1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
//===-- ExecutorUtil.cpp --------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Context.h"
#include "Executor.h"
#include "klee/Config/Version.h"
#include "klee/Core/Interpreter.h"
#include "klee/Expr/Expr.h"
#include "klee/Module/KModule.h"
#include "klee/Solver/Solver.h"
#include "klee/Support/ErrorHandling.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
namespace klee {
ref<klee::ConstantExpr> Executor::evalConstant(const Constant *c,
const KInstruction *ki) {
if (!ki) {
KConstant* kc = kmodule->getKConstant(c);
if (kc)
ki = kc->ki;
}
if (const llvm::ConstantExpr *ce = dyn_cast<llvm::ConstantExpr>(c)) {
return evalConstantExpr(ce, ki);
} else {
if (const ConstantInt *ci = dyn_cast<ConstantInt>(c)) {
return ConstantExpr::alloc(ci->getValue());
} else if (const ConstantFP *cf = dyn_cast<ConstantFP>(c)) {
return ConstantExpr::alloc(cf->getValueAPF().bitcastToAPInt());
} else if (const GlobalValue *gv = dyn_cast<GlobalValue>(c)) {
auto it = globalAddresses.find(gv);
assert(it != globalAddresses.end());
return it->second;
} else if (isa<ConstantPointerNull>(c)) {
return Expr::createPointer(0);
} else if (isa<UndefValue>(c) || isa<ConstantAggregateZero>(c)) {
if (getWidthForLLVMType(c->getType()) == 0) {
if (isa<llvm::LandingPadInst>(ki->inst)) {
klee_warning_once(0, "Using zero size array fix for landingpad instruction filter");
return ConstantExpr::create(0, 1);
}
}
return ConstantExpr::create(0, getWidthForLLVMType(c->getType()));
} else if (const ConstantDataSequential *cds =
dyn_cast<ConstantDataSequential>(c)) {
// Handle a vector or array: first element has the smallest address,
// the last element the highest
std::vector<ref<Expr> > kids;
for (unsigned i = cds->getNumElements(); i != 0; --i) {
ref<Expr> kid = evalConstant(cds->getElementAsConstant(i - 1), ki);
kids.push_back(kid);
}
assert(Context::get().isLittleEndian() &&
"FIXME:Broken for big endian");
ref<Expr> res = ConcatExpr::createN(kids.size(), kids.data());
return cast<ConstantExpr>(res);
} else if (const ConstantStruct *cs = dyn_cast<ConstantStruct>(c)) {
const StructLayout *sl = kmodule->targetData->getStructLayout(cs->getType());
llvm::SmallVector<ref<Expr>, 4> kids;
for (unsigned i = cs->getNumOperands(); i != 0; --i) {
unsigned op = i-1;
ref<Expr> kid = evalConstant(cs->getOperand(op), ki);
uint64_t thisOffset = sl->getElementOffsetInBits(op),
nextOffset = (op == cs->getNumOperands() - 1)
? sl->getSizeInBits()
: sl->getElementOffsetInBits(op+1);
if (nextOffset-thisOffset > kid->getWidth()) {
uint64_t paddingWidth = nextOffset-thisOffset-kid->getWidth();
kids.push_back(ConstantExpr::create(0, paddingWidth));
}
kids.push_back(kid);
}
assert(Context::get().isLittleEndian() &&
"FIXME:Broken for big endian");
ref<Expr> res = ConcatExpr::createN(kids.size(), kids.data());
return cast<ConstantExpr>(res);
} else if (const ConstantArray *ca = dyn_cast<ConstantArray>(c)){
llvm::SmallVector<ref<Expr>, 4> kids;
for (unsigned i = ca->getNumOperands(); i != 0; --i) {
unsigned op = i-1;
ref<Expr> kid = evalConstant(ca->getOperand(op), ki);
kids.push_back(kid);
}
assert(Context::get().isLittleEndian() &&
"FIXME:Broken for big endian");
ref<Expr> res = ConcatExpr::createN(kids.size(), kids.data());
return cast<ConstantExpr>(res);
} else if (const ConstantVector *cv = dyn_cast<ConstantVector>(c)) {
llvm::SmallVector<ref<Expr>, 8> kids;
const size_t numOperands = cv->getNumOperands();
kids.reserve(numOperands);
for (unsigned i = numOperands; i != 0; --i) {
kids.push_back(evalConstant(cv->getOperand(i - 1), ki));
}
assert(Context::get().isLittleEndian() &&
"FIXME:Broken for big endian");
ref<Expr> res = ConcatExpr::createN(numOperands, kids.data());
assert(isa<ConstantExpr>(res) &&
"result of constant vector built is not a constant");
return cast<ConstantExpr>(res);
} else if (const BlockAddress * ba = dyn_cast<BlockAddress>(c)) {
// return the address of the specified basic block in the specified function
const auto arg_bb = (BasicBlock *) ba->getOperand(1);
const auto res = Expr::createPointer(reinterpret_cast<std::uint64_t>(arg_bb));
return cast<ConstantExpr>(res);
} else {
std::string msg("Cannot handle constant ");
llvm::raw_string_ostream os(msg);
os << "'" << *c << "' at location "
