1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
//===-- ExternalDispatcher.cpp --------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ExternalDispatcher.h"
#include "klee/Config/Version.h"
// Ugh.
#undef PACKAGE_BUGREPORT
#undef PACKAGE_NAME
#undef PACKAGE_STRING
#undef PACKAGE_TARNAME
#undef PACKAGE_VERSION
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 3)
#include "llvm/IR/Module.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#else
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#if LLVM_VERSION_CODE < LLVM_VERSION(2, 7)
#include "llvm/ModuleProvider.h"
#endif
#if LLVM_VERSION_CODE >= LLVM_VERSION(2, 7)
#include "llvm/LLVMContext.h"
#endif
#endif
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Support/CallSite.h"
#if LLVM_VERSION_CODE < LLVM_VERSION(2, 9)
#include "llvm/System/DynamicLibrary.h"
#else
#include "llvm/Support/DynamicLibrary.h"
#endif
#include "llvm/Support/raw_ostream.h"
#if LLVM_VERSION_CODE < LLVM_VERSION(3, 0)
#include "llvm/Target/TargetSelect.h"
#else
#include "llvm/Support/TargetSelect.h"
#endif
#include <setjmp.h>
#include <signal.h>
#include <iostream>
using namespace llvm;
using namespace klee;
/***/
static jmp_buf escapeCallJmpBuf;
extern "C" {
static void sigsegv_handler(int signal, siginfo_t *info, void *context) {
longjmp(escapeCallJmpBuf, 1);
}
}
void *ExternalDispatcher::resolveSymbol(const std::string &name) {
assert(executionEngine);
const char *str = name.c_str();
// We use this to validate that function names can be resolved so we
// need to match how the JIT does it. Unfortunately we can't
// directly access the JIT resolution function
// JIT::getPointerToNamedFunction so we emulate the important points.
if (str[0] == 1) // asm specifier, skipped
++str;
void *addr = sys::DynamicLibrary::SearchForAddressOfSymbol(str);
if (addr)
return addr;
// If it has an asm specifier and starts with an underscore we retry
// without the underscore. I (DWD) don't know why.
if (name[0] == 1 && str[0]=='_') {
++str;
addr = sys::DynamicLibrary::SearchForAddressOfSymbol(str);
}
return addr;
}
ExternalDispatcher::ExternalDispatcher() {
dispatchModule = new Module("ExternalDispatcher", getGlobalContext());
#if LLVM_VERSION_CODE < LLVM_VERSION(2, 7)
ExistingModuleProvider* MP = new ExistingModuleProvider(dispatchModule);
#endif
std::string error;
#if LLVM_VERSION_CODE < LLVM_VERSION(2, 7)
executionEngine = ExecutionEngine::createJIT(MP, &error);
#else
executionEngine = ExecutionEngine::createJIT(dispatchModule, &error);
#endif
if (!executionEngine) {
std::cerr << "unable to make jit: " << error << "\n";
abort();
}
// If we have a native target, initialize it to ensure it is linked in and
// usable by the JIT.
llvm::InitializeNativeTarget();
// from ExecutionEngine::create
if (executionEngine) {
// Make sure we can resolve symbols in the program as well. The zero arg
// to the function tells DynamicLibrary to load the program, not a library.
sys::DynamicLibrary::LoadLibraryPermanently(0);
}
#ifdef WINDOWS
preboundFunctions["getpid"] = (void*) (long) getpid;
preboundFunctions["putchar"] = (void*) (long) putchar;
preboundFunctions["printf"] = (void*) (long) printf;
preboundFunctions["fprintf"] = (void*) (long) fprintf;
preboundFunctions["sprintf"] = (void*) (long) sprintf;
#endif
}
ExternalDispatcher::~ExternalDispatcher() {
delete executionEngine;
}
bool ExternalDispatcher::executeCall(Function *f, Instruction *i, uint64_t *args) {
dispatchers_ty::iterator it = dispatchers.find(i);
Function *dispatcher;
if (it == dispatchers.end()) {
#ifdef WINDOWS
std::map<std::string, void*>::iterator it2 =
preboundFunctions.find(f->getName()));
if (it2 != preboundFunctions.end()) {
// only bind once
if (it2->second) {
executionEngine->addGlobalMapping(f, it2->second);
it2->second = 0;
}
}
#endif
dispatcher = createDispatcher(f,i);
dispatchers.insert(std::make_pair(i, dispatcher));
if (dispatcher) {
// Force the JIT execution engine to go ahead and build the function. This
// ensures that any errors or assertions in the compilation process will
// trigger crashes instead of being caught as aborts in the external
// function.
