpr(*ai, true);
      ref<ConstantExpr> ce;
      bool success = solver->getValue(state, *ai, ce);
      assert(success && "FIXME: Unhandled solver failure");
      (void) success;
      ce->toMemory(&args[wordIndex]);
      ObjectPair op;
      // Checking to see if the argument is a pointer to something
      if (ce->getWidth() == Context::get().getPointerWidth() &&
          state.addressSpace.resolveOne(ce, op)) {
        op.second->flushToConcreteStore(solver, state);
      }
      wordIndex += (ce->getWidth()+63)/64;
    } else {
      ref<Expr> arg = toUnique(state, *ai);
      if (ConstantExpr *ce = dyn_cast<ConstantExpr>(arg)) {
        // XXX kick toMemory functions from here
        ce->toMemory(&args[wordIndex]);
        wordIndex += (ce->getWidth()+63)/64;
      } else {
        terminateStateOnExecError(state, 
                                  "external call with symbolic argument: " + 
                                  function->getName());
        return;
      }
    }
  }

  // Prepare external memory for invoking the function
  state.addressSpace.copyOutConcretes();
#ifndef WINDOWS
  // Update external errno state with local state value
  int *errno_addr = getErrnoLocation(state);
  ObjectPair result;
  bool resolved = state.addressSpace.resolveOne(
      ConstantExpr::create((uint64_t)errno_addr, Expr::Int64), result);
  if (!resolved)
    klee_error("Could not resolve memory object for errno");
  ref<Expr> errValueExpr = result.second->read(0, sizeof(*errno_addr) * 8);
  ConstantExpr *errnoValue = dyn_cast<ConstantExpr>(errValueExpr);
  if (!errnoValue) {
    terminateStateOnExecError(state,
                              "external call with errno value symbolic: " +
                                  function->getName());
    return;
  }

  externalDispatcher->setLastErrno(
      errnoValue->getZExtValue(sizeof(*errno_addr) * 8));
#endif

  if (!SuppressExternalWarnings) {

    std::string TmpStr;
    llvm::raw_string_ostream os(TmpStr);
    os << "calling external: " << function->getName().str() << "(";
    for (unsigned i=0; i<arguments.size(); i++) {
      os << arguments[i];
      if (i != arguments.size()-1)
        os << ", ";
    }
    os << ") at " << state.pc->getSourceLocation();
    
    if (AllExternalWarnings)
      klee_warning("%s", os.str().c_str());
    else
      klee_warning_once(function, "%s", os.str().c_str());
  }

  bool success = externalDispatcher->executeCall(function, target->inst, args);
  if (!success) {
    terminateStateOnError(state, "failed external call: " + function->getName(),
                          External);
    return;
  }

  if (!state.addressSpace.copyInConcretes()) {
    terminateStateOnError(state, "external modified read-only object",
                          External);
    return;
  }

#ifndef WINDOWS
  // Update errno memory object with the errno value from the call
  int error = externalDispatcher->getLastErrno();
  state.addressSpace.copyInConcrete(result.first, result.second,
                                    (uint64_t)&error);
#endif

  Type *resultType = target->inst->getType();
  if (resultType != Type::getVoidTy(function->getContext())) {
    ref<Expr> e = ConstantExpr::fromMemory((void*) args, 
                                           getWidthForLLVMType(resultType));
    bindLocal(target, state, e);
  }
}

/***/

ref<Expr> Executor::replaceReadWithSymbolic(ExecutionState &state, 
                                            ref<Expr> e) {
  unsigned n = interpreterOpts.MakeConcreteSymbolic;
  if (!n || replayKTest || replayPath)
    return e;

  // right now, we don't replace symbolics (is there any reason to?)
  if (!isa<ConstantExpr>(e))
    return e;

  if (n != 1 && random() % n)
    return e;

  // create a new fresh location, assert it is equal to concrete value in e
  // and return it.
  