<< (ki ? ki->getSourceLocation() : "[unknown]");
klee_error("%s", os.str().c_str());
}
}
}
ref<ConstantExpr> Executor::evalConstantExpr(const llvm::ConstantExpr *ce,
const KInstruction *ki) {
llvm::Type *type = ce->getType();
ref<ConstantExpr> op1(0), op2(0), op3(0);
int numOperands = ce->getNumOperands();
if (numOperands > 0) op1 = evalConstant(ce->getOperand(0), ki);
if (numOperands > 1) op2 = evalConstant(ce->getOperand(1), ki);
if (numOperands > 2) op3 = evalConstant(ce->getOperand(2), ki);
/* Checking for possible errors during constant folding */
switch (ce->getOpcode()) {
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
if (op2->getLimitedValue() == 0) {
std::string msg("Division/modulo by zero during constant folding at location ");
llvm::raw_string_ostream os(msg);
os << (ki ? ki->getSourceLocation() : "[unknown]");
klee_error("%s", os.str().c_str());
}
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
if (op2->getLimitedValue() >= op1->getWidth()) {
std::string msg("Overshift during constant folding at location ");
llvm::raw_string_ostream os(msg);
os << (ki ? ki->getSourceLocation() : "[unknown]");
klee_error("%s", os.str().c_str());
}
}
std::string msg("Unknown ConstantExpr type");
llvm::raw_string_ostream os(msg);
switch (ce->getOpcode()) {
default :
os << "'" << *ce << "' at location "
<< (ki ? ki->getSourceLocation() : "[unknown]");
klee_error("%s", os.str().c_str());
case Instruction::Trunc:
return op1->Extract(0, getWidthForLLVMType(type));
case Instruction::ZExt: return op1->ZExt(getWidthForLLVMType(type));
case Instruction::SExt: return op1->SExt(getWidthForLLVMType(type));
case Instruction::Add: return op1->Add(op2);
case Instruction::Sub: return op1->Sub(op2);
case Instruction::Mul: return op1->Mul(op2);
case Instruction::SDiv: return op1->SDiv(op2);
case Instruction::UDiv: return op1->UDiv(op2);
case Instruction::SRem: return op1->SRem(op2);
case Instruction::URem: return op1->URem(op2);
case Instruction::And: return op1->And(op2);
case Instruction::Or: return op1->Or(op2);
case Instruction::Xor: return op1->Xor(op2);
case Instruction::Shl: return op1->Shl(op2);
case Instruction::LShr: return op1->LShr(op2);
case Instruction::AShr: return op1->AShr(op2);
case Instruction::BitCast: return op1;
case Instruction::IntToPtr:
return op1->ZExt(getWidthForLLVMType(type));
case Instruction::PtrToInt:
return op1->ZExt(getWidthForLLVMType(type));
case Instruction::GetElementPtr: {
ref<ConstantExpr> base = op1->ZExt(Context::get().getPointerWidth());
for (gep_type_iterator ii = gep_type_begin(ce), ie = gep_type_end(ce);
ii != ie; ++ii) {
ref<ConstantExpr> indexOp =
evalConstant(cast<Constant>(ii.getOperand()), ki);
if (indexOp->isZero())
continue;
// Handle a struct index, which adds its field offset to the pointer.
#if LLVM_VERSION_CODE >= LLVM_VERSION(4, 0)
if (auto STy = ii.getStructTypeOrNull()) {
#else
if (StructType *STy = dyn_cast<StructType>(*ii)) {
#endif
unsigned ElementIdx = indexOp->getZExtValue();
const StructLayout *SL = kmodule->targetData->getStructLayout(STy);
base = base->Add(
ConstantExpr::alloc(APInt(Context::get().getPointerWidth(),
SL->getElementOffset(ElementIdx))));
continue;
}
// For array or vector indices, scale the index by the size of the type.
// Indices can be negative
base = base->Add(indexOp->SExt(Context::get().getPointerWidth())
->Mul(ConstantExpr::alloc(
APInt(Context::get().getPointerWidth(),
kmodule->targetData->getTypeAllocSize(
ii.getIndexedType())))));
}
return base;
}
case Instruction::ICmp: {
switch(ce->getPredicate()) {
default: assert(0 && "unhandled ICmp predicate");
case ICmpInst::ICMP_EQ: return op1->Eq(op2);
case ICmpInst::ICMP_NE: return op1->Ne(op2);
case ICmpInst::ICMP_UGT: return op1->Ugt(op2);
case ICmpInst::ICMP_UGE: return op1->Uge(op2);
case ICmpInst::ICMP_ULT: return op1->Ult(op2);
case ICmpInst::ICMP_ULE: return op1->Ule(op2);
case ICmpInst::ICMP_SGT: return op1->Sgt(op2);
case ICmpInst::ICMP_SGE: return op1->Sge(op2);
case ICmpInst::ICMP_SLT: return op1->Slt(op2);
case ICmpInst::ICMP_SLE: return op1->Sle(op2);
}
}
case Instruction::Select:
return op1->isTrue() ? op2 : op3;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FCmp:
assert(0 && "floating point ConstantExprs unsupported");
}
llvm_unreachable("Unsupported expression in evalConstantExpr");
return op1;
}
}
|