1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
|
//===-- Parser.cpp --------------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "expr/Parser.h"
#include "expr/Lexer.h"
#include "klee/Constraints.h"
#include "klee/Solver.h"
#include "klee/util/ExprPPrinter.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Streams.h"
#include <cassert>
#include <iostream>
#include <map>
#include <cstring>
using namespace llvm;
using namespace klee;
using namespace klee::expr;
namespace {
/// ParseResult - Represent a possibly invalid parse result.
template<typename T>
struct ParseResult {
bool IsValid;
T Value;
public:
ParseResult() : IsValid(false) {}
ParseResult(T _Value) : IsValid(true), Value(_Value) {}
ParseResult(bool _IsValid, T _Value) : IsValid(_IsValid), Value(_Value) {}
bool isValid() {
return IsValid;
}
T get() {
assert(IsValid && "get() on invalid ParseResult!");
return Value;
}
};
class ExprResult {
bool IsValid;
ExprHandle Value;
public:
ExprResult() : IsValid(false) {}
ExprResult(ExprHandle _Value) : IsValid(true), Value(_Value) {}
ExprResult(ref<ConstantExpr> _Value) : IsValid(true), Value(_Value.get()) {}
ExprResult(bool _IsValid, ExprHandle _Value) : IsValid(_IsValid), Value(_Value) {}
bool isValid() {
return IsValid;
}
ExprHandle get() {
assert(IsValid && "get() on invalid ParseResult!");
return Value;
}
};
typedef ParseResult<Decl*> DeclResult;
typedef ParseResult<Expr::Width> TypeResult;
typedef ParseResult<VersionHandle> VersionResult;
/// NumberOrExprResult - Represent a number or expression. This is used to
/// wrap an expression production which may be a number, but for
/// which the type width is unknown.
class NumberOrExprResult {
Token AsNumber;
ExprResult AsExpr;
bool IsNumber;
public:
NumberOrExprResult() : IsNumber(false) {}
explicit NumberOrExprResult(Token _AsNumber) : AsNumber(_AsNumber),
IsNumber(true) {}
explicit NumberOrExprResult(ExprResult _AsExpr) : AsExpr(_AsExpr),
IsNumber(false) {}
bool isNumber() const { return IsNumber; }
const Token &getNumber() const {
assert(IsNumber && "Invalid accessor call.");
return AsNumber;
}
const ExprResult &getExpr() const {
assert(!IsNumber && "Invalid accessor call.");
return AsExpr;
}
};
/// ParserImpl - Parser implementation.
class ParserImpl : public Parser {
typedef std::map<const std::string, const Identifier*> IdentifierTabTy;
typedef std::map<const Identifier*, ExprHandle> ExprSymTabTy;
typedef std::map<const Identifier*, VersionHandle> VersionSymTabTy;
const std::string Filename;
const MemoryBuffer *TheMemoryBuffer;
Lexer TheLexer;
unsigned MaxErrors;
unsigned NumErrors;
// FIXME: Use LLVM symbol tables?
IdentifierTabTy IdentifierTab;
std::map<const Identifier*, const ArrayDecl*> ArraySymTab;
ExprSymTabTy ExprSymTab;
VersionSymTabTy VersionSymTab;
/// Tok - The currently lexed token.
Token Tok;
/// ParenLevel - The current depth of matched '(' tokens.
unsigned ParenLevel;
/// SquareLevel - The current depth of matched '[' tokens.
unsigned SquareLevel;
/* Core parsing functionality */
const Identifier *GetOrCreateIdentifier(const Token &Tok);
void GetNextNonCommentToken() {
do {
TheLexer.Lex(Tok);
} while (Tok.kind == Token::Comment);
}
/// ConsumeToken - Consume the current 'peek token' and lex the next one.
void ConsumeToken() {
assert(Tok.kind != Token::LParen && Tok.kind != Token::RParen);
GetNextNonCommentToken();
}
/// ConsumeExpectedToken - Check that the current token is of the
/// expected kind and consume it.
void ConsumeExpectedToken(Token::Kind k) {
assert(Tok.kind == k && "Unexpected token!");
GetNextNonCommentToken();
}
void ConsumeLParen() {
++ParenLevel;
ConsumeExpectedToken(Token::LParen);
}
void ConsumeRParen() {
if (ParenLevel) // Cannot go below zero.
--ParenLevel;
ConsumeExpectedToken(Token::RParen);
}
void ConsumeLSquare() {
++SquareLevel;
ConsumeExpectedToken(Token::LSquare);
}
void ConsumeRSquare() {
if (SquareLevel) // Cannot go below zero.
--SquareLevel;
ConsumeExpectedToken(Token::RSquare);
}
void ConsumeAnyToken() {
switch (Tok.kind) {
case Token::LParen: return ConsumeLParen();
case Token::RParen: return ConsumeRParen();
case Token::LSquare: return ConsumeLSquare();
case Token::RSquare: return ConsumeRSquare();
default:
return ConsumeToken();
}
}
/* Utility functions */
/// SkipUntilRParen - Scan forward to the next token following an
/// rparen at the given level, or EOF, whichever is first.
void SkipUntilRParen(unsigned Level) {
// FIXME: I keep wavering on whether it is an error to call this
// with the current token an rparen. In most cases this should
// have been handled differently (error reported,
// whatever). Audit & resolve.
assert(Level <= ParenLevel &&
"Refusing to skip until rparen at higher level.");
while (Tok.kind != Token::EndOfFile) {
if (Tok.kind == Token::RParen && ParenLevel == Level) {
ConsumeRParen();
break;
}
ConsumeAnyToken();
}
}
/// SkipUntilRParen - Scan forward until reaching an rparen token
/// at the current level (or EOF).
void SkipUntilRParen() {
SkipUntilRParen(ParenLevel);
}
/// ExpectRParen - Utility method to close an sexp. This expects to
/// eat an rparen, and emits a diagnostic and skips to the next one
/// (or EOF) if it cannot.