  static unsigned id;
  const Array *array =
      arrayCache.CreateArray("rrws_arr" + llvm::utostr(++id),
                             Expr::getMinBytesForWidth(e->getWidth()));
  ref<Expr> res = Expr::createTempRead(array, e->getWidth());
  ref<Expr> eq = NotOptimizedExpr::create(EqExpr::create(e, res));
  llvm::errs() << "Making symbolic: " << eq << "\n";
  state.addConstraint(eq);
  return res;
}

ObjectState *Executor::bindObjectInState(ExecutionState &state, 
                                         const MemoryObject *mo,
                                         bool isLocal,
                                         const Array *array) {
  ObjectState *os = array ? new ObjectState(mo, array) : new ObjectState(mo);
  state.addressSpace.bindObject(mo, os);

  // Its possible that multiple bindings of the same mo in the state
  // will put multiple copies on this list, but it doesn't really
  // matter because all we use this list for is to unbind the object
  // on function return.
  if (isLocal)
    state.stack.back().allocas.push_back(mo);

  return os;
}

void Executor::executeAlloc(ExecutionState &state,
                            ref<Expr> size,
                            bool isLocal,
                            KInstruction *target,
                            bool zeroMemory,
                            const ObjectState *reallocFrom,
                            size_t allocationAlignment) {
  size = toUnique(state, size);
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(size)) {
    const llvm::Value *allocSite = state.prevPC->inst;
    if (allocationAlignment == 0) {
      allocationAlignment = getAllocationAlignment(allocSite);
    }
    MemoryObject *mo =
        memory->allocate(CE->getZExtValue(), isLocal, /*isGlobal=*/false,
                         allocSite, allocationAlignment);
    if (!mo) {
      bindLocal(target, state, 
                ConstantExpr::alloc(0, Context::get().getPointerWidth()));
    } else {
      ObjectState *os = bindObjectInState(state, mo, isLocal);
      if (zeroMemory) {
        os->initializeToZero();
      } else {
        os->initializeToRandom();
      }
      bindLocal(target, state, mo->getBaseExpr());
      
      if (reallocFrom) {
        unsigned count = std::min(reallocFrom->size, os->size);
        for (unsigned i=0; i<count; i++)
          os->write(i, reallocFrom->read8(i));
        state.addressSpace.unbindObject(reallocFrom->getObject());
      }
    }
  } else {
    // XXX For now we just pick a size. Ideally we would support
    // symbolic sizes fully but even if we don't it would be better to
    // "smartly" pick a value, for example we could fork and pick the
    // min and max values and perhaps some intermediate (reasonable
    // value).
    // 
    // It would also be nice to recognize the case when size has
    // exactly two values and just fork (but we need to get rid of
    // return argument first). This shows up in pcre when llvm
    // collapses the size expression with a select.

    size = optimizer.optimizeExpr(size, true);

    ref<ConstantExpr> example;
    bool success = solver->getValue(state, size, example);
    assert(success && "FIXME: Unhandled solver failure");
    (void) success;
    
    // Try and start with a small example.
    Expr::Width W = example->getWidth();
    while (example->Ugt(ConstantExpr::alloc(128, W))->isTrue()) {
      ref<ConstantExpr> tmp = example->LShr(ConstantExpr::alloc(1, W));
      bool res;
      bool success = solver->mayBeTrue(state, EqExpr::create(tmp, size), res);
      assert(success && "FIXME: Unhandled solver failure");      
      (void) success;
      if (!res)
        break;
      example = tmp;
    }

    StatePair fixedSize = fork(state, EqExpr::create(example, size), true);
    
    if (fixedSize.second) { 
      // Check for exactly two values
      ref<ConstantExpr> tmp;
      bool success = solver->getValue(*fixedSize.second, size, tmp);
      assert(success && "FIXME: Unhandled solver failure");      
      (void) success;
      bool res;
      success = solver->mustBeTrue(*fixedSize.second, 
                                   EqExpr::create(tmp, size),
                                   res);
      assert(success && "FIXME: Unhandled solver failure");      
      (void) success;
      if (res) {
        executeAlloc(*fixedSize.second, tmp, isLocal,
                     target, zeroMemory, reallocFrom);
      } else {
        // See if a *really* big value is possible. If so assume
        // malloc will fail for it, so lets fork and return 0.
        StatePair hugeSize = 
          fork(*fixedSize.second, 
               UltExpr::create(ConstantExpr::alloc(1U<<31, W), size),
               true);
        if (hugeSize.first) {
          klee_message("NOTE: found huge malloc, returning 0");
          bindLocal(target, *hugeSize.first, 
                    ConstantExpr::alloc(0, Context::get().getPointerWidth()));
        }
        
