1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
//===-- ExecutorUtil.cpp --------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Executor.h"
#include "Context.h"
#include "klee/Expr.h"
#include "klee/Interpreter.h"
#include "klee/Solver.h"
#include "klee/Config/Version.h"
#include "klee/Internal/Module/KModule.h"
#include "klee/util/GetElementPtrTypeIterator.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/DataLayout.h"
#include <cassert>
using namespace klee;
using namespace llvm;
namespace klee {
ref<klee::ConstantExpr> Executor::evalConstant(const Constant *c) {
if (const llvm::ConstantExpr *ce = dyn_cast<llvm::ConstantExpr>(c)) {
return evalConstantExpr(ce);
} else {
if (const ConstantInt *ci = dyn_cast<ConstantInt>(c)) {
return ConstantExpr::alloc(ci->getValue());
} else if (const ConstantFP *cf = dyn_cast<ConstantFP>(c)) {
return ConstantExpr::alloc(cf->getValueAPF().bitcastToAPInt());
} else if (const GlobalValue *gv = dyn_cast<GlobalValue>(c)) {
return globalAddresses.find(gv)->second;
} else if (isa<ConstantPointerNull>(c)) {
return Expr::createPointer(0);
} else if (isa<UndefValue>(c) || isa<ConstantAggregateZero>(c)) {
return ConstantExpr::create(0, getWidthForLLVMType(c->getType()));
} else if (const ConstantDataSequential *cds =
dyn_cast<ConstantDataSequential>(c)) {
std::vector<ref<Expr> > kids;
for (unsigned i = 0, e = cds->getNumElements(); i != e; ++i) {
ref<Expr> kid = evalConstant(cds->getElementAsConstant(i));
kids.push_back(kid);
}
ref<Expr> res = ConcatExpr::createN(kids.size(), kids.data());
return cast<ConstantExpr>(res);
} else if (const ConstantStruct *cs = dyn_cast<ConstantStruct>(c)) {
const StructLayout *sl = kmodule->targetData->getStructLayout(cs->getType());
llvm::SmallVector<ref<Expr>, 4> kids;
for (unsigned i = cs->getNumOperands(); i != 0; --i) {
unsigned op = i-1;
ref<Expr> kid = evalConstant(cs->getOperand(op));
uint64_t thisOffset = sl->getElementOffsetInBits(op),
nextOffset = (op == cs->getNumOperands() - 1)
? sl->getSizeInBits()
: sl->getElementOffsetInBits(op+1);
if (nextOffset-thisOffset > kid->getWidth()) {
uint64_t paddingWidth = nextOffset-thisOffset-kid->getWidth();
kids.push_back(ConstantExpr::create(0, paddingWidth));
}
kids.push_back(kid);
}
ref<Expr> res = ConcatExpr::createN(kids.size(), kids.data());
return cast<ConstantExpr>(res);
} else if (const ConstantArray *ca = dyn_cast<ConstantArray>(c)){
llvm::SmallVector<ref<Expr>, 4> kids;
for (unsigned i = ca->getNumOperands(); i != 0; --i) {
unsigned op = i-1;
ref<Expr> kid = evalConstant(ca->getOperand(op));
kids.push_back(kid);
}
ref<Expr> res = ConcatExpr::createN(kids.size(), kids.data());
return cast<ConstantExpr>(res);
} else if (const ConstantVector *cv = dyn_cast<ConstantVector>(c)) {
llvm::SmallVector<ref<Expr>, 8> kids;
const size_t numOperands = cv->getNumOperands();
kids.reserve(numOperands);
for (unsigned i = 0; i < numOperands; ++i) {
kids.push_back(evalConstant(cv->getOperand(i)));
}
ref<Expr> res = ConcatExpr::createN(numOperands, kids.data());
assert(isa<ConstantExpr>(res) &&
"result of constant vector built is not a constant");
return cast<ConstantExpr>(res);
} else {
llvm::report_fatal_error("invalid argument to evalConstant()");
}
}
}
ref<ConstantExpr> Executor::evalConstantExpr(const llvm::ConstantExpr *ce) {