void ExpectRParen(const char *Msg) {
if (Tok.kind == Token::EndOfFile) {
// FIXME: Combine with Msg
Error("expected ')' but found end-of-file.", Tok);
} else if (Tok.kind != Token::RParen) {
Error(Msg, Tok);
SkipUntilRParen();
} else {
ConsumeRParen();
}
}
/// SkipUntilRSquare - Scan forward to the next token following an
/// rsquare at the given level, or EOF, whichever is first.
void SkipUntilRSquare(unsigned Level) {
// FIXME: I keep wavering on whether it is an error to call this
// with the current token an rparen. In most cases this should
// have been handled differently (error reported,
// whatever). Audit & resolve.
assert(Level <= ParenLevel &&
"Refusing to skip until rparen at higher level.");
while (Tok.kind != Token::EndOfFile) {
if (Tok.kind == Token::RSquare && ParenLevel == Level) {
ConsumeRSquare();
break;
}
ConsumeAnyToken();
}
}
/// SkipUntilRSquare - Scan forward until reaching an rsquare token
/// at the current level (or EOF).
void SkipUntilRSquare() {
SkipUntilRSquare(ParenLevel);
}
/// ExpectRSquare - Utility method to close an array. This expects
/// to eat an rparen, and emits a diagnostic and skips to the next
/// one (or EOF) if it cannot.
void ExpectRSquare(const char *Msg) {
if (Tok.kind == Token::EndOfFile) {
// FIXME: Combine with Msg
Error("expected ']' but found end-of-file.", Tok);
} else if (Tok.kind != Token::RSquare) {
Error(Msg, Tok);
SkipUntilRSquare();
} else {
ConsumeRSquare();
}
}
/*** Grammar productions ****/
/* Top level decls */
DeclResult ParseArrayDecl();
DeclResult ParseExprVarDecl();
DeclResult ParseVersionVarDecl();
DeclResult ParseCommandDecl();
/* Commands */
DeclResult ParseQueryCommand();
/* Etc. */
NumberOrExprResult ParseNumberOrExpr();
ExprResult ParseExpr(TypeResult ExpectedType);
ExprResult ParseParenExpr(TypeResult ExpectedType);
ExprResult ParseUnaryParenExpr(const Token &Name,
unsigned Kind, bool IsFixed,
Expr::Width ResTy);
ExprResult ParseBinaryParenExpr(const Token &Name,
unsigned Kind, bool IsFixed,
Expr::Width ResTy);
ExprResult ParseSelectParenExpr(const Token &Name, Expr::Width ResTy);
ExprResult ParseConcatParenExpr(const Token &Name, Expr::Width ResTy);
ExprResult ParseExtractParenExpr(const Token &Name, Expr::Width ResTy);
ExprResult ParseAnyReadParenExpr(const Token &Name,
unsigned Kind,
Expr::Width ResTy);
void ParseMatchedBinaryArgs(const Token &Name,
TypeResult ExpectType,
ExprResult &LHS, ExprResult &RHS);
ExprResult ParseNumber(Expr::Width Width);
ExprResult ParseNumberToken(Expr::Width Width, const Token &Tok);
VersionResult ParseVersionSpecifier();
VersionResult ParseVersion();
TypeResult ParseTypeSpecifier();
/*** Diagnostics ***/
void Error(const char *Message, const Token &At);
void Error(const char *Message) { Error(Message, Tok); }
public:
ParserImpl(const std::string _Filename,
const MemoryBuffer *MB) : Filename(_Filename),
TheMemoryBuffer(MB),
TheLexer(MB),
MaxErrors(~0u),
NumErrors(0) {}
/// Initialize - Initialize the parsing state. This must be called
/// prior to the start of parsing.
void Initialize() {
ParenLevel = SquareLevel = 0;
ConsumeAnyToken();
}
/* Parser interface implementation */
virtual Decl *ParseTopLevelDecl();
virtual void SetMaxErrors(unsigned N) {
MaxErrors = N;
}
virtual unsigned GetNumErrors() const {
return NumErrors;
}
};
}
const Identifier *ParserImpl::GetOrCreateIdentifier(const Token &Tok) {
// FIXME: Make not horribly inefficient please.
assert(Tok.kind == Token::Identifier && "Expected only identifier tokens.");
std::string Name(Tok.start, Tok.length);
IdentifierTabTy::iterator it = IdentifierTab.find(Name);
if (it != IdentifierTab.end())
return it->second;
Identifier *I = new Identifier(Name);
IdentifierTab.insert(std::make_pair(Name, I));
return I;
}
Decl *ParserImpl::ParseTopLevelDecl() {
// Repeat until success or EOF.
while (Tok.kind != Token::EndOfFile) {
// Only handle commands for now.
if (Tok.kind == Token::LParen) {
DeclResult Res = ParseCommandDecl();
if (Res.isValid())
return Res.get();
} else {
Error("expected '(' token.");
ConsumeAnyToken();
}
}
return 0;
}
/// ParseCommandDecl - Parse a command declaration. The lexer should
/// be positioned at the opening '('.
///
/// command = '(' name ... ')'
DeclResult ParserImpl::ParseCommandDecl() {
ConsumeLParen();
if (!Tok.isKeyword()) {
Error("malformed command.");
SkipUntilRParen();
return DeclResult();
}
switch (Tok.kind) {
case Token::KWQuery:
return ParseQueryCommand();
default:
Error("malformed command (unexpected keyword).");
SkipUntilRParen();
return DeclResult();
}
}
/// ParseQueryCommand - Parse query command. The lexer should be
/// positioned at the 'query' keyword.