        if (hugeSize.second) {

          std::string Str;
          llvm::raw_string_ostream info(Str);
          ExprPPrinter::printOne(info, "  size expr", size);
          info << "  concretization : " << example << "\n";
          info << "  unbound example: " << tmp << "\n";
          terminateStateOnError(*hugeSize.second, "concretized symbolic size",
                                Model, NULL, info.str());
        }
      }
    }

    if (fixedSize.first) // can be zero when fork fails
      executeAlloc(*fixedSize.first, example, isLocal, 
                   target, zeroMemory, reallocFrom);
  }
}

void Executor::executeFree(ExecutionState &state,
                           ref<Expr> address,
                           KInstruction *target) {
  address = optimizer.optimizeExpr(address, true);
  StatePair zeroPointer = fork(state, Expr::createIsZero(address), true);
  if (zeroPointer.first) {
    if (target)
      bindLocal(target, *zeroPointer.first, Expr::createPointer(0));
  }
  if (zeroPointer.second) { // address != 0
    ExactResolutionList rl;
    resolveExact(*zeroPointer.second, address, rl, "free");
    
    for (Executor::ExactResolutionList::iterator it = rl.begin(), 
           ie = rl.end(); it != ie; ++it) {
      const MemoryObject *mo = it->first.first;
      if (mo->isLocal) {
        terminateStateOnError(*it->second, "free of alloca", Free, NULL,
                              getAddressInfo(*it->second, address));
      } else if (mo->isGlobal) {
        terminateStateOnError(*it->second, "free of global", Free, NULL,
                              getAddressInfo(*it->second, address));
      } else {
        it->second->addressSpace.unbindObject(mo);
        if (target)
          bindLocal(target, *it->second, Expr::createPointer(0));
      }
    }
  }
}

void Executor::resolveExact(ExecutionState &state,
                            ref<Expr> p,
                            ExactResolutionList &results, 
                            const std::string &name) {
  p = optimizer.optimizeExpr(p, true);
  // XXX we may want to be capping this?
  ResolutionList rl;
  state.addressSpace.resolve(state, solver, p, rl);
  
  ExecutionState *unbound = &state;
  for (ResolutionList::iterator it = rl.begin(), ie = rl.end(); 
       it != ie; ++it) {
    ref<Expr> inBounds = EqExpr::create(p, it->first->getBaseExpr());
    
    StatePair branches = fork(*unbound, inBounds, true);
    
    if (branches.first)
      results.push_back(std::make_pair(*it, branches.first));

    unbound = branches.second;
    if (!unbound) // Fork failure
      break;
  }

  if (unbound) {
    terminateStateOnError(*unbound, "memory error: invalid pointer: " + name,
                          Ptr, NULL, getAddressInfo(*unbound, p));
  }
}

void Executor::executeMemoryOperation(ExecutionState &state,
                                      bool isWrite,
                                      ref<Expr> address,
                                      ref<Expr> value /* undef if read */,
                                      KInstruction *target /* undef if write */) {
  Expr::Width type = (isWrite ? value->getWidth() : 
                     getWidthForLLVMType(target->inst->getType()));
  unsigned bytes = Expr::getMinBytesForWidth(type);

  if (SimplifySymIndices) {
    if (!isa<ConstantExpr>(address))
      address = state.constraints.simplifyExpr(address);
    if (isWrite && !isa<ConstantExpr>(value))
      value = state.constraints.simplifyExpr(value);
  }

  address = optimizer.optimizeExpr(address, true);

