about summary refs log tree commit diff homepage
path: root/lib/Core/SpecialFunctionHandler.cpp
blob: 3070da41b1d6c21cb5e6ce3dceedf77c9f40fad3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
//===-- SpecialFunctionHandler.cpp ----------------------------------------===//
//
//                     The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Common.h"

#include "Memory.h"
#include "SpecialFunctionHandler.h"
#include "TimingSolver.h"

#include "klee/ExecutionState.h"

#include "klee/Internal/Module/KInstruction.h"
#include "klee/Internal/Module/KModule.h"

#include "Executor.h"
#include "MemoryManager.h"

#include "llvm/Module.h"

#include <errno.h>

using namespace llvm;
using namespace klee;

/// \todo Almost all of the demands in this file should be replaced
/// with terminateState calls.

///

struct HandlerInfo {
  const char *name;
  SpecialFunctionHandler::Handler handler;
  bool doesNotReturn; /// Intrinsic terminates the process
  bool hasReturnValue; /// Intrinsic has a return value
  bool doNotOverride; /// Intrinsic should not be used if already defined
};

// FIXME: We are more or less committed to requiring an intrinsic
// library these days. We can move some of this stuff there,
// especially things like realloc which have complicated semantics
// w.r.t. forking. Among other things this makes delayed query
// dispatch easier to implement.
HandlerInfo handlerInfo[] = {
#define add(name, handler, ret) { name, \
                                  &SpecialFunctionHandler::handler, \
                                  false, ret, false }
#define addDNR(name, handler) { name, \
                                &SpecialFunctionHandler::handler, \
                                true, false, false }
  addDNR("__assert_rtn", handleAssertFail),
  addDNR("__assert_fail", handleAssertFail),
  addDNR("_assert", handleAssert),
  addDNR("abort", handleAbort),
  addDNR("_exit", handleExit),
  { "exit", &SpecialFunctionHandler::handleExit, true, false, true },
  addDNR("klee_abort", handleAbort),
  addDNR("klee_silent_exit", handleSilentExit),  
  addDNR("klee_report_error", handleReportError),

  add("calloc", handleCalloc, true),
  add("free", handleFree, false),
  add("klee_assume", handleAssume, false),
  add("klee_check_memory_access", handleCheckMemoryAccess, false),
  add("klee_get_value", handleGetValue, true),
  add("klee_define_fixed_object", handleDefineFixedObject, false),
  add("klee_get_obj_size", handleGetObjSize, true),
  add("klee_get_errno", handleGetErrno, true),
  add("klee_is_symbolic", handleIsSymbolic, true),
  add("klee_make_symbolic", handleMakeSymbolic, false),
  add("klee_mark_global", handleMarkGlobal, false),
  add("klee_merge", handleMerge, false),
  add("klee_prefer_cex", handlePreferCex, false),
  add("klee_print_expr", handlePrintExpr, false),
  add("klee_print_range", handlePrintRange, false),
  add("klee_set_forking", handleSetForking, false),
  add("klee_warning", handleWarning, false),
  add("klee_warning_once", handleWarningOnce, false),
  add("klee_alias_function", handleAliasFunction, false),
  add("malloc", handleMalloc, true),
  add("realloc", handleRealloc, true),

  // operator delete[](void*)
  add("_ZdaPv", handleDeleteArray, false),
  // operator delete(void*)
  add("_ZdlPv", handleDelete, false),

  // operator new[](unsigned int)
  add("_Znaj", handleNewArray, true),
  // operator new(unsigned int)
  add("_Znwj", handleNew, true),

  // FIXME-64: This is wrong for 64-bit long...