///
/// 'query' expressions-list expression [expressions-list [array-list]]
DeclResult ParserImpl::ParseQueryCommand() {
std::vector<ExprHandle> Constraints;
std::vector<ExprHandle> Values;
std::vector<const Array*> Objects;
ExprResult Res;
// FIXME: We need a command for this. Or something.
ExprSymTab.clear();
VersionSymTab.clear();
ConsumeExpectedToken(Token::KWQuery);
if (Tok.kind != Token::LSquare) {
Error("malformed query, expected constraint list.");
SkipUntilRParen();
return DeclResult();
}
ConsumeExpectedToken(Token::LSquare);
// FIXME: Should avoid reading past unbalanced parens here.
while (Tok.kind != Token::RSquare) {
if (Tok.kind == Token::EndOfFile) {
Error("unexpected end of file.");
Res = ExprResult(ConstantExpr::alloc(0, Expr::Bool));
goto exit;
}
ExprResult Constraint = ParseExpr(TypeResult(Expr::Bool));
if (Constraint.isValid())
Constraints.push_back(Constraint.get());
}
ConsumeRSquare();
Res = ParseExpr(TypeResult(Expr::Bool));
if (!Res.isValid()) // Error emitted by ParseExpr.
Res = ExprResult(ConstantExpr::alloc(0, Expr::Bool));
// Return if there are no optional lists of things to evaluate.
if (Tok.kind == Token::RParen)
goto exit;
ConsumeExpectedToken(Token::LSquare);
// FIXME: Should avoid reading past unbalanced parens here.
while (Tok.kind != Token::RSquare) {
if (Tok.kind == Token::EndOfFile) {
Error("unexpected end of file.");
goto exit;
}
ExprResult Res = ParseExpr(TypeResult());
if (Res.isValid())
Values.push_back(Res.get());
}
ConsumeRSquare();
// Return if there are no optional lists of things to evaluate.
if (Tok.kind == Token::RParen)
goto exit;
ConsumeExpectedToken(Token::LSquare);
// FIXME: Should avoid reading past unbalanced parens here.
while (Tok.kind != Token::RSquare) {
if (Tok.kind == Token::EndOfFile) {
Error("unexpected end of file.");
goto exit;
}
// FIXME: Factor out.
if (Tok.kind != Token::Identifier) {
Error("unexpected token.");
ConsumeToken();
continue;
}
Token LTok = Tok;
const Identifier *Label = GetOrCreateIdentifier(Tok);
ConsumeToken();
// Declare or create array.
const ArrayDecl *AD = ArraySymTab[Label];
if (!AD) {
// FIXME: Don't make up arrays.
unsigned Id = atoi(&Label->Name.c_str()[3]);
AD = new ArrayDecl(Label, 0, 32, 8, new Array(0, Id, 0));
}
Objects.push_back(AD->Root);
}
ConsumeRSquare();
exit:
if (Tok.kind != Token::EndOfFile)
ExpectRParen("unexpected argument to 'query'.");
return new QueryCommand(Constraints, Res.get(), Values, Objects);
}
/// ParseNumberOrExpr - Parse an expression whose type cannot be
/// predicted.
NumberOrExprResult ParserImpl::ParseNumberOrExpr() {
if (Tok.kind == Token::Number){
Token Num = Tok;
ConsumeToken();
return NumberOrExprResult(Num);
} else {
return NumberOrExprResult(ParseExpr(TypeResult()));
}
}
/// ParseExpr - Parse an expression with the given \arg
/// ExpectedType. \arg ExpectedType can be invalid if the type cannot
/// be inferred from the context.
///
/// expr = false | true
/// expr = <constant>
/// expr = <identifier>
/// expr = [<identifier>:] paren-expr
ExprResult ParserImpl::ParseExpr(TypeResult ExpectedType) {
// FIXME: Is it right to need to do this here?
if (Tok.kind == Token::EndOfFile) {
Error("unexpected end of file.");
return ExprResult();
}
if (Tok.kind == Token::KWFalse || Tok.kind == Token::KWTrue) {
bool Value = Tok.kind == Token::KWTrue;
ConsumeToken();
return ExprResult(ConstantExpr::alloc(Value, Expr::Bool));
}
if (Tok.kind == Token::Number) {
if (!ExpectedType.isValid()) {
Error("cannot infer type of number.");
ConsumeToken();
return ExprResult();
}
return ParseNumber(ExpectedType.get());
}
const Identifier *Label = 0;
if (Tok.kind == Token::Identifier) {
Token LTok = Tok;
Label = GetOrCreateIdentifier(Tok);
ConsumeToken();
if (Tok.kind != Token::Colon) {
ExprSymTabTy::iterator it = ExprSymTab.find(Label);
if (it == ExprSymTab.end()) {
Error("invalid expression label reference.", LTok);
return ExprResult();
}
return it->second;
}
ConsumeToken();
if (ExprSymTab.count(Label)) {
Error("duplicate expression label definition.", LTok);
Label = 0;
}
}
Token Start = Tok;
ExprResult Res = ParseParenExpr(ExpectedType);
if (!Res.isValid()) {
// If we know the type, define the identifier just so we don't get
// use-of-undef errors.
// FIXME: Maybe we should let the symbol table map to invalid
// entries?
if (Label && ExpectedType.isValid()) {
ref<Expr> Value = ConstantExpr::alloc(0, ExpectedType.get());
ExprSymTab.insert(std::make_pair(Label, Value));
}
return Res;
} else if (ExpectedType.isValid()) {
// Type check result.
if (Res.get()->getWidth() != ExpectedType.get()) {
// FIXME: Need more info, and range
Error("expression has incorrect type.", Start);
return ExprResult();
}
}
if (Label)
ExprSymTab.insert(std::make_pair(Label, Res.get()));
return Res;
}
// Additional kinds for macro forms.
enum MacroKind {
eMacroKind_Not = Expr::LastKind + 1, // false == x
eMacroKind_Neg, // 0 - x
eMacroKind_ReadLSB, // Multibyte read
eMacroKind_ReadMSB, // Multibyte write
eMacroKind_Concat, // Magic concatenation syntax
eMacroKind_LastMacroKind = eMacroKind_ReadMSB
};
/// LookupExprInfo - Return information on the named token, if it is
/// recognized.