  // fast path: single in-bounds resolution
  ObjectPair op;
  bool success;
  solver->setTimeout(coreSolverTimeout);
  if (!state.addressSpace.resolveOne(state, solver, address, op, success)) {
    address = toConstant(state, address, "resolveOne failure");
    success = state.addressSpace.resolveOne(cast<ConstantExpr>(address), op);
  }
  solver->setTimeout(time::Span());

  if (success) {
    const MemoryObject *mo = op.first;

    if (MaxSymArraySize && mo->size >= MaxSymArraySize) {
      address = toConstant(state, address, "max-sym-array-size");
    }
    
    ref<Expr> offset = mo->getOffsetExpr(address);
    ref<Expr> check = mo->getBoundsCheckOffset(offset, bytes);
    check = optimizer.optimizeExpr(check, true);

    bool inBounds;
    solver->setTimeout(coreSolverTimeout);
    bool success = solver->mustBeTrue(state, check, inBounds);
    solver->setTimeout(time::Span());
    if (!success) {
      state.pc = state.prevPC;
      terminateStateEarly(state, "Query timed out (bounds check).");
      return;
    }

    if (inBounds) {
      const ObjectState *os = op.second;
      if (isWrite) {
        if (os->readOnly) {
          terminateStateOnError(state, "memory error: object read only",
                                ReadOnly);
        } else {
          ObjectState *wos = state.addressSpace.getWriteable(mo, os);
          wos->write(offset, value);
        }          
      } else {
        ref<Expr> result = os->read(offset, type);
        
        if (interpreterOpts.MakeConcreteSymbolic)
          result = replaceReadWithSymbolic(state, result);
        
        bindLocal(target, state, result);
      }

      return;
    }
  } 

  // we are on an error path (no resolution, multiple resolution, one
  // resolution with out of bounds)

  address = optimizer.optimizeExpr(address, true);
  ResolutionList rl;  
  solver->setTimeout(coreSolverTimeout);
  bool incomplete = state.addressSpace.resolve(state, solver, address, rl,
                                               0, coreSolverTimeout);
  solver->setTimeout(time::Span());
  
  // XXX there is some query wasteage here. who cares?
  ExecutionState *unbound = &state;
  
  for (ResolutionList::iterator i = rl.begin(), ie = rl.end(); i != ie; ++i) {
    const MemoryObject *mo = i->first;
    const ObjectState *os = i->second;
    ref<Expr> inBounds = mo->getBoundsCheckPointer(address, bytes);
    
    StatePair branches = fork(*unbound, inBounds, true);
    ExecutionState *bound = branches.first;

    // bound can be 0 on failure or overlapped 
    if (bound) {
      if (isWrite) {
        if (os->readOnly) {
          terminateStateOnError(*bound, "memory error: object read only",
                                ReadOnly);
        } else {
          ObjectState *wos = bound->addressSpace.getWriteable(mo, os);
          wos->write(mo->getOffsetExpr(address), value);
        }
      } else {
        ref<Expr> result = os->read(mo->getOffsetExpr(address), type);
        bindLocal(target, *bound, result);
      }
    }

    unbound = branches.second;
    if (!unbound)
      break;
  }
  
  // XXX should we distinguish out of bounds and overlapped cases?
  if (unbound) {
    if (incomplete) {
      terminateStateEarly(*unbound, "Query timed out (resolve).");
    } else {
      terminateStateOnError(*unbound, "memory error: out of bound pointer", Ptr,
                            NULL, getAddressInfo(*unbound, address));
    }
  }
}

void Executor::executeMakeSymbolic(ExecutionState &state, 
                                   const MemoryObject *mo,
                                   const std::string &name) {
  // Create a new object state for the memory object (instead of a copy).
  if (!replayKTest) {
    // Find a unique name for this array.  First try the original name,
    // or if that fails try adding a unique identifier.
    unsigned id = 0;
    std::string uniqueName = name;
    while (!state.arrayNames.insert(uniqueName).second) {
      uniqueName = name + "_" + llvm::utostr(++id);
    }
    const Array *array = arrayCache.CreateArray(uniqueName, mo->size);
    bindObjectInState(state, mo, false, array);
    state.addSymbolic(mo, array);
    