  // operator new[](unsigned long)
  add("_Znam", handleNewArray, true),
  // operator new(unsigned long)
  add("_Znwm", handleNew, true),

#undef addDNR
#undef add  
};

SpecialFunctionHandler::SpecialFunctionHandler(Executor &_executor) 
  : executor(_executor) {}


void SpecialFunctionHandler::prepare() {
  unsigned N = sizeof(handlerInfo)/sizeof(handlerInfo[0]);

  for (unsigned i=0; i<N; ++i) {
    HandlerInfo &hi = handlerInfo[i];
    Function *f = executor.kmodule->module->getFunction(hi.name);
    
    // No need to create if the function doesn't exist, since it cannot
    // be called in that case.
  
    if (f && (!hi.doNotOverride || f->isDeclaration())) {
      // Make sure NoReturn attribute is set, for optimization and
      // coverage counting.
      if (hi.doesNotReturn)
        f->addFnAttr(Attribute::NoReturn);

      // Change to a declaration since we handle internally (simplifies
      // module and allows deleting dead code).
      if (!f->isDeclaration())
        f->deleteBody();
    }
  }
}

void SpecialFunctionHandler::bind() {
  unsigned N = sizeof(handlerInfo)/sizeof(handlerInfo[0]);

  for (unsigned i=0; i<N; ++i) {
    HandlerInfo &hi = handlerInfo[i];
    Function *f = executor.kmodule->module->getFunction(hi.name);
    
    if (f && (!hi.doNotOverride || f->isDeclaration()))
      handlers[f] = std::make_pair(hi.handler, hi.hasReturnValue);
  }
}


bool SpecialFunctionHandler::handle(ExecutionState &state, 
                                    Function *f,
                                    KInstruction *target,
                                    std::vector< ref<Expr> > &arguments) {
  handlers_ty::iterator it = handlers.find(f);
  if (it != handlers.end()) {    
    Handler h = it->second.first;
    bool hasReturnValue = it->second.second;
     // FIXME: Check this... add test?
    if (!hasReturnValue && !target->inst->use_empty()) {
      executor.terminateStateOnExecError(state, 
                                         "expected return value from void special function");
    } else {
      (this->*h)(state, target, arguments);
    }
    return true;
  } else {
    return false;
  }
}

/****/

// reads a concrete string from memory
std::string 
SpecialFunctionHandler::readStringAtAddress(ExecutionState &state, 
                                            ref<Expr> addressExpr) {
  ObjectPair op;
  addressExpr = executor.toUnique(state, addressExpr);
  ref<ConstantExpr> address = cast<ConstantExpr>(addressExpr);
  if (!state.addressSpace.resolveOne(address, op))
    assert(0 && "XXX out of bounds / multiple resolution unhandled");
  bool res;
  assert(executor.solver->mustBeTrue(state, 
                                     EqExpr::create(address, 
                                                    op.first->getBaseExpr()),
                                     res) &&
         res &&
         "XXX interior pointer unhandled");
  const MemoryObject *mo = op.first;
  const ObjectState *os = op.second;

  char *buf = new char[mo->size];

  unsigned i;
  for (i = 0; i < mo->size - 1; i++) {
    ref<Expr> cur = os->read8(i);
    cur = executor.toUnique(state, cur);
    assert(isa<ConstantExpr>(cur) && 
           "hit symbolic char while reading concrete string");
    buf[i] = cast<ConstantExpr>(cur)->getZExtValue(8);
  }
  buf[i] = 0;
  
  std::string result(buf);
  delete[] buf;
  return result;
}

/****/

void SpecialFunctionHandler::handleAbort(ExecutionState &state,
                           KInstruction *target,
                           std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==0 && "invalid number of arguments to abort");