///
/// \param Kind [out] - The Expr::Kind or MacroKind of the identifier.
/// \param IsFixed [out] - True if the given kinds result and
/// (expression) arguments are all of the same width.
/// \param NumArgs [out] - The number of expression arguments for this
/// kind. -1 indicates the kind is variadic or has non-expression
/// arguments.
/// \return True if the token is a valid kind or macro name.
static bool LookupExprInfo(const Token &Tok, unsigned &Kind,
bool &IsFixed, int &NumArgs) {
#define SetOK(kind, isfixed, numargs) (Kind=kind, IsFixed=isfixed,\
NumArgs=numargs, true)
assert(Tok.kind == Token::Identifier && "Unexpected token.");
switch (Tok.length) {
case 2:
if (memcmp(Tok.start, "Eq", 2) == 0)
return SetOK(Expr::Eq, false, 2);
if (memcmp(Tok.start, "Ne", 2) == 0)
return SetOK(Expr::Ne, false, 2);
if (memcmp(Tok.start, "Or", 2) == 0)
return SetOK(Expr::Or, true, 2);
break;
case 3:
if (memcmp(Tok.start, "Add", 3) == 0)
return SetOK(Expr::Add, true, 2);
if (memcmp(Tok.start, "Sub", 3) == 0)
return SetOK(Expr::Sub, true, 2);
if (memcmp(Tok.start, "Mul", 3) == 0)
return SetOK(Expr::Mul, true, 2);
if (memcmp(Tok.start, "And", 3) == 0)
return SetOK(Expr::And, true, 2);
if (memcmp(Tok.start, "Shl", 3) == 0)
return SetOK(Expr::Shl, true, 2);
if (memcmp(Tok.start, "Xor", 3) == 0)
return SetOK(Expr::Xor, true, 2);
if (memcmp(Tok.start, "Not", 3) == 0)
return SetOK(eMacroKind_Not, true, 1);
if (memcmp(Tok.start, "Neg", 3) == 0)
return SetOK(eMacroKind_Neg, true, 1);
if (memcmp(Tok.start, "Ult", 3) == 0)
return SetOK(Expr::Ult, false, 2);
if (memcmp(Tok.start, "Ule", 3) == 0)
return SetOK(Expr::Ule, false, 2);
if (memcmp(Tok.start, "Ugt", 3) == 0)
return SetOK(Expr::Ugt, false, 2);
if (memcmp(Tok.start, "Uge", 3) == 0)
return SetOK(Expr::Uge, false, 2);
if (memcmp(Tok.start, "Slt", 3) == 0)
return SetOK(Expr::Slt, false, 2);
if (memcmp(Tok.start, "Sle", 3) == 0)
return SetOK(Expr::Sle, false, 2);
if (memcmp(Tok.start, "Sgt", 3) == 0)
return SetOK(Expr::Sgt, false, 2);
if (memcmp(Tok.start, "Sge", 3) == 0)
return SetOK(Expr::Sge, false, 2);
break;
case 4:
if (memcmp(Tok.start, "Read", 4) == 0)
return SetOK(Expr::Read, true, -1);
if (memcmp(Tok.start, "AShr", 4) == 0)
return SetOK(Expr::AShr, true, 2);
if (memcmp(Tok.start, "LShr", 4) == 0)
return SetOK(Expr::LShr, true, 2);
if (memcmp(Tok.start, "UDiv", 4) == 0)
return SetOK(Expr::UDiv, true, 2);
if (memcmp(Tok.start, "SDiv", 4) == 0)
return SetOK(Expr::SDiv, true, 2);
if (memcmp(Tok.start, "URem", 4) == 0)
return SetOK(Expr::URem, true, 2);
if (memcmp(Tok.start, "SRem", 4) == 0)
return SetOK(Expr::SRem, true, 2);
if (memcmp(Tok.start, "SExt", 4) == 0)
return SetOK(Expr::SExt, false, 1);
if (memcmp(Tok.start, "ZExt", 4) == 0)
return SetOK(Expr::ZExt, false, 1);
break;
case 6:
if (memcmp(Tok.start, "Concat", 6) == 0)
return SetOK(eMacroKind_Concat, false, -1);
if (memcmp(Tok.start, "Select", 6) == 0)
return SetOK(Expr::Select, false, 3);
break;
case 7:
if (memcmp(Tok.start, "Extract", 7) == 0)
return SetOK(Expr::Extract, false, -1);
if (memcmp(Tok.start, "ReadLSB", 7) == 0)
return SetOK(eMacroKind_ReadLSB, true, -1);
if (memcmp(Tok.start, "ReadMSB", 7) == 0)
return SetOK(eMacroKind_ReadMSB, true, -1);
break;
}
return false;
#undef SetOK
}
/// ParseParenExpr - Parse a parenthesized expression with the given
/// \arg ExpectedType. \arg ExpectedType can be invalid if the type
/// cannot be inferred from the context.
///
/// paren-expr = '(' type number ')'
/// paren-expr = '(' identifier [type] expr+ ')
/// paren-expr = '(' ('Read' | 'ReadMSB' | 'ReadLSB') type expr update-list ')'
ExprResult ParserImpl::ParseParenExpr(TypeResult FIXME_UNUSED) {
if (Tok.kind != Token::LParen) {
Error("unexpected token.");
ConsumeAnyToken();
return ExprResult();
}
ConsumeLParen();
// Check for coercion case (w32 11).
if (Tok.kind == Token::KWWidth) {
TypeResult ExpectedType = ParseTypeSpecifier();
if (Tok.kind != Token::Number) {
Error("coercion can only apply to a number.");
SkipUntilRParen();
return ExprResult();
}
// Make sure this was a type specifier we support.