llvm::Type *type = ce->getType();
ref<ConstantExpr> op1(0), op2(0), op3(0);
int numOperands = ce->getNumOperands();
if (numOperands > 0) op1 = evalConstant(ce->getOperand(0));
if (numOperands > 1) op2 = evalConstant(ce->getOperand(1));
if (numOperands > 2) op3 = evalConstant(ce->getOperand(2));
switch (ce->getOpcode()) {
default :
ce->dump();
llvm::errs() << "error: unknown ConstantExpr type\n"
<< "opcode: " << ce->getOpcode() << "\n";
abort();
case Instruction::Trunc:
return op1->Extract(0, getWidthForLLVMType(type));
case Instruction::ZExt: return op1->ZExt(getWidthForLLVMType(type));
case Instruction::SExt: return op1->SExt(getWidthForLLVMType(type));
case Instruction::Add: return op1->Add(op2);
case Instruction::Sub: return op1->Sub(op2);
case Instruction::Mul: return op1->Mul(op2);
case Instruction::SDiv: return op1->SDiv(op2);
case Instruction::UDiv: return op1->UDiv(op2);
case Instruction::SRem: return op1->SRem(op2);
case Instruction::URem: return op1->URem(op2);
case Instruction::And: return op1->And(op2);
case Instruction::Or: return op1->Or(op2);
case Instruction::Xor: return op1->Xor(op2);
case Instruction::Shl: return op1->Shl(op2);
case Instruction::LShr: return op1->LShr(op2);
case Instruction::AShr: return op1->AShr(op2);
case Instruction::BitCast: return op1;
case Instruction::IntToPtr:
return op1->ZExt(getWidthForLLVMType(type));
case Instruction::PtrToInt:
return op1->ZExt(getWidthForLLVMType(type));
case Instruction::GetElementPtr: {
ref<ConstantExpr> base = op1->ZExt(Context::get().getPointerWidth());
for (gep_type_iterator ii = gep_type_begin(ce), ie = gep_type_end(ce);
ii != ie; ++ii) {
ref<ConstantExpr> addend =
ConstantExpr::alloc(0, Context::get().getPointerWidth());
if (StructType *st = dyn_cast<StructType>(*ii)) {
const StructLayout *sl = kmodule->targetData->getStructLayout(st);
const ConstantInt *ci = cast<ConstantInt>(ii.getOperand());
addend = ConstantExpr::alloc(sl->getElementOffset((unsigned)
ci->getZExtValue()),
Context::get().getPointerWidth());
} else {
const SequentialType *set = cast<SequentialType>(*ii);
ref<ConstantExpr> index =
evalConstant(cast<Constant>(ii.getOperand()));
unsigned elementSize =
kmodule->targetData->getTypeStoreSize(set->getElementType());
index = index->ZExt(Context::get().getPointerWidth());
addend = index->Mul(ConstantExpr::alloc(elementSize,
Context::get().getPointerWidth()));
}
base = base->Add(addend);
}
return base;
}
case Instruction::ICmp: {
switch(ce->getPredicate()) {
default: assert(0 && "unhandled ICmp predicate");
case ICmpInst::ICMP_EQ: return op1->Eq(op2);
case ICmpInst::ICMP_NE: return op1->Ne(op2);
case ICmpInst::ICMP_UGT: return op1->Ugt(op2);
case ICmpInst::ICMP_UGE: return op1->Uge(op2);
case ICmpInst::ICMP_ULT: return op1->Ult(op2);
case ICmpInst::ICMP_ULE: return op1->Ule(op2);
case ICmpInst::ICMP_SGT: return op1->Sgt(op2);
case ICmpInst::ICMP_SGE: return op1->Sge(op2);
case ICmpInst::ICMP_SLT: return op1->Slt(op2);
case ICmpInst::ICMP_SLE: return op1->Sle(op2);
}
}
case Instruction::Select:
return op1->isTrue() ? op2 : op3;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FCmp:
assert(0 && "floating point ConstantExprs unsupported");
}
llvm_unreachable("Unsupported expression in evalConstantExpr");
return op1;
}
}
|