  //XXX:DRE:TAINT
  if(state.underConstrained) {
    llvm::cerr << "TAINT: skipping abort fail\n";
    executor.terminateState(state);
  } else {
    executor.terminateStateOnError(state, "abort failure", "abort.err");
  }
}

void SpecialFunctionHandler::handleExit(ExecutionState &state,
                           KInstruction *target,
                           std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==1 && "invalid number of arguments to exit");
  executor.terminateStateOnExit(state);
}

void SpecialFunctionHandler::handleSilentExit(ExecutionState &state,
                                              KInstruction *target,
                                              std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==1 && "invalid number of arguments to exit");
  executor.terminateState(state);
}

void SpecialFunctionHandler::handleAliasFunction(ExecutionState &state,
						 KInstruction *target,
						 std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==2 && 
         "invalid number of arguments to klee_alias_function");
  std::string old_fn = readStringAtAddress(state, arguments[0]);
  std::string new_fn = readStringAtAddress(state, arguments[1]);
  //llvm::cerr << "Replacing " << old_fn << "() with " << new_fn << "()\n";
  if (old_fn == new_fn)
    state.removeFnAlias(old_fn);
  else state.addFnAlias(old_fn, new_fn);
}

void SpecialFunctionHandler::handleAssert(ExecutionState &state,
                                          KInstruction *target,
                                          std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==3 && "invalid number of arguments to _assert");  
  
  //XXX:DRE:TAINT
  if(state.underConstrained) {
    llvm::cerr << "TAINT: skipping assertion:" 
               << readStringAtAddress(state, arguments[0]) << "\n";
    executor.terminateState(state);
  } else
    executor.terminateStateOnError(state, 
                                   "ASSERTION FAIL: " + readStringAtAddress(state, arguments[0]),
                                   "assert.err");
}

void SpecialFunctionHandler::handleAssertFail(ExecutionState &state,
                                              KInstruction *target,
                                              std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==4 && "invalid number of arguments to __assert_fail");
  
  //XXX:DRE:TAINT
  if(state.underConstrained) {
    llvm::cerr << "TAINT: skipping assertion:" 
               << readStringAtAddress(state, arguments[0]) << "\n";
    executor.terminateState(state);
  } else
    executor.terminateStateOnError(state, 
                                   "ASSERTION FAIL: " + readStringAtAddress(state, arguments[0]),
                                   "assert.err");
}

void SpecialFunctionHandler::handleReportError(ExecutionState &state,
                                               KInstruction *target,
                                               std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==4 && "invalid number of arguments to klee_report_error");
  
  // arguments[0], arguments[1] are file, line
  
  //XXX:DRE:TAINT
  if(state.underConstrained) {
    llvm::cerr << "TAINT: skipping klee_report_error:"
               << readStringAtAddress(state, arguments[2]) << ":"
               << readStringAtAddress(state, arguments[3]) << "\n";
    executor.terminateState(state);
  } else
    executor.terminateStateOnError(state, 
                                   readStringAtAddress(state, arguments[2]),
                                   readStringAtAddress(state, arguments[3]));
}

void SpecialFunctionHandler::handleMerge(ExecutionState &state,
                           KInstruction *target,
                           std::vector<ref<Expr> > &arguments) {
  // nop
}

void SpecialFunctionHandler::handleNew(ExecutionState &state,
                         KInstruction *target,
                         std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==1 && "invalid number of arguments to new");

  executor.executeAlloc(state, arguments[0], false, target);
}

void SpecialFunctionHandler::handleDelete(ExecutionState &state,
                            KInstruction *target,
                            std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==1 && "invalid number of arguments to delete");
  executor.executeFree(state, arguments[0]);
}

void SpecialFunctionHandler::handleNewArray(ExecutionState &state,
                              KInstruction *target,
                              std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==1 && "invalid number of arguments to new[]");
  executor.executeAlloc(state, arguments[0], false, target);
}

void SpecialFunctionHandler::handleDeleteArray(ExecutionState &state,
                                 KInstruction *target,
                                 std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==1 && "invalid number of arguments to delete[]");
  executor.executeFree(state, arguments[0]);
}

void SpecialFunctionHandler::handleMalloc(ExecutionState &state,
                                  KInstruction *target,
                                  std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==1 && "invalid number of arguments to malloc");
  executor.executeAlloc(state, arguments[0], false, target);
}