ExprResult Res;
if (ExpectedType.isValid())
Res = ParseNumber(ExpectedType.get());
else
ConsumeToken();
ExpectRParen("unexpected argument in coercion.");
return Res;
}
if (Tok.kind != Token::Identifier) {
Error("unexpected token, expected expression.");
SkipUntilRParen();
return ExprResult();
}
Token Name = Tok;
ConsumeToken();
// FIXME: Use invalid type (i.e. width==0)?
Token TypeTok = Tok;
bool HasType = TypeTok.kind == Token::KWWidth;
TypeResult Type = HasType ? ParseTypeSpecifier() : Expr::Bool;
// FIXME: For now just skip to rparen on error. It might be nice
// to try and actually parse the child nodes though for error
// messages & better recovery?
if (!Type.isValid()) {
SkipUntilRParen();
return ExprResult();
}
Expr::Width ResTy = Type.get();
unsigned ExprKind;
bool IsFixed;
int NumArgs;
if (!LookupExprInfo(Name, ExprKind, IsFixed, NumArgs)) {
// FIXME: For now just skip to rparen on error. It might be nice
// to try and actually parse the child nodes though for error
// messages & better recovery?
Error("unknown expression kind.", Name);
SkipUntilRParen();
return ExprResult();
}
// See if we have to parse this form specially.
if (NumArgs == -1) {
switch (ExprKind) {
case eMacroKind_Concat:
return ParseConcatParenExpr(Name, ResTy);
case Expr::Extract:
return ParseExtractParenExpr(Name, ResTy);
case eMacroKind_ReadLSB:
case eMacroKind_ReadMSB:
case Expr::Read:
return ParseAnyReadParenExpr(Name, ExprKind, ResTy);
default:
Error("internal error, unimplemented special form.", Name);
SkipUntilRParen();
return ExprResult(ConstantExpr::alloc(0, ResTy));
}
}
switch (NumArgs) {
case 1:
return ParseUnaryParenExpr(Name, ExprKind, IsFixed, ResTy);
case 2:
return ParseBinaryParenExpr(Name, ExprKind, IsFixed, ResTy);
case 3:
if (ExprKind == Expr::Select)
return ParseSelectParenExpr(Name, ResTy);
default:
assert(0 && "Invalid argument kind (number of args).");
return ExprResult();
}
}
ExprResult ParserImpl::ParseUnaryParenExpr(const Token &Name,
unsigned Kind, bool IsFixed,
Expr::Width ResTy) {
if (Tok.kind == Token::RParen) {
Error("unexpected end of arguments.", Name);
ConsumeRParen();
return ConstantExpr::alloc(0, ResTy);
}
ExprResult Arg = ParseExpr(IsFixed ? ResTy : TypeResult());
if (!Arg.isValid())
Arg = ConstantExpr::alloc(0, ResTy);
ExpectRParen("unexpected argument in unary expression.");
ExprHandle E = Arg.get();
switch (Kind) {
case eMacroKind_Not:
return EqExpr::alloc(ConstantExpr::alloc(0, E->getWidth()), E);
case eMacroKind_Neg:
return SubExpr::alloc(ConstantExpr::alloc(0, E->getWidth()), E);
case Expr::SExt:
// FIXME: Type check arguments.
return SExtExpr::alloc(E, ResTy);
case Expr::ZExt:
// FIXME: Type check arguments.
return ZExtExpr::alloc(E, ResTy);
default:
Error("internal error, unhandled kind.", Name);
return ConstantExpr::alloc(0, ResTy);
}
}
/// ParseMatchedBinaryArgs - Parse a pair of arguments who are
/// expected to be of the same type. Upon return, if both LHS and RHS
/// are valid then they are guaranteed to have the same type.
///
/// Name - The name token of the expression, for diagnostics.
/// ExpectType - The expected type of the arguments, if known.
void ParserImpl::ParseMatchedBinaryArgs(const Token &Name,
TypeResult ExpectType,
ExprResult &LHS, ExprResult &RHS) {
if (Tok.kind == Token::RParen) {
Error("unexpected end of arguments.", Name);
ConsumeRParen();
return;
}
// Avoid NumberOrExprResult overhead and give more precise
// diagnostics when we know the type.
if (ExpectType.isValid()) {
LHS = ParseExpr(ExpectType);
if (Tok.kind == Token::RParen) {
Error("unexpected end of arguments.", Name);
ConsumeRParen();
return;
}
RHS = ParseExpr(ExpectType);
} else {
NumberOrExprResult LHS_NOE = ParseNumberOrExpr();
if (Tok.kind == Token::RParen) {
Error("unexpected end of arguments.", Name);
ConsumeRParen();
return;
}
if (LHS_NOE.isNumber()) {
NumberOrExprResult RHS_NOE = ParseNumberOrExpr();
if (RHS_NOE.isNumber()) {
Error("ambiguous arguments to expression.", Name);
} else {
RHS = RHS_NOE.getExpr();
if (RHS.isValid())
LHS = ParseNumberToken(RHS.get()->getWidth(), LHS_NOE.getNumber());
}
} else {
LHS = LHS_NOE.getExpr();
if (!LHS.isValid()) {
// FIXME: Should suppress ambiguity warnings here.
