1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
//===-- ExecutorTimers.cpp ------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "CoreStats.h"
#include "Executor.h"
#include "PTree.h"
#include "StatsTracker.h"
#include "ExecutorTimerInfo.h"
#include "klee/ExecutionState.h"
#include "klee/Internal/Module/InstructionInfoTable.h"
#include "klee/Internal/Module/KInstruction.h"
#include "klee/Internal/Module/KModule.h"
#include "klee/Internal/System/Time.h"
#include "klee/Internal/Support/ErrorHandling.h"
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 3)
#include "llvm/IR/Function.h"
#else
#include "llvm/Function.h"
#endif
#include "llvm/Support/CommandLine.h"
#include <unistd.h>
#include <signal.h>
#include <sys/time.h>
#include <math.h>
using namespace llvm;
using namespace klee;
cl::opt<double>
MaxTime("max-time",
cl::desc("Halt execution after the specified number of seconds (0=off)"),
cl::init(0));
///
class HaltTimer : public Executor::Timer {
Executor *executor;
public:
HaltTimer(Executor *_executor) : executor(_executor) {}
~HaltTimer() {}
void run() {
llvm::errs() << "KLEE: HaltTimer invoked\n";
executor->setHaltExecution(true);
}
};
///
static const double kSecondsPerTick = .1;
static volatile unsigned timerTicks = 0;
// XXX hack
extern "C" unsigned dumpStates, dumpPTree;
unsigned dumpStates = 0, dumpPTree = 0;
static void onAlarm(int) {
++timerTicks;
}
// oooogalay
static void setupHandler() {
struct itimerval t;
struct timeval tv;
tv.tv_sec = (long) kSecondsPerTick;
tv.tv_usec = (long) (fmod(kSecondsPerTick, 1.)*1000000);
t.it_interval = t.it_value = tv;
::setitimer(ITIMER_REAL, &t, 0);
::signal(SIGALRM, onAlarm);
}
void Executor::initTimers() {
static bool first = true;
if (first) {
first = false;
setupHandler();
}
if (MaxTime) {
addTimer(new HaltTimer(this), MaxTime.getValue());
}
}
///
Executor::Timer::Timer() {}
Executor::Timer::~Timer() {}
void Executor::addTimer(Timer *timer, double rate) {
timers.push_back(new TimerInfo(timer, rate));
}
void Executor::processTimers(ExecutionState *current,
double maxInstTime) {
static unsigned callsWithoutCheck = 0;
unsigned ticks = timerTicks;
if (!ticks && ++callsWithoutCheck > 1000) {
setupHandler();
ticks = 1;
}
if (ticks || dumpPTree || dumpStates) {
if (dumpPTree) {
char name[32];
sprintf(name, "ptree%08d.dot", (int) stats::instructions);
llvm::raw_ostream *os = interpreterHandler->openOutputFile(name);
if (os) {
processTree->dump(*os);
delete os;
}
dumpPTree = 0;
}
if (dumpStates) {
llvm::raw_ostream *os = interpreterHandler->openOutputFile("states.txt");
if (os) {
for (std::set<ExecutionState*>::const_iterator it = states.begin(),
ie = states.end(); it != ie; ++it) {
ExecutionState *es = *it;
*os << "(" << es << ",";
*os << "[";
ExecutionState::stack_ty::iterator next = es->stack.begin();
++next;
for (ExecutionState::stack_ty::iterator sfIt = es->stack.begin(),
sf_ie = es->stack.end(); sfIt != sf_ie; ++sfIt) {
*os << "('" << sfIt->kf->function->getName().str() << "',";
if (next == es->stack.end()) {
*os << es->prevPC->info->line << "), ";
} else {
*os << next->caller->info->line << "), ";
++next;
}
}
*os << "], ";
StackFrame &sf = es->stack.back();
uint64_t md2u = computeMinDistToUncovered(es->pc,
sf.minDistToUncoveredOnReturn);
uint64_t icnt = theStatisticManager->getIndexedValue(stats::instructions,
es->pc->info->id);
uint64_t cpicnt = sf.callPathNode->statistics.getValue(stats::instructions);
*os << "{";
*os << "'depth' : " << es->depth << ", ";
*os << "'weight' : " << es->weight << ", ";
*os << "'queryCost' : " << es->queryCost << ", ";
*os << "'coveredNew' : " << es->coveredNew << ", ";
*os << "'instsSinceCovNew' : " << es->instsSinceCovNew << ", ";
*os << "'md2u' : " << md2u << ", ";
*os << "'icnt' : " << icnt << ", ";
*os << "'CPicnt' : " << cpicnt << ", ";
*os << "}";
*os << ")\n";
}
delete os;
}
dumpStates = 0;
}
if (maxInstTime>0 && current && !removedStates.count(current)) {
if (timerTicks*kSecondsPerTick > maxInstTime) {
klee_warning("max-instruction-time exceeded: %.2fs",
timerTicks*kSecondsPerTick);
terminateStateEarly(*current, "max-instruction-time exceeded");
}
}
if (!timers.empty()) {
double time = util::getWallTime();
for (std::vector<TimerInfo*>::iterator it = timers.begin(),
ie = timers.end(); it != ie; ++it) {
TimerInfo *ti = *it;
if (time >= ti->nextFireTime) {
ti->timer->run();
ti->nextFireTime = time + ti->rate;
}
}
}
timerTicks = 0;
callsWithoutCheck = 0;
}
}
|