void SpecialFunctionHandler::handleAssume(ExecutionState &state,
                            KInstruction *target,
                            std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==1 && "invalid number of arguments to klee_assume");
  
  ref<Expr> e = arguments[0];
  
  if (e->getWidth() != Expr::Bool)
    e = NeExpr::create(e, ConstantExpr::create(0, e->getWidth()));
  
  bool res;
  bool success = executor.solver->mustBeFalse(state, e, res);
  assert(success && "FIXME: Unhandled solver failure");
  if (res) {
    executor.terminateStateOnError(state, 
                                   "invalid klee_assume call (provably false)",
                                   "user.err");
  } else {
    executor.addConstraint(state, e);
  }
}

void SpecialFunctionHandler::handleIsSymbolic(ExecutionState &state,
                                KInstruction *target,
                                std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==1 && "invalid number of arguments to klee_is_symbolic");

  executor.bindLocal(target, state, 
                     ConstantExpr::create(!isa<ConstantExpr>(arguments[0]),
                                          Expr::Int32));
}

void SpecialFunctionHandler::handlePreferCex(ExecutionState &state,
                                             KInstruction *target,
                                             std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==2 &&
         "invalid number of arguments to klee_prefex_cex");

  ref<Expr> cond = arguments[1];
  if (cond->getWidth() != Expr::Bool)
    cond = NeExpr::create(cond, ConstantExpr::alloc(0, cond->getWidth()));

  Executor::ExactResolutionList rl;
  executor.resolveExact(state, arguments[0], rl, "prefex_cex");
  
  assert(rl.size() == 1 &&
         "prefer_cex target must resolve to precisely one object");

  rl[0].first.first->cexPreferences.push_back(cond);
}

void SpecialFunctionHandler::handlePrintExpr(ExecutionState &state,
                                  KInstruction *target,
                                  std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==2 &&
         "invalid number of arguments to klee_print_expr");

  std::string msg_str = readStringAtAddress(state, arguments[0]);
  llvm::cerr << msg_str << ":" << arguments[1] << "\n";
}

void SpecialFunctionHandler::handleSetForking(ExecutionState &state,
                                              KInstruction *target,
                                              std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==1 &&
         "invalid number of arguments to klee_set_forking");
  ref<Expr> value = executor.toUnique(state, arguments[0]);
  
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(value)) {
    state.forkDisabled = CE->isZero();
  } else {
    executor.terminateStateOnError(state, 
                                   "klee_set_forking requires a constant arg",
                                   "user.err");
  }
}

void SpecialFunctionHandler::handleWarning(ExecutionState &state,
                                           KInstruction *target,
                                           std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==1 && "invalid number of arguments to klee_warning");

  std::string msg_str = readStringAtAddress(state, arguments[0]);
  klee_warning("%s: %s", state.stack.back().kf->function->getName().c_str(), 
               msg_str.c_str());
}

void SpecialFunctionHandler::handleWarningOnce(ExecutionState &state,
                                               KInstruction *target,
                                               std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==1 &&
         "invalid number of arguments to klee_warning_once");

  std::string msg_str = readStringAtAddress(state, arguments[0]);
  klee_warning_once(0, "%s: %s", state.stack.back().kf->function->getName().c_str(), 
                    msg_str.c_str());
}

void SpecialFunctionHandler::handlePrintRange(ExecutionState &state,
                                  KInstruction *target,
                                  std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==2 &&
         "invalid number of arguments to klee_print_range");

  std::string msg_str = readStringAtAddress(state, arguments[0]);
  llvm::cerr << msg_str << ":" << arguments[1];
  if (!isa<ConstantExpr>(arguments[1])) {
    // FIXME: Pull into a unique value method?
    ref<ConstantExpr> value;
    bool success = executor.solver->getValue(state, arguments[1], value);
    assert(success && "FIXME: Unhandled solver failure");
    bool res;
    success = executor.solver->mustBeTrue(state, 
                                          EqExpr::create(arguments[1], value), 
                                          res);
    assert(success && "FIXME: Unhandled solver failure");
    if (res) {
      llvm::cerr << " == " << value;
    } else { 
      llvm::cerr << " ~= " << value;
      std::pair< ref<Expr>, ref<Expr> > res =
        executor.solver->getRange(state, arguments[1]);
      llvm::cerr << " (in [" << res.first << ", " << res.second <<"])";
    }
  }
  llvm::cerr << "\n";
}