RHS = ParseExpr(TypeResult());
} else {
RHS = ParseExpr(LHS.get()->getWidth());
}
}
}
ExpectRParen("unexpected argument to expression.");
}
ExprResult ParserImpl::ParseBinaryParenExpr(const Token &Name,
unsigned Kind, bool IsFixed,
Expr::Width ResTy) {
ExprResult LHS, RHS;
ParseMatchedBinaryArgs(Name, IsFixed ? TypeResult(ResTy) : TypeResult(),
LHS, RHS);
if (!LHS.isValid() || !RHS.isValid())
return ConstantExpr::alloc(0, ResTy);
ref<Expr> LHS_E = LHS.get(), RHS_E = RHS.get();
if (LHS_E->getWidth() != RHS_E->getWidth()) {
Error("type widths do not match in binary expression", Name);
return ConstantExpr::alloc(0, ResTy);
}
switch (Kind) {
case Expr::Add: return AddExpr::alloc(LHS_E, RHS_E);
case Expr::Sub: return SubExpr::alloc(LHS_E, RHS_E);
case Expr::Mul: return MulExpr::alloc(LHS_E, RHS_E);
case Expr::UDiv: return UDivExpr::alloc(LHS_E, RHS_E);
case Expr::SDiv: return SDivExpr::alloc(LHS_E, RHS_E);
case Expr::URem: return URemExpr::alloc(LHS_E, RHS_E);
case Expr::SRem: return SRemExpr::alloc(LHS_E, RHS_E);
case Expr::AShr: return AShrExpr::alloc(LHS_E, RHS_E);
case Expr::LShr: return LShrExpr::alloc(LHS_E, RHS_E);
case Expr::Shl: return AndExpr::alloc(LHS_E, RHS_E);
case Expr::And: return AndExpr::alloc(LHS_E, RHS_E);
case Expr::Or: return OrExpr::alloc(LHS_E, RHS_E);
case Expr::Xor: return XorExpr::alloc(LHS_E, RHS_E);
case Expr::Eq: return EqExpr::alloc(LHS_E, RHS_E);
case Expr::Ne: return NeExpr::alloc(LHS_E, RHS_E);
case Expr::Ult: return UltExpr::alloc(LHS_E, RHS_E);
case Expr::Ule: return UleExpr::alloc(LHS_E, RHS_E);
case Expr::Ugt: return UgtExpr::alloc(LHS_E, RHS_E);
case Expr::Uge: return UgeExpr::alloc(LHS_E, RHS_E);
case Expr::Slt: return SltExpr::alloc(LHS_E, RHS_E);
case Expr::Sle: return SleExpr::alloc(LHS_E, RHS_E);
case Expr::Sgt: return SgtExpr::alloc(LHS_E, RHS_E);
case Expr::Sge: return SgeExpr::alloc(LHS_E, RHS_E);
default:
Error("FIXME: unhandled kind.", Name);
return ConstantExpr::alloc(0, ResTy);
}
}
ExprResult ParserImpl::ParseSelectParenExpr(const Token &Name,
Expr::Width ResTy) {
// FIXME: Why does this need to be here?
if (Tok.kind == Token::RParen) {
Error("unexpected end of arguments.", Name);
ConsumeRParen();
return ConstantExpr::alloc(0, ResTy);
}
ExprResult Cond = ParseExpr(Expr::Bool);
ExprResult LHS, RHS;
ParseMatchedBinaryArgs(Name, ResTy, LHS, RHS);
if (!Cond.isValid() || !LHS.isValid() || !RHS.isValid())
return ConstantExpr::alloc(0, ResTy);
return SelectExpr::alloc(Cond.get(), LHS.get(), RHS.get());
}
// FIXME: Rewrite to only accept binary form. Make type optional.
ExprResult ParserImpl::ParseConcatParenExpr(const Token &Name,
Expr::Width ResTy) {
std::vector<ExprHandle> Kids;
unsigned Width = 0;
while (Tok.kind != Token::RParen) {
ExprResult E = ParseExpr(TypeResult());
// Skip to end of expr on error.
if (!E.isValid()) {
SkipUntilRParen();
return ConstantExpr::alloc(0, ResTy);
}
Kids.push_back(E.get());
Width += E.get()->getWidth();
}
ConsumeRParen();
if (Width != ResTy) {
Error("concat does not match expected result size.");
return ConstantExpr::alloc(0, ResTy);
}
return ConcatExpr::createN(Kids.size(), &Kids[0]);
}
ExprResult ParserImpl::ParseExtractParenExpr(const Token &Name,
Expr::Width ResTy) {
// FIXME: Pull out parse constant integer expression.
ExprResult OffsetExpr = ParseNumber(Expr::Int32);
ExprResult Child = ParseExpr(TypeResult());
ExpectRParen("unexpected argument to expression.");
if (!OffsetExpr.isValid() || !Child.isValid())
return ConstantExpr::alloc(0, ResTy);
unsigned Offset =
(unsigned) cast<ConstantExpr>(OffsetExpr.get())->getConstantValue();
if (Offset + ResTy > Child.get()->getWidth()) {
Error("extract out-of-range of child expression.", Name);
return ConstantExpr::alloc(0, ResTy);
}
return ExtractExpr::alloc(Child.get(), Offset, ResTy);
}
ExprResult ParserImpl::ParseAnyReadParenExpr(const Token &Name,
unsigned Kind,
Expr::Width ResTy) {
NumberOrExprResult Index = ParseNumberOrExpr();
VersionResult Array = ParseVersionSpecifier();
ExpectRParen("unexpected argument in read expression.");
if (!Array.isValid())
return ConstantExpr::alloc(0, ResTy);
// FIXME: Need generic way to get array width. Needs to work with
// anonymous arrays.
Expr::Width ArrayDomainType = Expr::Int32;
Expr::Width ArrayRangeType = Expr::Int8;
// Coerce number to correct type.