    std::map< ExecutionState*, std::vector<SeedInfo> >::iterator it = 
      seedMap.find(&state);
    if (it!=seedMap.end()) { // In seed mode we need to add this as a
                             // binding.
      for (std::vector<SeedInfo>::iterator siit = it->second.begin(), 
             siie = it->second.end(); siit != siie; ++siit) {
        SeedInfo &si = *siit;
        KTestObject *obj = si.getNextInput(mo, NamedSeedMatching);

        if (!obj) {
          if (ZeroSeedExtension) {
            std::vector<unsigned char> &values = si.assignment.bindings[array];
            values = std::vector<unsigned char>(mo->size, '\0');
          } else if (!AllowSeedExtension) {
            terminateStateOnError(state, "ran out of inputs during seeding",
                                  User);
            break;
          }
        } else {
          if (obj->numBytes != mo->size &&
              ((!(AllowSeedExtension || ZeroSeedExtension)
                && obj->numBytes < mo->size) ||
               (!AllowSeedTruncation && obj->numBytes > mo->size))) {
	    std::stringstream msg;
	    msg << "replace size mismatch: "
		<< mo->name << "[" << mo->size << "]"
		<< " vs " << obj->name << "[" << obj->numBytes << "]"
		<< " in test\n";

            terminateStateOnError(state, msg.str(), User);
            break;
          } else {
            std::vector<unsigned char> &values = si.assignment.bindings[array];
            values.insert(values.begin(), obj->bytes, 
                          obj->bytes + std::min(obj->numBytes, mo->size));
            if (ZeroSeedExtension) {
              for (unsigned i=obj->numBytes; i<mo->size; ++i)
                values.push_back('\0');
            }
          }
        }
      }
    }
  } else {
    ObjectState *os = bindObjectInState(state, mo, false);
    if (replayPosition >= replayKTest->numObjects) {
      terminateStateOnError(state, "replay count mismatch", User);
    } else {
      KTestObject *obj = &replayKTest->objects[replayPosition++];
      if (obj->numBytes != mo->size) {
        terminateStateOnError(state, "replay size mismatch", User);
      } else {
        for (unsigned i=0; i<mo->size; i++)
          os->write8(i, obj->bytes[i]);
      }
    }
  }
}

/***/

void Executor::runFunctionAsMain(Function *f,
				 int argc,
				 char **argv,
				 char **envp) {
  std::vector<ref<Expr> > arguments;

  // force deterministic initialization of memory objects
  srand(1);
  srandom(1);
  
  MemoryObject *argvMO = 0;

  // In order to make uclibc happy and be closer to what the system is
  // doing we lay out the environments at the end of the argv array
  // (both are terminated by a null). There is also a final terminating
  // null that uclibc seems to expect, possibly the ELF header?

  int envc;
  for (envc=0; envp[envc]; ++envc) ;

  unsigned NumPtrBytes = Context::get().getPointerWidth() / 8;
  KFunction *kf = kmodule->functionMap[f];
  assert(kf);
  Function::arg_iterator ai = f->arg_begin(), ae = f->arg_end();
  if (ai!=ae) {
    arguments.push_back(ConstantExpr::alloc(argc, Expr::Int32));
    if (++ai!=ae) {
      Instruction *first = &*(f->begin()->begin());
      argvMO =
          memory->allocate((argc + 1 + envc + 1 + 1) * NumPtrBytes,
                           /*isLocal=*/false, /*isGlobal=*/true,
                           /*allocSite=*/first, /*alignment=*/8);

      if (!argvMO)
        klee_error("Could not allocate memory for function arguments");

      arguments.push_back(argvMO->getBaseExpr());

      if (++ai!=ae) {
        uint64_t envp_start = argvMO->address + (argc+1)*NumPtrBytes;
        arguments.push_back(Expr::createPointer(envp_start));

        if (++ai!=ae)
          klee_error("invalid main function (expect 0-3 arguments)");
      }
    }
  }