void SpecialFunctionHandler::handleGetObjSize(ExecutionState &state,
                                  KInstruction *target,
                                  std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==1 &&
         "invalid number of arguments to klee_get_obj_size");
  Executor::ExactResolutionList rl;
  executor.resolveExact(state, arguments[0], rl, "klee_get_obj_size");
  for (Executor::ExactResolutionList::iterator it = rl.begin(), 
         ie = rl.end(); it != ie; ++it) {
    executor.bindLocal(target, *it->second, 
                       ConstantExpr::create(it->first.first->size, Expr::Int32));
  }
}

void SpecialFunctionHandler::handleGetErrno(ExecutionState &state,
                                            KInstruction *target,
                                            std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==0 &&
         "invalid number of arguments to klee_get_obj_size");
  executor.bindLocal(target, state,
                     ConstantExpr::create(errno, Expr::Int32));
}

void SpecialFunctionHandler::handleCalloc(ExecutionState &state,
                            KInstruction *target,
                            std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==2 &&
         "invalid number of arguments to calloc");

  ref<Expr> size = MulExpr::create(arguments[0],
                                   arguments[1]);
  executor.executeAlloc(state, size, false, target, true);
}

void SpecialFunctionHandler::handleRealloc(ExecutionState &state,
                            KInstruction *target,
                            std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==2 &&
         "invalid number of arguments to realloc");
  ref<Expr> address = arguments[0];
  ref<Expr> size = arguments[1];

  Executor::StatePair zeroSize = executor.fork(state, 
                                               Expr::createIsZero(size), 
                                               true);
  
  if (zeroSize.first) { // size == 0
    executor.executeFree(*zeroSize.first, address, target);   
  }
  if (zeroSize.second) { // size != 0
    Executor::StatePair zeroPointer = executor.fork(*zeroSize.second, 
                                                    Expr::createIsZero(address), 
                                                    true);
    
    if (zeroPointer.first) { // address == 0
      executor.executeAlloc(*zeroPointer.first, size, false, target);
    } 
    if (zeroPointer.second) { // address != 0
      Executor::ExactResolutionList rl;
      executor.resolveExact(*zeroPointer.second, address, rl, "realloc");
      
      for (Executor::ExactResolutionList::iterator it = rl.begin(), 
             ie = rl.end(); it != ie; ++it) {
        executor.executeAlloc(*it->second, size, false, target, false, 
                              it->first.second);
      }
    }
  }
}

void SpecialFunctionHandler::handleFree(ExecutionState &state,
                          KInstruction *target,
                          std::vector<ref<Expr> > &arguments) {
  // XXX should type check args
  assert(arguments.size()==1 &&
         "invalid number of arguments to free");
  executor.executeFree(state, arguments[0]);
}

void SpecialFunctionHandler::handleCheckMemoryAccess(ExecutionState &state,
                                                     KInstruction *target,
                                                     std::vector<ref<Expr> > 
                                                       &arguments) {
  assert(arguments.size()==2 &&
         "invalid number of arguments to klee_check_memory_access");

  ref<Expr> address = executor.toUnique(state, arguments[0]);
  ref<Expr> size = executor.toUnique(state, arguments[1]);
  if (!isa<ConstantExpr>(address) || !isa<ConstantExpr>(size)) {
    executor.terminateStateOnError(state, 
                                   "check_memory_access requires constant args",
                                   "user.err");
  } else {
    ObjectPair op;