ExprResult IndexExpr;
if (Index.isNumber())
IndexExpr = ParseNumberToken(ArrayDomainType, Index.getNumber());
else
IndexExpr = Index.getExpr();
if (!IndexExpr.isValid())
return ConstantExpr::alloc(0, ResTy);
else if (IndexExpr.get()->getWidth() != ArrayDomainType) {
Error("index width does not match array domain.");
return ConstantExpr::alloc(0, ResTy);
}
// FIXME: Check range width.
switch (Kind) {
default:
assert(0 && "Invalid kind.");
return ConstantExpr::alloc(0, ResTy);
case eMacroKind_ReadLSB:
case eMacroKind_ReadMSB: {
unsigned NumReads = ResTy / ArrayRangeType;
if (ResTy != NumReads*ArrayRangeType) {
Error("invalid ordered read (not multiple of range type).", Name);
return ConstantExpr::alloc(0, ResTy);
}
std::vector<ExprHandle> Kids;
Kids.reserve(NumReads);
ExprHandle Index = IndexExpr.get();
for (unsigned i=0; i<NumReads; ++i) {
// FIXME: using folding here
ExprHandle OffsetIndex = AddExpr::create(IndexExpr.get(),
ConstantExpr::alloc(i, ArrayDomainType));
Kids.push_back(ReadExpr::alloc(Array.get(), OffsetIndex));
}
if (Kind == eMacroKind_ReadLSB)
std::reverse(Kids.begin(), Kids.end());
return ConcatExpr::createN(NumReads, &Kids[0]);
}
case Expr::Read:
return ReadExpr::alloc(Array.get(), IndexExpr.get());
}
}
/// version-specifier = <identifier>
/// version-specifier = [<identifier>:] [ version ]
VersionResult ParserImpl::ParseVersionSpecifier() {
const Identifier *Label = 0;
if (Tok.kind == Token::Identifier) {
Token LTok = Tok;
Label = GetOrCreateIdentifier(Tok);
ConsumeToken();
// FIXME: hack: add array declarations and ditch this.
if (memcmp(Label->Name.c_str(), "arr", 3) == 0) {
// Declare or create array.
const ArrayDecl *&A = ArraySymTab[Label];
if (!A) {
unsigned id = atoi(&Label->Name.c_str()[3]);
Array *root = new Array(0, id, 0);
ArrayDecl *AD = new ArrayDecl(Label, 0, 32, 8, root);
// Create update list mapping of name -> array.
VersionSymTab.insert(std::make_pair(Label,
UpdateList(root, true, NULL)));
ArraySymTab.insert(std::make_pair(Label, AD));
}
}
if (Tok.kind != Token::Colon) {
VersionSymTabTy::iterator it = VersionSymTab.find(Label);
if (it == VersionSymTab.end()) {
Error("invalid update list label reference.", LTok);
return VersionResult(false,
UpdateList(0, true, NULL));
}
return it->second;
}
ConsumeToken();
if (VersionSymTab.count(Label)) {
Error("duplicate update list label definition.", LTok);
Label = 0;
}
}
Token Start = Tok;
VersionResult Res = ParseVersion();
// Define update list to avoid use-of-undef errors.
if (!Res.isValid())
Res = VersionResult(false,
UpdateList(0, true, NULL));
if (Label)
VersionSymTab.insert(std::make_pair(Label, Res.get()));
return Res;
}
/// version - '[' update-list? ']' ['@' version-specifier]
/// update-list - empty
/// update-list - lhs '=' rhs [',' update-list]
VersionResult ParserImpl::ParseVersion() {
if (Tok.kind != Token::LSquare)
return VersionResult(false, UpdateList(0, false, NULL));
std::vector< std::pair<NumberOrExprResult, NumberOrExprResult> > Writes;
ConsumeLSquare();
for (;;) {
// FIXME: Type check exprs.
// FIXME: We need to do this (the above) anyway just to handle
// implicit constants correctly.
NumberOrExprResult LHS = ParseNumberOrExpr();
if (Tok.kind != Token::Equals) {
Error("expected '='.", Tok);
break;
}
ConsumeToken();
NumberOrExprResult RHS = ParseNumberOrExpr();
Writes.push_back(std::make_pair(LHS, RHS));
if (Tok.kind == Token::Comma)
ConsumeToken();
else
break;
}
ExpectRSquare("expected close of update list");
VersionHandle Base(0, false, NULL);
// Anonymous array case.
if (Tok.kind != Token::At) {
Array *root = new Array(0, 0, 0);
Base = UpdateList(root, false, NULL);
} else {
ConsumeToken();
VersionResult BaseRes = ParseVersionSpecifier();
if (!BaseRes.isValid())
return BaseRes;
Base = BaseRes.get();
}
Expr::Width ArrayDomainType = Expr::Int32;
Expr::Width ArrayRangeType = Expr::Int8;
for (std::vector< std::pair<NumberOrExprResult, NumberOrExprResult> >::reverse_iterator
it = Writes.rbegin(), ie = Writes.rend(); it != ie; ++it) {
ExprResult LHS, RHS;
// FIXME: This can be factored into common helper for coercing a
// NumberOrExpr into an Expr.
if (it->first.isNumber()) {
LHS = ParseNumberToken(ArrayDomainType, it->first.getNumber());
} else {
LHS = it->first.getExpr();
if (LHS.isValid() && LHS.get()->getWidth() != ArrayDomainType) {
// FIXME: bad token location. We should maybe try and know the
// array up-front?
Error("invalid value in write index (doesn't match domain).", Tok);
LHS = ExprResult();
}
}
if (it->second.isNumber()) {
RHS = ParseNumberToken(ArrayRangeType, it->second.getNumber());
} else {
RHS = it->second.getExpr();
if (RHS.isValid() && RHS.get()->getWidth() != ArrayRangeType) {
// FIXME: bad token location. We should maybe try and know the
// array up-front?
Error("invalid value in write assignment (doesn't match range).", Tok);
RHS = ExprResult();
}
}
if (LHS.isValid() && RHS.isValid())
Base.extend(LHS.get(), RHS.get());
}
return Base;
}
/// ParseNumber - Parse a number of the given type.