  ExecutionState *state = new ExecutionState(kmodule->functionMap[f]);
  
  if (pathWriter) 
    state->pathOS = pathWriter->open();
  if (symPathWriter) 
    state->symPathOS = symPathWriter->open();


  if (statsTracker)
    statsTracker->framePushed(*state, 0);

  assert(arguments.size() == f->arg_size() && "wrong number of arguments");
  for (unsigned i = 0, e = f->arg_size(); i != e; ++i)
    bindArgument(kf, i, *state, arguments[i]);

  if (argvMO) {
    ObjectState *argvOS = bindObjectInState(*state, argvMO, false);

    for (int i=0; i<argc+1+envc+1+1; i++) {
      if (i==argc || i>=argc+1+envc) {
        // Write NULL pointer
        argvOS->write(i * NumPtrBytes, Expr::createPointer(0));
      } else {
        char *s = i<argc ? argv[i] : envp[i-(argc+1)];
        int j, len = strlen(s);

        MemoryObject *arg =
            memory->allocate(len + 1, /*isLocal=*/false, /*isGlobal=*/true,
                             /*allocSite=*/state->pc->inst, /*alignment=*/8);
        if (!arg)
          klee_error("Could not allocate memory for function arguments");
        ObjectState *os = bindObjectInState(*state, arg, false);
        for (j=0; j<len+1; j++)
          os->write8(j, s[j]);

        // Write pointer to newly allocated and initialised argv/envp c-string
        argvOS->write(i * NumPtrBytes, arg->getBaseExpr());
      }
    }
  }
  
  initializeGlobals(*state);

  processTree = std::make_unique<PTree>(state);
  run(*state);
  processTree = nullptr;

  // hack to clear memory objects
  delete memory;
  memory = new MemoryManager(NULL);

  globalObjects.clear();
  globalAddresses.clear();

  if (statsTracker)
    statsTracker->done();
}

unsigned Executor::getPathStreamID(const ExecutionState &state) {
  assert(pathWriter);
  return state.pathOS.getID();
}

unsigned Executor::getSymbolicPathStreamID(const ExecutionState &state) {
  assert(symPathWriter);
  return state.symPathOS.getID();
}

void Executor::getConstraintLog(const ExecutionState &state, std::string &res,
                                Interpreter::LogType logFormat) {

  switch (logFormat) {
  case STP: {
    Query query(state.constraints, ConstantExpr::alloc(0, Expr::Bool));
    char *log = solver->getConstraintLog(query);
    res = std::string(log);
    free(log);
  } break;

  case KQUERY: {
    std::string Str;
    llvm::raw_string_ostream info(Str);
    ExprPPrinter::printConstraints(info, state.constraints);
    res = info.str();
  } break;

  case SMTLIB2: {
    std::string Str;
    llvm::raw_string_ostream info(Str);
    ExprSMTLIBPrinter printer;
    printer.setOutput(info);
    Query query(state.constraints, ConstantExpr::alloc(0, Expr::Bool));
    printer.setQuery(query);
    printer.generateOutput();
    res = info.str();
  } break;

  default:
    klee_warning("Executor::getConstraintLog() : Log format not supported!");
  }
}

bool Executor::getSymbolicSolution(const ExecutionState &state,
                                   std::vector< 
                                   std::pair<std::string,
                                   std::vector<unsigned char> > >
                                   &res) {
  solver->setTimeout(coreSolverTimeout);

  ExecutionState tmp(state);

  // Go through each byte in every test case and attempt to restrict
  // it to the constraints contained in cexPreferences.  (Note:
  // usually this means trying to make it an ASCII character (0-127)
  // and therefore human readable. It is also possible to customize
  // the preferred constraints.  See test/Features/PreferCex.c for
  // an example) While this process can be very expensive, it can
  // also make understanding individual test cases much easier.
  for (unsigned i = 0; i != state.symbolics.size(); ++i) {
    const MemoryObject *mo = state.symbolics[i].first;
    std::vector< ref<Expr> >::const_iterator pi = 
      mo->cexPreferences.begin(), pie = mo->cexPreferences.end();
    for (; pi != pie; ++pi) {
      bool mustBeTrue;
      // Attempt to bound byte to constraints held in cexPreferences
      bool success = solver->mustBeTrue(tmp, Expr::createIsZero(*pi), 
					mustBeTrue);
      // If it isn't possible to constrain this particular byte in the desired
      // way (normally this would mean that the byte can't be constrained to
      // be between 0 and 127 without making the entire constraint list UNSAT)
      // then just continue on to the next byte.
      if (!success) break;
      // If the particular constraint operated on in this iteration through
      // the loop isn't implied then add it to the list of constraints.
      if (!mustBeTrue) tmp.addConstraint(*pi);
    }
    if (pi!=pie) break;
  }