executionEngine->recompileAndRelinkFunction(dispatcher);
}
} else {
dispatcher = it->second;
}
return runProtectedCall(dispatcher, args);
}
// FIXME: This is not reentrant.
static uint64_t *gTheArgsP;
bool ExternalDispatcher::runProtectedCall(Function *f, uint64_t *args) {
struct sigaction segvAction, segvActionOld;
bool res;
if (!f)
return false;
std::vector<GenericValue> gvArgs;
gTheArgsP = args;
segvAction.sa_handler = 0;
memset(&segvAction.sa_mask, 0, sizeof(segvAction.sa_mask));
segvAction.sa_flags = SA_SIGINFO;
segvAction.sa_sigaction = ::sigsegv_handler;
sigaction(SIGSEGV, &segvAction, &segvActionOld);
if (setjmp(escapeCallJmpBuf)) {
res = false;
} else {
executionEngine->runFunction(f, gvArgs);
res = true;
}
sigaction(SIGSEGV, &segvActionOld, 0);
return res;
}
// For performance purposes we construct the stub in such a way that the
// arguments pointer is passed through the static global variable gTheArgsP in
// this file. This is done so that the stub function prototype trivially matches
// the special cases that the JIT knows how to directly call. If this is not
// done, then the jit will end up generating a nullary stub just to call our
// stub, for every single function call.
Function *ExternalDispatcher::createDispatcher(Function *target, Instruction *inst) {
if (!resolveSymbol(target->getName()))
return 0;
CallSite cs;
if (inst->getOpcode()==Instruction::Call) {
cs = CallSite(cast<CallInst>(inst));
} else {
cs = CallSite(cast<InvokeInst>(inst));
}
Value **args = new Value*[cs.arg_size()];
std::vector<LLVM_TYPE_Q Type*> nullary;
Function *dispatcher = Function::Create(FunctionType::get(Type::getVoidTy(getGlobalContext()),
nullary, false),
GlobalVariable::ExternalLinkage,
"",
dispatchModule);
BasicBlock *dBB = BasicBlock::Create(getGlobalContext(), "entry", dispatcher);
// Get a Value* for &gTheArgsP, as an i64**.
Instruction *argI64sp =
new IntToPtrInst(ConstantInt::get(Type::getInt64Ty(getGlobalContext()),
(uintptr_t) (void*) &gTheArgsP),
PointerType::getUnqual(PointerType::getUnqual(Type::getInt64Ty(getGlobalContext()))),
"argsp", dBB);
Instruction *argI64s = new LoadInst(argI64sp, "args", dBB);
// Get the target function type.
LLVM_TYPE_Q FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(target->getType())->getElementType());
// Each argument will be passed by writing it into gTheArgsP[i].
unsigned i = 0, idx = 2;
for (CallSite::arg_iterator ai = cs.arg_begin(), ae = cs.arg_end();
ai!=ae; ++ai, ++i) {
// Determine the type the argument will be passed as. This accomodates for
// the corresponding code in Executor.cpp for handling calls to bitcasted
// functions.
LLVM_TYPE_Q Type *argTy = (i < FTy->getNumParams() ? FTy->getParamType(i) :
(*ai)->getType());
Instruction *argI64p =
GetElementPtrInst::Create(argI64s,
ConstantInt::get(Type::getInt32Ty(getGlobalContext()),
idx),
"", dBB);
Instruction *argp = new BitCastInst(argI64p, PointerType::getUnqual(argTy),
"", dBB);
args[i] = new LoadInst(argp, "", dBB);
unsigned argSize = argTy->getPrimitiveSizeInBits();
idx += ((!!argSize ? argSize : 64) + 63)/64;
}
Constant *dispatchTarget =
dispatchModule->getOrInsertFunction(target->getName(), FTy,
target->getAttributes());
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 0)
Instruction *result = CallInst::Create(dispatchTarget,
llvm::ArrayRef<Value *>(args, args+i),
"", dBB);
#else
Instruction *result = CallInst::Create(dispatchTarget, args, args+i, "", dBB);
#endif
if (result->getType() != Type::getVoidTy(getGlobalContext())) {
Instruction *resp =
new BitCastInst(argI64s, PointerType::getUnqual(result->getType()),
"", dBB);
new StoreInst(result, resp, dBB);
}
ReturnInst::Create(getGlobalContext(), dBB);
delete[] args;
return dispatcher;
}
|