ExprResult ParserImpl::ParseNumber(Expr::Width Type) {
ExprResult Res = ParseNumberToken(Type, Tok);
ConsumeExpectedToken(Token::Number);
return Res;
}
/// ParseNumberToken - Parse a number of the given type from the given
/// token.
ExprResult ParserImpl::ParseNumberToken(Expr::Width Type, const Token &Tok) {
const char *S = Tok.start;
unsigned N = Tok.length;
unsigned Radix = 10, RadixBits = 4;
bool HasMinus = false;
// Detect +/- (a number token cannot have both).
if (S[0] == '+') {
++S;
--N;
} else if (S[0] == '-') {
HasMinus = true;
++S;
--N;
}
// Detect 0[box].
if ((Tok.length >= 2 && S[0] == '0') &&
(S[1] == 'b' || S[1] == 'o' || S[1] == 'x')) {
if (S[1] == 'b') {
Radix = 2;
RadixBits = 1;
} else if (S[1] == 'o') {
Radix = 8;
RadixBits = 3;
} else {
Radix = 16;
RadixBits = 4;
}
S += 2;
N -= 2;
// Diagnose 0[box] with no trailing digits.
if (!N) {
Error("invalid numeric token (no digits).", Tok);
return ConstantExpr::alloc(0, Type);
}
}
// This is a simple but slow way to handle overflow.
APInt Val(std::max(64U, RadixBits * N), 0);
APInt RadixVal(Val.getBitWidth(), Radix);
APInt DigitVal(Val.getBitWidth(), 0);
for (unsigned i=0; i<N; ++i) {
unsigned Digit, Char = S[i];
if (Char == '_')
continue;
if ('0' <= Char && Char <= '9')
Digit = Char - '0';
else if ('a' <= Char && Char <= 'z')
Digit = Char - 'a' + 10;
else if ('A' <= Char && Char <= 'Z')
Digit = Char - 'A' + 10;
else {
Error("invalid character in numeric token.", Tok);
return ConstantExpr::alloc(0, Type);
}
if (Digit >= Radix) {
Error("invalid character in numeric token (out of range).", Tok);
return ConstantExpr::alloc(0, Type);
}
DigitVal = Digit;
Val = Val * RadixVal + DigitVal;
}
// FIXME: Actually do the check for overflow.
if (HasMinus)
Val = -Val;
if (Type < Val.getBitWidth())
Val = Val.trunc(Type);
return ExprResult(ConstantExpr::alloc(Val.getZExtValue(), Type));
}
/// ParseTypeSpecifier - Parse a type specifier.
///
/// type = w[0-9]+
TypeResult ParserImpl::ParseTypeSpecifier() {
assert(Tok.kind == Token::KWWidth && "Unexpected token.");
// FIXME: Need APInt technically.
Token TypeTok = Tok;
int width = atoi(std::string(Tok.start+1,Tok.length-1).c_str());
ConsumeToken();
// FIXME: We should impose some sort of maximum just for sanity?
return TypeResult(width);
}
void ParserImpl::Error(const char *Message, const Token &At) {
++NumErrors;
if (MaxErrors && NumErrors >= MaxErrors)
return;
llvm::cerr << Filename
<< ":" << At.line << ":" << At.column
<< ": error: " << Message << "\n";
// Skip carat diagnostics on EOF token.
if (At.kind == Token::EndOfFile)
return;
// Simple caret style diagnostics.
const char *LineBegin = At.start, *LineEnd = At.start,
*BufferBegin = TheMemoryBuffer->getBufferStart(),
*BufferEnd = TheMemoryBuffer->getBufferEnd();
// Run line pointers forward and back.
while (LineBegin > BufferBegin &&
LineBegin[-1] != '\r' && LineBegin[-1] != '\n')
--LineBegin;
while (LineEnd < BufferEnd &&
LineEnd[0] != '\r' && LineEnd[0] != '\n')
++LineEnd;
// Show the line.
llvm::cerr << std::string(LineBegin, LineEnd) << "\n";
// Show the caret or squiggly, making sure to print back spaces the
// same.
for (const char *S=LineBegin; S != At.start; ++S)
llvm::cerr << (isspace(*S) ? *S : ' ');
if (At.length > 1) {
for (unsigned i=0; i<At.length; ++i)
llvm::cerr << '~';
} else
llvm::cerr << '^';
llvm::cerr << '\n';
}
// AST API
// FIXME: Move out of parser.
Decl::Decl(DeclKind _Kind) : Kind(_Kind) {}
void ArrayDecl::dump() {
std::cout << "array " << Name->Name << " : "
<< 'w' << Domain << " -> "
<< 'w' << Range << " = ";
if (Contents.empty()) {
std::cout << "symbolic\n";
} else {
std::cout << '{';
for (std::vector<ExprHandle>::const_iterator it = Contents.begin(),
ie = Contents.end(); it != ie;) {
std::cout << *it;
if (++it != ie)
std::cout << " ";
}
std::cout << "}\n";
}
}
void QueryCommand::dump() {
const ExprHandle *ValuesBegin = 0, *ValuesEnd = 0;
const Array * const* ObjectsBegin = 0, * const* ObjectsEnd = 0;
if (!Values.empty()) {
ValuesBegin = &Values[0];
ValuesEnd = ValuesBegin + Values.size();
}
if (!Objects.empty()) {
ObjectsBegin = &Objects[0];
ObjectsEnd = ObjectsBegin + Objects.size();
}
ExprPPrinter::printQuery(std::cout, ConstraintManager(Constraints),
Query, ValuesBegin, ValuesEnd,
ObjectsBegin, ObjectsEnd);
}
// Public parser API
Parser::Parser() {
}
Parser::~Parser() {
}
Parser *Parser::Create(const std::string Filename,
const MemoryBuffer *MB) {
ParserImpl *P = new ParserImpl(Filename, MB);
P->Initialize();
return P;
}
|