    if (!state.addressSpace.resolveOne(cast<ConstantExpr>(address), op)) {
      executor.terminateStateOnError(state,
                                     "check_memory_access: memory error",
                                     "ptr.err",
                                     executor.getAddressInfo(state, address));
    } else {
      ref<Expr> chk = op.first->getBoundsCheckPointer(address, 
                                                      cast<ConstantExpr>(size)->getConstantValue());
      if (!chk->isTrue()) {
        executor.terminateStateOnError(state,
                                       "check_memory_access: memory error",
                                       "ptr.err",
                                       executor.getAddressInfo(state, address));
      }
    }
  }
}

void SpecialFunctionHandler::handleGetValue(ExecutionState &state,
                                            KInstruction *target,
                                            std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==1 &&
         "invalid number of arguments to klee_get_value");

  executor.executeGetValue(state, arguments[0], target);
}

void SpecialFunctionHandler::handleDefineFixedObject(ExecutionState &state,
                                                     KInstruction *target,
                                                     std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==2 &&
         "invalid number of arguments to klee_define_fixed_object");
  assert(isa<ConstantExpr>(arguments[0]) &&
         "expect constant address argument to klee_define_fixed_object");
  assert(isa<ConstantExpr>(arguments[1]) &&
         "expect constant size argument to klee_define_fixed_object");
  
  uint64_t address = cast<ConstantExpr>(arguments[0])->getZExtValue();
  uint64_t size = cast<ConstantExpr>(arguments[1])->getZExtValue();
  MemoryObject *mo = executor.memory->allocateFixed(address, size, state.prevPC->inst);
  executor.bindObjectInState(state, mo, false);
  mo->isUserSpecified = true; // XXX hack;
}

void SpecialFunctionHandler::handleMakeSymbolic(ExecutionState &state,
                                                KInstruction *target,
                                                std::vector<ref<Expr> > &arguments) {
  std::string name;

  // FIXME: For backwards compatibility, we should eventually enforce the
  // correct arguments.
  if (arguments.size() == 2) {
    name = "unnamed";
  } else {
    // FIXME: Should be a user.err, not an assert.
    assert(arguments.size()==3 &&
           "invalid number of arguments to klee_make_symbolic");  
    name = readStringAtAddress(state, arguments[2]);
  }

  Executor::ExactResolutionList rl;
  executor.resolveExact(state, arguments[0], rl, "make_symbolic");
  
  for (Executor::ExactResolutionList::iterator it = rl.begin(), 
         ie = rl.end(); it != ie; ++it) {
    MemoryObject *mo = (MemoryObject*) it->first.first;
    mo->setName(name);
    
    const ObjectState *old = it->first.second;
    ExecutionState *s = it->second;
    
    if (old->readOnly) {
      executor.terminateStateOnError(*s, 
                                     "cannot make readonly object symbolic", 
                                     "user.err");
      return;
    } 

    bool res;
    bool success =
      executor.solver->mustBeTrue(*s, EqExpr::create(arguments[1],
                                                     mo->getSizeExpr()),
                                  res);
    assert(success && "FIXME: Unhandled solver failure");
    
    if (res) {
      executor.executeMakeSymbolic(*s, mo);
    } else {      
      executor.terminateStateOnError(*s, 
                                     "wrong size given to klee_make_symbolic[_name]", 
                                     "user.err");
    }
  }
}

void SpecialFunctionHandler::handleMarkGlobal(ExecutionState &state,
                                              KInstruction *target,
                                              std::vector<ref<Expr> > &arguments) {
  assert(arguments.size()==1 &&
         "invalid number of arguments to klee_mark_global");  

  Executor::ExactResolutionList rl;
  executor.resolveExact(state, arguments[0], rl, "mark_global");
  
  for (Executor::ExactResolutionList::iterator it = rl.begin(), 
         ie = rl.end(); it != ie; ++it) {
    MemoryObject *mo = (MemoryObject*) it->first.first;
    assert(!mo->isLocal);
    mo->isGlobal = true;
  }
}