  std::vector< std::vector<unsigned char> > values;
  std::vector<const Array*> objects;
  for (unsigned i = 0; i != state.symbolics.size(); ++i)
    objects.push_back(state.symbolics[i].second);
  bool success = solver->getInitialValues(tmp, objects, values);
  solver->setTimeout(time::Span());
  if (!success) {
    klee_warning("unable to compute initial values (invalid constraints?)!");
    ExprPPrinter::printQuery(llvm::errs(), state.constraints,
                             ConstantExpr::alloc(0, Expr::Bool));
    return false;
  }
  
  for (unsigned i = 0; i != state.symbolics.size(); ++i)
    res.push_back(std::make_pair(state.symbolics[i].first->name, values[i]));
  return true;
}

void Executor::getCoveredLines(const ExecutionState &state,
                               std::map<const std::string*, std::set<unsigned> > &res) {
  res = state.coveredLines;
}

void Executor::doImpliedValueConcretization(ExecutionState &state,
                                            ref<Expr> e,
                                            ref<ConstantExpr> value) {
  abort(); // FIXME: Broken until we sort out how to do the write back.

  if (DebugCheckForImpliedValues)
    ImpliedValue::checkForImpliedValues(solver->solver, e, value);

  ImpliedValueList results;
  ImpliedValue::getImpliedValues(e, value, results);
  for (ImpliedValueList::iterator it = results.begin(), ie = results.end();
       it != ie; ++it) {
    ReadExpr *re = it->first.get();
    
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(re->index)) {
      // FIXME: This is the sole remaining usage of the Array object
      // variable. Kill me.
      const MemoryObject *mo = 0; //re->updates.root->object;
      const ObjectState *os = state.addressSpace.findObject(mo);

      if (!os) {
        // object has been free'd, no need to concretize (although as
        // in other cases we would like to concretize the outstanding
        // reads, but we have no facility for that yet)
      } else {
        assert(!os->readOnly && 
               "not possible? read only object with static read?");
        ObjectState *wos = state.addressSpace.getWriteable(mo, os);
        wos->write(CE, it->second);
      }
    }
  }
}

Expr::Width Executor::getWidthForLLVMType(llvm::Type *type) const {
  return kmodule->targetData->getTypeSizeInBits(type);
}

size_t Executor::getAllocationAlignment(const llvm::Value *allocSite) const {
  // FIXME: 8 was the previous default. We shouldn't hard code this
  // and should fetch the default from elsewhere.
  const size_t forcedAlignment = 8;
  size_t alignment = 0;
  llvm::Type *type = NULL;
  std::string allocationSiteName(allocSite->getName().str());
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(allocSite)) {
    alignment = GV->getAlignment();
    if (const GlobalVariable *globalVar = dyn_cast<GlobalVariable>(GV)) {
      // All GlobalVariables's have pointer type
      llvm::PointerType *ptrType =
          dyn_cast<llvm::PointerType>(globalVar->getType());
      assert(ptrType && "globalVar's type is not a pointer");
      type = ptrType->getElementType();
    } else {
      type = GV->getType();
    }
  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(allocSite)) {
    alignment = AI->getAlignment();
    type = AI->getAllocatedType();
  } else if (isa<InvokeInst>(allocSite) || isa<CallInst>(allocSite)) {
    // FIXME: Model the semantics of the call to use the right alignment
    llvm::Value *allocSiteNonConst = const_cast<llvm::Value *>(allocSite);
    const CallSite cs = (isa<InvokeInst>(allocSiteNonConst)
                             ? CallSite(cast<InvokeInst>(allocSiteNonConst))
                             : CallSite(cast<CallInst>(allocSiteNonConst)));
    llvm::Function *fn =
        klee::getDirectCallTarget(cs, /*moduleIsFullyLinked=*/true);
    if (fn)
      allocationSiteName = fn->getName().str();

    klee_warning_once(fn != NULL ? fn : allocSite,
                      "Alignment of memory from call \"%s\" is not "
                      "modelled. Using alignment of %zu.",
                      allocationSiteName.c_str(), forcedAlignment);
    alignment = forcedAlignment;
  } else {
    llvm_unreachable("Unhandled allocation site");
  }

  if (alignment == 0) {
    assert(type != NULL);
    // No specified alignment. Get the alignment for the type.
    if (type->isSized()) {
      alignment = kmodule->targetData->getPrefTypeAlignment(type);
    } else {
      klee_warning_once(allocSite, "Cannot determine memory alignment for "
                                   "\"%s\". Using alignment of %zu.",
                        allocationSiteName.c_str(), forcedAlignment);
      alignment = forcedAlignment;
    }
  }

  // Currently we require alignment be a power of 2
  if (!bits64::isPowerOfTwo(alignment)) {
    klee_warning_once(allocSite, "Alignment of %zu requested for %s but this "
                                 "not supported. Using alignment of %zu",
                      alignment, allocSite->getName().str().c_str(),
                      forcedAlignment);
    alignment = forcedAlignment;
  }
  assert(bits64::isPowerOfTwo(alignment) &&
         "Returned alignment must be a power of two");
  return alignment;
}

void Executor::prepareForEarlyExit() {
  if (statsTracker) {
    // Make sure stats get flushed out
    statsTracker->done();
  }
}

/// Returns the errno location in memory
int *Executor::getErrnoLocation(const ExecutionState &state) const {
#if !defined(__APPLE__) && !defined(__FreeBSD__)
  /* From /usr/include/errno.h: it [errno] is a per-thread variable. */
  return __errno_location();
#else
  return __error();
#endif
}


void Executor::dumpPTree() {
  if (!::dumpPTree) return;

  char name[32];
  snprintf(name, sizeof(name),"ptree%08d.dot", (int) stats::instructions);
  auto os = interpreterHandler->openOutputFile(name);
  if (os) {
    processTree->dump(*os);
  }

  ::dumpPTree = 0;
}

void Executor::dumpStates() {
  if (!::dumpStates) return;

  auto os = interpreterHandler->openOutputFile("states.txt");

  if (os) {
    for (ExecutionState *es : states) {
      *os << "(" << es << ",";
      *os << "[";
      auto next = es->stack.begin();
      ++next;
      for (auto sfIt = es->stack.begin(), sf_ie = es->stack.end();
           sfIt != sf_ie; ++sfIt) {
        *os << "('" << sfIt->kf->function->getName().str() << "',";
        if (next == es->stack.end()) {
          *os << es->prevPC->info->line << "), ";
        } else {
          *os << next->caller->info->line << "), ";
          ++next;
        }
      }
      *os << "], ";

      StackFrame &sf = es->stack.back();
      uint64_t md2u = computeMinDistToUncovered(es->pc,
                                                sf.minDistToUncoveredOnReturn);
      uint64_t icnt = theStatisticManager->getIndexedValue(stats::instructions,
                                                           es->pc->info->id);
      uint64_t cpicnt = sf.callPathNode->statistics.getValue(stats::instructions);

      *os << "{";
      *os << "'depth' : " << es->depth << ", ";
      *os << "'weight' : " << es->weight << ", ";
      *os << "'queryCost' : " << es->queryCost << ", ";
      *os << "'coveredNew' : " << es->coveredNew << ", ";
      *os << "'instsSinceCovNew' : " << es->instsSinceCovNew << ", ";
      *os << "'md2u' : " << md2u << ", ";
      *os << "'icnt' : " << icnt << ", ";
      *os << "'CPicnt' : " << cpicnt << ", ";
      *os << "}";
      *os << ")\n";
    }
  }

  ::dumpStates = 0;
}

///

Interpreter *Interpreter::create(LLVMContext &ctx, const InterpreterOptions &opts,
                                 InterpreterHandler *ih) {
  return new Executor(ctx, opts, ih);
}